
PowerAnalysis_Overview.docx 

An Overview of Power Analysis 
 

 Power is the conditional probability that one will reject the null hypothesis given that the null 
hypothesis is really false by a specified amount and given certain other specifications, such as 
sample size and criterion of statistical significance (alpha).  I shall introduce power analysis in the 
context of a one sample test of the mean.  After that I shall move on to statistics more commonly 
employed. 

 There are several different sorts of power analyses – see Faul, Erdfelder, Lang, & Buchner 
(Behavior Research Methods, 2007, 39, 175-191) for descriptions of five types that can be computed 
using G*Power 3.  I shall focus on “a priori” and “a posteriori” power analysis. 

 A Priori Power Analysis.  This is an important part of planning research.  You determine how 
many cases you will need to have a good chance of detecting an effect of a specified size with the 
desired amount of power.  See my document Estimating the Sample Size Necessary to Have Enough 
Power for required number of cases to have 80% for common designs. 

 A Posteriori Power Analysis. Also know as “post hoc” power analysis.  Here you find how 
much power you would have if you had a specified number of cases.  Is it “a posteriori” only in the 
sense that you provide the number of number of cases, as if you had already conducted the research. 
Like “a priori” power analysis, it is best used in the planning of research – for example, I am planning 
on obtaining data on 100 cases, and I want to know whether or not would give me adequate power. 

 Retrospective Power Analysis.  Also known as “observed power.”  There are several types, 
but basically this involves answering the following question:  “If I were to repeat this research, using 
the same methods and the same number of cases, and if the size of the effect in the population was 
exactly the same as it was in the present sample, what would be the probability that I would obtain 
significant results?”  Many have demonstrated that this question is foolish, that the answer tells us 
nothing of value, and that it has led to much mischief.  See this discussion from Edstat-L.  I also 
recommend that you read Hoenig and Heisey (The American Statistician, 2001, 55, 19-24).  A few 
key points: 

• Some stat packs (SPSS) give you “observed power” even though it is useless. 

• “Observed power” is perfectly correlated with the value of p – that is, it provides absolutely no 
new information that you did not already have. 

• It is useless to conduct a power analysis AFTER the research has been completed.  What you 
should be doing is calculating confidence intervals for effect sizes. 

One Sample Test of Mean 

 Imagine that we are evaluating the effect of a putative memory enhancing drug.  We have 

randomly sampled 25 people from a population known to be normally distributed with a   of 100 and 

a   of 15.  We administer the drug, wait a reasonable time for it to take effect, and then test our 
subjects’ IQ.  Assume that we were so confident in our belief that the drug would either increase IQ or 
have no effect that we entertained directional hypotheses.  Our null hypothesis is that after 

administering the drug   100; our alternative hypothesis is  > 100. 

 These hypotheses must first be converted to exact hypotheses.  Converting the null is easy:  it 

becomes  = 100.  The alternative is more troublesome.  If we knew that the effect of the drug was to 

increase IQ by 15 points, our exact alternative hypothesis would be  = 115, and we could compute 

power, the probability of correctly rejecting the false null hypothesis given that  is really equal to 115 

http://core.ecu.edu/psyc/wuenschk/docs30/Power-N.doc
http://core.ecu.edu/psyc/wuenschk/docs30/Power-N.doc
http://core.ecu.edu/psyc/wuenschk/StatHelp/PowerAPosteriori.htm


 2 

after drug treatment, not 100 (normal IQ).  But if we already knew how large the effect of the drug 
was, we would not need to do inferential statistics. 

 One solution is to decide on a minimum nontrivial effect size.  What is the smallest effect 

that you would consider to be nontrivial?  Suppose that you decide that if the drug increases iq  by 2 
or more points, then that is a nontrivial effect, but if the mean increase is less than 2 then the effect is 
trivial. 

 Now we can test the null of  = 100 versus the alternative of  = 102.  Let the left curve 

represent the distribution of sample means if the null hypothesis were true,  = 100.  This sampling 

distribution has a  = 100 and a 3
25

15
==x .  Let the right curve represent the sampling distribution 

if the exact alternative hypothesis is true,  = 102.  Its  is 102 and, assuming the drug has no effect 

on the variance in IQ scores, 3
25

15
==x . 

 The red area in the upper tail of the null distribution is .  Assume we are using a one-tailed  
of .05.  How large would a sample mean need be for us to reject the null?  Since the upper 5% of a 

normal distribution extends from 1.645  above the  up to positive infinity, the sample mean IQ 
would need be 100 + 1.645(3) = 104.935 or more to reject the null.  What are the chances of getting a 
sample mean of 104.935 or more if the alternative hypothesis is correct, if the drug increases IQ by 2 
points?  The area under the alternative curve from 104.935 up to positive infinity represents that 

probability, which is power.  Assuming the alternative hypothesis is true, that  = 102, the probability 
of rejecting the null hypothesis is the probability of getting a sample mean of 104.935 or more in a 

normal distribution with  = 102,  = 3.  Z = (104.935 − 102)/3 = 0.98, and P(Z > 0.98) = .1635.  That 
is, power is about 16%.  If the drug really does increase IQ by an average of 2 points, we have a 16% 
chance of rejecting the null.  If its effect is even larger, we have a greater than 16% chance. 
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 Suppose we consider 5 the minimum nontrivial effect size.  This will separate the null and 
alternative distributions more, decreasing their overlap and increasing power.  Now, 

Z = (104.935 − 105)/3 = −0.02, P(Z > −0.02) = .5080 or about 51%.  It is easier to detect large 
effects than small effects. 

 Suppose we conduct a 2-tailed test, since the drug could actually decrease IQ;   is now split 
into both tails of the null distribution, .025 in each tail.  We shall reject the null if the sample mean is 

1.96 or more standard errors away from the  of the null distribution.  That is, if the mean is 100 + 

1.96(3) = 105.88 or more (or if it is 100 − 1.96(3) = 94.12 or less) we reject the null.  The probability of 

that happening if the alternative is correct ( = 105) is:  Z = (105.88 − 105)/3 = .29, P(Z > .29) = 

.3859, power = about 39%.  We can ignore P(Z < (94.12 − 105)/3) = P(Z < −3.63) = very, very small. 
Note that our power is less than it was with a one-tailed test.  If you can correctly predict the 
direction of effect, a one-tailed test is more powerful than a two-tailed test. 

 Consider what would happen if you increased sample size to 100.  Now the 5.1
100

15
==x .  

With the null and alternative distributions less plump, they should overlap less, increasing power.  

With 1.5=x , the sample mean will need be 100 + (1.96)(1.5) = 102.94 or more to reject the null.  If 

the drug increases IQ by 5 points, power is :  Z = (102.94 − 105)/1.5 = −1.37, P(Z > −1.37) = .9147, or 
between 91 and 92%.  Anything that decreases the standard error will increase power.  This 

may be achieved by increasing the sample size or by reducing the  of the dependent variable.  

The  of the criterion variable may be reduced by reducing the influence of extraneous variables upon 
the criterion variable (eliminating “noise” in the criterion variable makes it easier to detect the signal, 
the grouping variable’s effect on the criterion variable). 

 Now consider what happens if you change .  Let us reduce  to .01.  Now the sample mean 

must be 2.58 or more standard errors from the null  before we reject the null.  That is, 100 + 

2.58(1.5) = 103.87.  Under the alternative, Z = (103.87 − 105)/1.5 = −0.75, P(Z > −0.75) = 0.7734 or 

about 77%, less than it was with  at .05, ceteris paribus.  Reducing  reduces power. 

 Please note that all of the above analyses have assumed that we have used a normally 

distributed test statistic, as 
x

X
Z



−
=  will be if the criterion variable is normally distributed in the 

population or if sample size is large enough to invoke the CLT.  Remember that using Z also requires 

that you know the population  rather than estimating it from the sample data.  We more often 

estimate the population , using Student’s t as the test statistic.  If N is fairly large, Student’s t is 

nearly normal, so this is no problem.  For example, with a two-tailed  of .05 and N = 25, we went out 

± 1.96 standard errors to mark off the rejection region.  With Student’s t on N −1 = 24 df we should 
have gone out ± 2.064 standard errors.  But 1.96 versus 2.06 is a relatively trivial difference, so we 
should feel comfortable with the normal approximation.  If, however, we had N = 5, df = 4, critical t = ± 
2.776, and the normal approximation would not do.  A more complex analysis would be needed. 

 

One Sample Power the Easy Way 

 Hopefully the analysis presented above will help you understand what power analysis is all 
about, but who wants to have to do so much thinking when doing a power analysis?  Yes, there are 
easier ways.  These days the easiest way it to use computer software that can do power analysis, 
and there is some pretty good software out there that is free.  I like free! 
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 I shall illustrate power analysis using the GPower program.  I am planning on conducting the 
memory drug study described above with 25 participants.  I have decided that the minimum nontrivial 
effect size is 5 IQ points, and I shall employ nondirectional hypothesis with a .05 criterion of statistical 
significance. 

I boot up G*Power and select the following options: 

• Test family:  t tests 

• Statistical test:  Means:  Difference from constant (one sample case) 

• Type of power analysis:  Post hoc:  Compute achieved power – given α, sample size, and effect 
size 

• Tails:  Two 

• Effect size d:  0.333333 (you could click “Determine” and have G*Power compute d for you) 

• α error prob:  0.05 

• Total sample size:  25 

 Click “Calculate” and you find that power = 0.360. 

 At the top of the window you get a graphic showing the distribution of t under the null and 
under the alternative, with critical t, β, and power indicated. 

 If you click the “Protocol” tab you get a terse summary of the analyses you have done, which 
can be printed, saved, or cleared out. 

 

 At the bottom of the window you can click “X-Y plot for a range of values.”  Select what you 
want plotted on Y and X and set constants and then click “Draw plot.”  Here is the plot showing the 

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
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relationship between sample size and power.  Clicking the “Table” tab gives you same information in 
a table. 

 

 

 

 Having 36% power is not very encouraging – if the drug really does have a five point effect, 
there is a 64% chance that you will not detect the effect and will make a Type II error.  If you cannot 
afford to get data from more than 25 participants, you may go ahead with your research plans and 
hope that the real effect of the drug is more than five IQ points. 

 If you were to find a significant effect of the drug with only 25 participants, that would speak to 
the large effect of the drug.  In this case you should not be hesitant to seek publication of your 
research, but you should be somewhat worried about having it reviewed by “ignorant experts.”  Such 
bozos (and they are to be found everywhere) will argue that your significant results cannot be trusted 
because your analysis had little power.  It is useless to argue with them, as they are totally lacking in 
understanding of the logic of hypothesis testing.  If the editor cannot be convinced that the reviewer is 
a moron, just resubmit to a different journal and hope to avoid ignorant expert reviewers there.  I 
should add that it really would have better if you had more data, as your estimation of the size of the 
effect would be more precise, but these ignorant expert reviewers would not understand that either. 
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 If you were not able to reject the null hypothesis in your research on the putative IQ drug, and 
your power analysis indicated about 36% power, you would be in an awkward position.  Although you 
could not reject the null, you also could not accept it, given that you only had a relatively small (36%) 
chance of rejecting it even if it were false. You might decide to repeat the experiment using an n large 
enough to allow you to accept the null if you cannot reject it.  In my opinion, if 5% is a reasonable 

risk for a Type I error (), then 5% is also a reasonable risk for a Type II error (), [unless the serious 

of one of these types of errors exceeds that of the other], so let us use power = 1 −  = 95%. 

How many subjects would you need to have 95% power?  In G*Power, under Type of power 
analysis, select “A priori: Compute required sample size given α, power, and effect size.”  Enter “.95” 
for “Power (1- β err prob).”  Click “Calculate.”  G*Power tells you that you need 119 subjects to get the 
desired power.  Now write that grant proposal that will convince the grant reviewers that your 
research deserves funding that will allow you get enough data to be able to make a strong statement 
about whether or not the putative memory enhancing drug is effective.  If it is effective, be sure that 
ignorant reviewers are the first to receive government subsidized supplies of the drug for personal 
use. 

If we were to repeat the experiment with 119 subjects and still could not reject the null, we can 

“accept” the null and conclude that the drug has no nontrivial ( 5 IQ points) effect upon IQ.  The null 

hypothesis we are accepting here is a “loose null hypothesis” [95 <  < 105] rather than a “sharp 

null hypothesis” [ = exactly 100].  Sharp null hypotheses are probably very rarely ever true. 

 Others could argue with your choice of the minimum nontrivial effect size.  Cohen has defined 
a small effect as d = .20, a medium effect as d = .50, and a large effect as d = .80.  If you defined 
minimum d at .20, you would need even more subjects for 95% power. 

 A third approach, called a sensitivity analysis in GPower, is to find the smallest effect that 
one could have detected with high probability given n.  If that d is small, and the null hypothesis is not 
rejected, then it is accepted.  For example, I used 1500 subjects in the IQ enhancer study.  Consider 

the null hypothesis to be -0.1  d  +0.1.  That is, if d does not differ from zero by at least .1, then I 

consider it to be  0. 

 

 

For power = 95%, d = .093.  If I can’t reject the null, I accept it, concluding that if the drug has 

any effect, it is a trivial effect, since I had a 95% chance of detecting an effect as small as . 093 .  I 
would prefer simply to report a confidence interval here, showing that d is very close to zero. 
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Install GPower on Your Personal Computer 

 If you would like to install GPower on your Windows computer, you can download it from 
Universität Duesseldorf. 

 

Two Independent Samples Test of Means 

 If n1  n2 , the effective sample size is the harmonic mean sample size, 

21

11

2~

nn

n

+

= . 

 For a fixed total N, the harmonic mean (and thus power) is higher the more nearly equal n1 and 
n2 are.  This is one good reason to use equal n designs.  Other good reasons are computational 
simplicity with equal n’s and greater robustness to violation of assumptions.  The effective (harmonic) 
sample size for 100 subjects evenly split into two groups of 50 each is 50; for a 60:40 split it is 48; for 
a 90:10 split it is 18.  

 Consider the following a priori power analysis.  We wish to compare the Advanced Psychology 
GRE scores of students in general psychology masters programs with that of those in clinical 
psychology masters programs.  We decide that we will be satisfied if we have enough data to have an 
80% chance of detecting an effect of 1/3 of a standard deviation, employing a .05 criterion of 
significance.  How many scores do we need in each group, if we have the same number of scores in 
each group? 

Select the following options: 

• Test family:  ttests 

• Statistical test:  Means:  Difference between two independent means (two groups) 

• Type of power analysis:  A priori: Compute required sample size given α, power, and effect size 

• Tails:  Two 

• Effect size d:  0.333333 (you could click “Determine” and have G*Power compute d for you) 

• α error prob:  0.05 

• Power (1- β err prob):  .8 

• Allocation ratio N2/N1:  1 

Click “Calculate” and you see that you need 143 cases in each group, that is, a total sample 
size of 286. 

Change the allocation ratio to 9 (nine times as many cases in the one group than in the other) 
and click “Calculate” again.  You will see that you would need 788 subjects to get the desired power 
with such a lopsided allocation ratio. 

 Consider the following a posteriori power analysis.  We have available only 36 scores from 
students in clinical programs and 48 scores from students in general programs.  What are our 
chances of detecting a difference of 40 points (which is that actually observed at ECU in 1981) if we 
use a .05 criterion of significance and the standard deviation is 98? 

 Change the type of power analysis to Post hoc.  Enter d = 40/98 = .408, n1 = 36, n2 = 48.  Click 
“Calculate.”  You will see that you have 45% power. 

  

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/
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Output: Noncentrality parameter δ = 1.850514 

 Critical t = 1.989319 

 Df = 82 

 Power (1-β err prob) = 0.447910 

 

Two Related Samples, Test of Means 

 The correlated samples t test is mathematically equivalent to a one-sample t  test conducted 
on the difference scores (for each subject, score under one condition less score under the other 
condition).  The greater ρ12, the correlation between the scores in the one condition and those in the 
second condition, the smaller the standard deviation of the difference scores and the greater the 
power, ceteris paribus.  By the variance sum law, the standard deviation of the difference scores is 

2112

2

2

2

1 2  −+=Diff .  If we assume equal variances, this simplifies to )1(2  −=Diff
. 

 When conducting a power analysis for the correlated samples design, we can take into 

account the effect of ρ12 by computing dDiff, an adjusted value of d:  
)1(2 12

21





−
=

−
=

d
d

Diff

Diff , 

where d is the effect size as computed above, with independent samples. 

 Please note that using the standard error of the difference scores, rather than the standard 
deviation of the criterion variable, as the denominator of dDiff, is simply a means of incorporating into 
the analysis the effect of the correlation produced by matching.  If we were computing estimated d 
(Hedges’ g) as an estimate of the standardized effect size given the obtained results, we would use 
the standard deviation of the criterion variable in the denominator, not the standard deviation of the 
difference scores.  I should admit that on rare occasions I have argued that, in a particular research 
context, it made more sense to use the standard deviation of the difference scores in the denominator 
of g. 

 Consider the following a priori power analysis.  I am testing the effect of a new drug on 
performance on a task that involves solving anagrams.  I want to have enough power to be able to 
detect an effect as small as 1/5 of a standard deviation (d = .2) with 95% power – I consider Type I 
and Type II errors equally serious and am employing a .05 criterion of statistical significance, so I 
want beta to be not more than .05.  I shall use a correlated samples design (within subjects) and two 
conditions (tested under the influence of the drug and not under the influence of the drug).  In 
previous research I have found the correlation between conditions to be approximately .8.  

3162.
)8.1(2

2.

)1(2 12

=
−

=
−

=


d
dDiff . 

 

 Use the following settings: 

• Statistical test:  Means:  Difference between two dependent means (matched pairs) 

• Type of power analysis:  A priori: Compute required sample size given α, power, and effect size 

• Tail(s):  Two 

• Effect size dz:  .3162 

• α error prob:  0.05 

• Power (1- β err prob):  .95 

Click “Calculate.”  You will find that you need 132 pairs of scores. 
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Output: Noncentrality parameter δ = 3.632861 

 Critical t = 1.978239 

 Df = 131 

 Total sample size = 132 

 Actual power = 0.950132 

 

 Consider the following a posteriori power analysis.  We assume that GRE Verbal and GRE 
Quantitative scores are measured on the same metric, and we wish to determine whether persons 
intending to major in experimental or developmental psychology are equally skilled in things verbal 
and things quantitative.  If we employ a .05 criterion of significance, and if the true size of the effect is 
20 GRE points (that was the actual population difference the last time I checked it, with quantitative > 
verbal), what are our chances of obtaining significant results if we have data on 400 persons?  We 
shall assume that the correlation between verbal and quantitative GRE is .60 (that is what it was for 
social science majors the last time I checked).  We need to know what the standard deviation is for 
the “dependent variable,” GRE score.  The last time I checked, it was 108 for verbal, 114 for 
quantitative. 

 Change type of power analysis to “Post hoc.”  Set the total sample size to 400.  Click on 
“Determine.”  Select “from group parameters.”  Set the group means to 0 and 20 (or any other two 
means that differ by 20), the standard deviations to 108 and 114, and the correlation between groups 
to .6.  Click “Calculate” in this window to obtain the effect size dz, .2100539. 

 

 Click “Calculate and transfer to main window” to move the effect size dz to the main window.  
Click “Calculate” in the main window to compute the power.  You will see that you have 98% power. 
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Type III Errors and Three-Choice Tests 

 Leventhal and Huynh (Psychological Methods, 1996, 1, 278-292) note that it is common 
practice, following rejection of a nondirectional null, to conclude that the direction of difference in the 
population is the same as what it is in the sample.  This procedure is what they call a "directional two-
tailed test."  They also refer to it as a "three-choice test" (I prefer that language), in that the three 
hypotheses entertained are:  parameter = null value, parameter < null value, and parameter > null 
value.  This makes possible a Type III error:  correctly rejecting the null hypothesis, but incorrectly 
inferring the direction of the effect - for example, when the population value of the tested parameter is 
actually more than the null value, getting a sample value that is so much below the null value that you 
reject the null and conclude that the population value is also below the null value.  The authors show 
how to conduct a power analysis that corrects for the possibility of making a Type III error.  See my 
summary at:  http://core.ecu.edu/psyc/wuenschk/StatHelp/Type_III.htm 

 

Bivariate Correlation/Regression Analysis 

 Consider the following a priori power analysis.  We wish to determine whether or not there is a 
correlation between misanthropy and support for animal rights.  We shall measure these attributes 
with instruments that produce scores for which it is reasonable to treat the variables as continuous.  
How many respondents would we need to have a 95% probability of obtaining significant results if we 
employed a .05 criterion of significance and if the true value of the correlation (in the population) was 
0.2? 

Select the following options: 

• Test family:  ttests 

• Statistical test:  Correlation:  Point biserial model (that is, a regression analysis) 

• Type of power analysis:  A priori: Compute required sample size given α, power, and effect size 

• Tails:  Two 

• Effect size |r|:  .2 

• α error prob:  0.05 

• Power (1- β err prob):  .95 

http://core.ecu.edu/psyc/wuenschk/StatHelp/Type_III.htm
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Click “Calculate” and you will see that you need 314 cases. 

t tests - Correlation: Point biserial model 

Analysis: A priori: Compute required sample size  

Input: Tail(s) = Two 

 Effect size |r| = .2 

 α err prob = 0.05 

 Power (1-β err prob) = 0.95 

Output: Noncentrality parameter δ = 3.617089 

 Critical t = 1.967596 

 Df = 312 

 Total sample size = 314 

 Actual power = 0.950115 

 

 Check out Steiger and Fouladi’s R2 program, which will do power analysis (and more) for 
correlation models, including multiple correlation. 

 

One-Way ANOVA, Independent Samples 

The effect size may be specified in terms of f:  
2

2

1

)(

error

j

k

j

k
f



 −

=


=

.  Cohen considered an f of 

.10 to represent a small effect, .25 a medium effect, and .40 a large effect.  In terms of percentage of 
variance explained η2, small is 1%, medium is 6%, and large is 14%. 

 Suppose that I wish to test the null hypothesis that for GRE-Q, the population means for 
undergraduates intending to major in social psychology, clinical psychology, and experimental 
psychology are all equal.  I decide that the minimum nontrivial effect size is if each mean differs from 

the next by 20 points (about 1/5  ).  For example, means of 480, 500, and 520. The sum of the 
squared deviations between group means and grand mean is then 202 + 02 + 202 = 800.  Next we 

compute f.  Assuming that the   is about 100, 163.010000/3/800f == .  Suppose we have 11 

cases in each group. 

 

 

 

http://core.ecu.edu/psyc/wuenschk/docs30/Power-R2.doc
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 OK, how many subjects would you need to raise power to 70%?  Under Analysis, select A 
Priori, under Power enter .70, and click Calculate. 

 

 

 G*Power advises that you need 294 cases, evenly split into three groups, that is, 98 cases per 
group. 

 

Analysis of Covariance 

 If you add one or more covariates to your ANOVA model, and they are well correlated with the 
outcome variable, then the error term will be reduced and power will be increased.  The effect of the 
addition of covariates can be incorporated into the power analysis in this way: 

• Adjusting the effect size statistic, f, such that the adjusted f, 
21 r

f
f

−
= , where r is the 

correlation between the covariate (or set of covariates) and the outcome variable. 

• Reducing the error df by one for each covariate added to the model. 

 

Consider this example.  I am using an ANOVA design to compare three experimental groups.  

I want to know how many cases I need to detect a small effect (f = .1).  GPower tells me I need 
1,548 cases.  Ouch, that is a lot of data. 
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 Suppose I find a covariate that I can measure prior to manipulating the experimental variable 
and which is known to be correlated .7 with the dependent variable.  The adjusted f for a small 

effect increases to 14.
49.1

1.
=

−
=f . 

 

 

 Now I only need 792 cases.  Do note that the error df here should be 788, not 789, but that 
one df is not going to make much difference, as shown below. 

 

 I used the Generic F Test routine with the noncentrality parameter from the earlier run, and I 
dropped the denominator df to 788.  The value of the critical F increased ever so slightly, but the 
power did not change at all to six decimal places. 

 

Factorial ANOVA, Independent Samples 

 The analysis is done pretty much the same as it is with a one-way ANOVA.  Suppose we are 
planning research for which an A x B, 3 x 4 ANOVA would be appropriate.  We want to have enough 
data to have 80% power for a medium sized effect.  The omnibus analysis will include three F tests – 
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one with 2 df in the numerator, one with 3, and one with 6 (the interaction).  We plan on having 
sample size constant across cells. 

 Boot up G*Power and enter the options shown below: 

 

 

 Remember that Cohen suggested .25 as the value of f for a medium-sized effect.  The 
numerator df for the main effect of Factor A is (3-1)=2.  The number of groups here is the number of 
cells in the factorial design, 3 x 4 = 12.  When you click “Calculate” you see that you need a total N of 
158.  That works out to 13.2 cases per cell, so bump the N up to 14(12) = 168. 

 What about Factor B and the interaction?  There are (4-1)=3 df for the main effect of Factor A, 
and when you change the numerator df to 3 and click “Calculate” again you see that you need an N of 
179 to get 80% power for that effect.  The interaction has 2(3)=6 df, and when you change the 
numerator df to 6 and click “Calculate” you see that you need an N of 225 to have 80% power to 
detect a medium-sized interaction.  With equal sample sizes, that means you need 19 cases per cell, 
228 total N. 

 Clearly you are not going to have the same amount of power for each of the three effects.  If 
your primary interest was in the main effects, you might go with a total N that would give you the 
desired power for main effect but somewhat less than that for the interaction.  If, however, you have 
reason to expect an interaction, you will go for the total N of 228.  How much power would that give 
you for the main effects? 
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 As you can see, you would have almost 93% power for A.  If you change the numerator df to 
3 you will see that you would have 89.6% power for B. 

 If you click the “Determine” button you get a second window which allows you select the value 

of f by specifying a value of 2 or partial 2.  Suppose you want to know what f is for an effect that 
explains only 1% of the total variance.  You tell G*Power to that the “Variance explained by special 
effect” is .01 and “Error variance” is .99.  Click “Calculate” and you get an f of .10.  Recall that earlier I 

told you that an f of .10 is equivalent to an 2 of .01. 

 

 If you wanted to find f for an effect that accounted for 6% of the variance, you would enter .06 
(effect) and .94 (error) and get an f of .25 (a medium-sized effect). 

 Wait a minute.  I have ignored the fact that the error variance in the factorial ANOVA will be 
reduced by an amount equal to variance explained by the other factors in the model, and that will 
increase power.  Suppose that I have entered Factor B into the model primarily as a categorical 
covariate.  From past research, I have reason to believe that Factor B will account for about 14% of 
the total variance (a large effect, equivalent to an f of .40).  I have no idea whether or not the 
interaction will explain much variance, so I play it safe and assume it will explain no variance.  When I 
calculate f I should enter .06 (effect) and .80 (error – 1 less .06 for A and another .14 for B).  G*Power 
gives an f of .27, which I would then use in the power analysis for Factor A. 

 

ANOVA With Related Factors 

 The analysis here can be done with G*Power in pretty much the same way described earlier 
for independent samples.  There are two new parameters that you will need to provide: 

• the value of the correlation between scores at any one level of the related factor and any other 
level of the repeated factor.  Assuming that this correlation is constant across pairs of levels is 
the sphericity assumption. 

•  -- this is a correction (applied to the degrees of freedom) to adjust for violation of the 

sphericity assumption.  The df are literally multiplied by , which has a upper boundary of 1.  

There are two common ways to estimate , one developed by Greenhouse and Geisser, the 
other by Huynh and Feldt. 
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Here is the setup for a one-way repeated measures or randomized blocks ANOVA with four 
levels of the factor: 

 

 

 We need 36 cases to have 95% power to detect a medium sized effect assuming no problem 
with sphericity and a .5 correlation between repeated measures.  Let us see what happens if we have 
a stronger correlation between repeated measures: 

 

 

 Very nice.  I guess your stats prof wasn’t kidding we she pointed out the power benefit of 
having strong correlations across conditions – but what if you have a problem with the sphericity 
assumption.  Let us assume that you suspect (from previous research) that epsilon might be as low 
as .6. 
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 Notice the reduction and the degrees of freedom and the associated increase in number of 
cases needed. 

Instead of the traditional “univariate approach” ANOVA, one can analyze data from designs with 
related factors with the newer “multivariate approach,” which does not have a sphericity assumption.  
G*Power will do power analysis for this approach too.  Let us see how many cases we would need 
with that approach using the same input parameters as the previous example. 

 

 

Contingency Table Analysis (Two-Way) 

 Effect size is computed as 
=

−
=

k

i i

ii

P

PP
w

1 0

2

01 )(
.  k is the number of cells, P0i is the population 

proportion in cell i under the null hypothesis, and P1i is the population proportion in cell i under the 
alternative hypothesis.  Cohen’s benchmarks are 

• .1 is small but not trivial 

• .3 is medium 

• .5 is large 
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When the table is 2 x 2, w is identical to . 

Suppose we are going to employ a 2 x 4 analysis.  We shall use the traditional 5% criterion of 
statistical significance, and we think Type I and Type II errors equally serious, and, accordingly, we 
seek to have 95% power for finding an effect that is small but not trivial.  As you see below, you need 
a lot of data to have a lot of power when doing contingency table analysis. 

 

 

MANOVA and DFA 

 Each effect will have as many roots (discriminant functions, canonical variates, weighted linear 
combinations of the outcome variables) as it has treatment degrees of freedom, or it will have as 
many roots as there are outcome variables, whichever is fewer. The weights maximize the ratio 

groupswithin

groupsamong

SS

SS

_

_
.  If you were to compute, for each case, a canonical variate score and then conduct an 

ANOVA comparing the groups on that canonical variate, you would get the sums of squares in the 

ratio above. This ratio is called the eigenvalue (  ). 

 Theta is defined as 
1+

=



 .  Commonly employed test statistics in MANOVA are the 

Hotelling’s trace, Wilks’ lambda, Pillai’s trace, and Roy’s greatest characteristic root.  Hotelling’s trace 
is simply the sum of the eigenvalues.  To get Wilks lambda you subtract each theta from 1 and then 
calculate the product of the differences.  To get Pillai’s trace you simply sum the thetas.  Roy’s gcr is 
simply the eigenvalue for the first root. 

 G*Power uses f2 as the effect size parameter (.12 = .01 is small, .252 = .0625 is medium, and 
.402 = .16 is large), and allows you convert a value of Pillai’s trace (or other trace) to f if you wish. 

 Suppose you are going to conduct a one-way MANOVA comparing four groups on two 
outcome variables.  You want to have 95% power for detecting a medium-sized effect. 
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 As you can see, you need 172 cases (43 per group).  You might actually need more than 172 
cases, depending on what you intend to do after the MANOVA.  Many researchers want to follow a 
significant MANOVA with univariate ANOVAs, one on each outcome variable.  How much power 
would you have for a such an ANOVA if you had 172 cases? 

  

 

 Oh my, only 78% power.  When planning research you really should consider how much power 
you will have for the follow-up analyses you will employ after the initial (usually more powerful) 
analysis. 

 So, how many cases would we need to have 95% power for those ANOVAs?  Here is the 
G*Power solution.  Note that I have dropped the α to .025, assuming that the researcher has applied 
a Bonferroni correction to cap the familywise error at .05 across these two ANOVAs (I do not think 
doing so is a very good idea, but that is another story). 

 

 

 Now, what are you going to do after a significant univariate ANOVA?  Likely you are going 
make some pairwise comparisons among the group means.  Suppose you are going to compare 
groups 1 with 2, 1 with 3, 1 with 4, 2 with 3, 2 with 4, and 3 with 4.  That is six contrasts for each Y 
variable.  Since you have two Y variables, you could make as many as 12 contrasts.  To cap 
familywise error at .05 via Bonferroni, you must now use a per-comparison alpha of .05/12 = .00416.  
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Furthermore, suppose you will not pool variances and degrees of freedom across groups.  How 
many cases will you need? 

 

 You need 330/2 = 165 cases per group.  Since you have four groups, you need a total of 660 
cases. 

 Since DFA is equivalent to MANOVA, you can use G*Power for power analysis for DFA as 
well. 

 

 

 

Links 

• Assorted Stats Links 

• G*Power 3 – download site 

o User Guide – sorted by type of analysis 

o User Guide – sort by test distribution 

• Internet Resources for Power Analysis 

• List of the analyses available in G*Power 

• Power Conventions:  What effect size should I assume and how much power should I want? 
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