
Standardized Effect Size Estimation:  Why and How? 

 Statisticians have long opined that researchers generally need to present estimates of the 
sizes of the effects which they report.  It is not sufficient to report whether or not an effect is 
“statistically significant.”  Statistical significance only tells you that the obtained sample results would 
be highly unlikely were the tested (aka “null”) hypothesis absolutely true.  The tested hypothesis is 
almost always that the size of the effect in the population from which the sample data were randomly 
drawn is exactly zero. 

 The probability of finding statistical significance (power) is a function of the size of the effect in 
the population, the number of data points in the sample, the research design, characteristics of the 
statistical test being employed, and assorted other things such as to what extent the assumptions of 
the statistical test have been violated.  When sample sizes are large and/or other factors lead to great 
power, it is quite possible to obtain results which are statistically significant even when the size of the 
effect is trivial.  The word “significant” can be very misleading in this case.  If you give your audience 
estimates of the size of the significant effects that you have obtained, they should be able to draw 
their own conclusions regarding whether or not the effects are nontrivial in size. 

 It is also possible to obtain results that are not statistically significant even though the size of 
the effect in the population is large enough to be of interest.  In this case it is also useful to report an 
estimate of the size of the effect in the population, even if you have not been convinced that it could 
not possibly be zero.  This will help you and others decide whether or not it is worth the effort to 
follow-up your research with additional research with larger sample sizes or a more powerful design. 

Student’s T Tests 

 Even in complex research it is often the case that the most important questions to be 
answered can be addressed by a series of comparisons between pairs of means.  There are several 
strength of effect estimates that can be employed for this purpose.  My favorite is the standardized 
difference between group means.  Unfortunately there is much confusion about the notation used to 
symbolize this estimate.  I shall employ the following conventions: 

 The population parameter is Cohen’s . 

 The sample estimate of Cohen’s  will be symbolized with the letter d, or, to emphasize that is 

is an estimate, with d̂ . 

 Please note that there is much notational variance in the literature. 

One Sample Estimation 

Here you are estimating the difference between one population mean and some constant.  For 
example, I have sample data on the SAT-Quantitative scores of students in my undergraduate 
statistics class.  I know that the mean SAT-Q score nationwide is 516.  I wish to estimate by how 
much µ for my students differs from the national average.  My students’ sample mean exceeds 516 
by 18.78 points, and the SD is 93.385. 
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  The point estimate of the effect size is .2.  The point estimate does not give any indication of 
how much error there is.  To correct this deficiency, one should provide a confidence interval for the 
effect size.  Although methods for calculating approximate confidence intervals for d have been 
around for a long time, it is only recently that methods for constructing exact confidence intervals 
have been developed.  The approximate method involves finding the unstandardized confidence 
interval and then dividing each end of the interval by the sample SD.  This may be adequate when 
sample sizes are large and thus the estimation of the population SD good.  With smaller sample sizes 
one needs to estimate both the population mean and the population SD, and the exact methods do 
this with a computer-intensive iterative procedure. 

  I have made available programs for constructing the standardized confidence interval with 
SPSS or SAS.  For this example, the obtained 95% CI runs from .015 to .316. 

 Presenting the Results.  The mean math SAT of my undergraduate statistics students 
(M = 535, SD = 93.4) was significantly greater than the national norm (516), t(113) = 2.147, p = 
.034, d = .20.  A 95% confidence interval for the mean runs from 517 to 552.  A 95% confidence 
interval for d runs from .015 to .386. 

  Benchmarks for Standardized Differences Between Means.  Is the value of the effect size 
estimate trivial, small, medium, large, or gargantuan?  That really depends on the context of the 
research.  In some contexts a d of .20 would be considered small but not trivial, in others it would be 
considered very large.  That said, J. Cohen did, reluctantly, provide the following benchmarks for 
behavioral research: 

 .2 is small, but not trivial 

 .5 is medium 

 .8 is large. 

Reducing Error in the Effect Size Estimate.  Notice that the confidence interval for the 
standardized effect runs from .015 (trivial) to .316 (small to medium).  If that makes you 
uncomfortable (it should), you might want to know how to make the interval less wide.  The answer is 
to do any or all of those things that increase power, such as increasing sample size. 

Why Standardize?  Statisticians frequently argue about the answer to this question.  Those 
who work in areas where the variables of interest are measured in meaningful units (such as grams, 
meters, dollars and Euros, etc.) think it foolish and deceptive to standardize effect size estimates.  It 
think they are absolutely correct for the sort of data they deal with.  If I tell you that my new weight 
reduction program produces, on average, 17.3 lbs. more weight loss than does the typical program, 
you have a good feel for how large an effect that is.  On the other hand, if I tell you that residents of 
Mississippi score, on average, 17.3 points higher than the national norm on a survey instrument 
designed to measure neofascist attitudes, you have no idea whether that is a trivial difference or an 
enormous difference.  It would help to standardize that effect size estimate. 

Sample Homogeneity, Extraneous Variable Control, and Standardized Effect Size 
Estimates.  Much unappreciated is the fact that the magnitude of the effect size estimate can be 

http://core.ecu.edu/psyc/wuenschk/SPSS/CI-d.zip
http://core.ecu.edu/psyc/wuenschk/SAS/Conf-Interval-d1.sas
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greatly influenced by the extent to which the researcher has been able to eliminate from the data the 
effects of various extraneous variables.  When the data are collected in the laboratory, with subjects 
who do not differ greatly from one another on extraneous variables, and where the influence of other 
variables is reduced by isolating the subjects from them (things like noise, time of day, etc.), the SD of 
the scores can be greatly reduced relative to what it would be out in the natural world.  Since this SD 
is the denominator (standardizer) of the effect size estimate, this can result in the effect size estimate 
greatly overestimating what it would be in the natural world.  Imagine the difference between means 
is 25.  For data collected in the lab, the SD is 15 and d = 1.67, a whopper effect.  For data collected in 
the field, the SD is 100 and d = .25, a small effect. 

Two Sample Estimation, Independent Samples 

 The basics here are the same as for the one sample situation, but you have two sample 
means.  You wish to estimate the difference between the two corresponding population means. 

Estimated Cohen’s .  The parameter being estimated here is 



 21  . The estimator is 

pooleds

MM
d 21ˆ 
 , where the pooled standard deviation is the square root of the within groups mean 

square (from a one-way ANOVA comparing the two groups).  If you have equal sample sizes, the 

pooled standard deviation is )(5. 2

2

2

1 ssspooled  .  If you have unequal sample sizes, 

)( 2
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j is the within-group variance and 

N
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j

j  , the proportion 

of the total number of scores (in both groups, N) which are in that group (nj).  You can also compute 

estimated d as 
21

21ˆ
nn

nnt
d


 , where t is the pooled variances independent samples t comparing the 

two group means. 

 You can use the program Conf_Interval-d2.sas (SPSS users, download CI-d-SPSS.zip) to 
obtain the confidence interval for the standardized difference between means.  It will require that you 
give the sample sizes and the values of t and df.  Use the pooled variances (equal variances 
assumed) values of t and df.  Why the pooled variances t and df?  See Confidence Intervals, Pooled 
and Separate Variances T. 

 I shall illustrate using data comparing boys’ GPA with girls’ GPA (participants were students in 
Vermont).  Please look at the computer output.  For the girls, M = 2.824, SD = .83, n = 33, and for the 
boys, M = 2.236, SD = .81, n = 55.  On average, the girls’ GPA is .588 points higher than the boys’. 
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5533267.3
d̂ .72.  This falls just short of a large effect by 

Cohen’s guidelines. 

http://core.ecu.edu/psyc/wuenschk/SAS/Conf-Interval-d2.sas
http://core.ecu.edu/psyc/wuenschk/SPSS/CI-d-SPSS.zip
http://core.ecu.edu/psyc/wuenschk/docs30/CI-T-Pooled-Separate.docx
http://core.ecu.edu/psyc/wuenschk/docs30/CI-T-Pooled-Separate.docx
http://core.ecu.edu/psyc/wuenschk/docs30/GPA-Boy-Girl.docx


 4 

 Using our example data, a succinct summary statement should read something like this:  
Among Vermont school-children, girls’ GPA (M = 2.82, SD = .83, N = 33) was significantly higher than 
boys’ GPA (M = 2.24, SD = .81, N = 55), t(65.9) = 3.24, p = .002, d = .72. A 95% confidence interval 
for the difference between girls’ and boys’ mean GPA runs from .23 to .95 in raw score units and from 
.27 to 1.16 in standardized units. 

 Glass’ Delta.  
controls

MM 21  .  That is, in computing the standardized difference between group 

means we use the control group standard deviation in the denominator.  This makes good sense 
when you have reasons to believe that the control group SD is a better estimate of the SD in the 
population to which you wish to infer the results than is the experimental group SD. 

 Point-Biserial r.  This is simply the Pearson r  between the grouping variable (coded 
numerically) and the criterion variable.  It can be computed from the pooled variances independent t :  

dft

t
rpb




2

2

.  For the comparison between girls’ and boys’ GPS, .332.
86267.3

267.3
2

2




pbr   This is 

the standardized slope for the regression line for predicting the criterion variable from the grouping 
variable.  The unstandardized slope is the difference between the group means.  We standardize this 
difference by multiplying it by the standard deviation of the grouping variable and dividing by the 

standard deviation of the criterion variable.  For our comparison, 33.
861.

)487(.588.
pbr , which is a 

medium-sized effect by Cohen’s guidelines.  Hmm, large by one criterion but medium by another – 
more on this later. 

 Eta-squared.  For a two-group design, this is simply the squared point-biserial correlation 
coefficient.  It can be interpreted as the proportion of the variance in the criterion variable which is 

explained by the grouping variable.  For our data, 2 = .11.  For a confidence interval, use my 
program Conf-Interval-R2-Regr.sas  (SPSS users, download CI-R2-SPSS.zip).  It will ask you for F 
(enter the square of the pooled t), df_num (enter 1), and df_den (enter the df for the pooled t).  For 
our data, a 95% confidence interval runs from .017 to .240. 

 Earlier I mentioned that the magnitude of the effect size estimate can be greatly influenced by 
the extent to which the researcher has managed to eliminate the effects of extraneous variables.  
This applies to proportion of variance effect size estimates (and similar statistics) every bit as much 
as it does to estimates of the standardized difference between means. 

 Omega-squared.  Eta-squared is a biased estimator, tending to overestimate the population 
parameter.  Less biased is the omega-squared statistic. 

 Point Biserial r versus Estimated d.  Each of these has its advocates.  Regardless of which 
you employ, you should be aware that the ratio of the two samples sizes can have a drastic effect on 
the value of the point-biserial r, but does not affect the value of estimated d.  See Effect of n1/n2 on 
Estimated d and rpb. 

 Common Language Effect Size Statistic.  See 
http://core.ecu.edu/psyc/wuenschk/docs30/CL.pdf .  CL is the probability that a randomly selected 
score from the one population will be greater than a randomly sampled score from the other 

http://core.ecu.edu/psyc/wuenschk/SAS/Conf-Interval-R2-Regr.sas
http://core.ecu.edu/psyc/wuenschk/SPSS/CI-R2-SPSS.zip
http://core.ecu.edu/psyc/wuenschk/StatHelp/d-r.htm
http://core.ecu.edu/psyc/wuenschk/StatHelp/d-r.htm
http://core.ecu.edu/psyc/wuenschk/docs30/CL.pdf
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computed value.  For the data here, 50.0
81.83.

24.282.2
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Z , which yields a lower-tailed p of .69.  

 That is, if one boy and one girl were randomly selected, the probability that the girl would have 
the higher GPA is .69.  If you prefer odds, the odds of the girl having the higher GPA = .69/(1-.69) = 
2.23 to 1. 

Two Sample Estimation, Correlated Samples 

 Treat the data as if they were from independent samples.  If you base your effect size estimate 
on the correlated samples analysis, you will overestimate the size of the effect.  You cannot use my 
Conf_Interval-d2.sas program to construct a confidence interval for d when the data are from 
correlated samples.  With correlated samples the distributions here are very complex, not following 

the noncentral t.  You can construct an approximate confidence interval, SEzd ccˆ  where SE is 

n

r

n

d )1(2

)1(2

12

2 
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
, but such a confidence interval is not very accurate unless you have rather large 

sample sizes. 

 You could compute 
diff

diff
s

MM
d 21ˆ 

 , where sDiff is the standard deviation of the difference 

scores, but this would artificially inflate the size of the effect, because the correlation between 
conditions will probably make sdiff smaller than the within-conditions standard deviation.  The bottom 
line here is this:  The researcher having gained greater power by using a correlated samples design 
does not make the actual difference between the populations means any greater than it would be if 
the researcher had used an independent samples design, so, IMHO, the used of sdiff as the 
standardizer cannot usually be justified. 

Correlation/Regression Analysis 

 Even in complex research, it is often the case that the most important questions to be 
answered can be addressed by a series of correlations between pairs of variables.  [Does that 
statement sound familiar?  It should.]  The statistic most often employed here is the Pearson r, and 

the corresponding parameter is Pearson .  Pearson r and Pearson  are already standardized – they 
represent the number of standard deviations the one variable changes for each one standard 
deviation change in the other. 

 Benchmarks for .  Again, context can be very important. 

 .1 is small but not trivial 

 .3 is medium 

 .5 is large 

Confidence Interval for , Correlation Analysis.  My colleagues and I (Wuensch, K. L., 
Castellow, W. A., & Moore, C. H. Effects of defendant attractiveness and type of crime on juridic 

http://core.ecu.edu/psyc/wuenschk/SAS/Conf-Interval-d2.sas
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judgment. Journal of Social Behavior and Personality, 1991, 6, 713-724) asked mock jurors to rate 
the seriousness of a crime and also to recommend a sentence for a defendant who was convicted of 
that crime.  The observed correlation between seriousness and sentence was .555, n = 318, p < .001.  
We treat both variables as random.  Now we roll up our sleeves and prepare to do a bunch of tedious 
arithmetic. 

 First we apply Fisher’s transformation to the observed value of r.  I shall use Greek zeta to 
symbolize the transformed r. 

626.0)251.1)(5.0()494.3ln()5.0(
445.

555.1
ln)5.0(

1

1
ln)5.0( 






r

r
 .  We compute the standard 

error as 05634.
315
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1





n
SEr .  We compute a 95% confidence interval for zeta:   

).05634(.96.1626.  rccSEz   This give us a confidence interval extending from .51557 to .73643 

– but it is in transformed units, so we need to untransform it.  
1

1
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 What a bunch of tedious arithmetic that involved.  We need a computer program to do it for us.  
See Weaver and Wuensch for SAS and SPSS code to do this for you. 

 Suppose that we obtain r = .8, n = 5.  Using my SAS program, the 95% confidence interval 
runs from -0.28 to +0.99. 

 Don’t have SAS or SPSS?  Try the calculator at Vassar. 

 

http://core.ecu.edu/psyc/wuenschk/W&W/W&W.htm
http://faculty.vassar.edu/lowry/rho.html
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 Confidence Interval for 2, Correlation Analysis.  Use R2, which is available for free, from 
James H. Steiger and Rachel T. Fouladi.  You can download the program and the manual here.  
Unzip the files and put them in the directory/folder R2.  Navigate to the R2 directory and run (double 
click) the file R2.EXE.  A window will appear with R2 in white on a black background.  Hit any key to 
continue.  Enter the letter O to get the Options drop down menu.  Enter the letter C to enter the 
confidence interval routine.  Enter the letter N to bring up the sample size data entry window.  Enter 
318 and hit the enter key.  Enter the letter K to bring up the number of variables data entry window.  
Enter 2 and hit the enter key.  Enter the letter R to enter the R2 data entry window.  Enter .308 (that is 
.555 squared) and hit the enter key.  Enter the letter C to bring up the confidence level data entry 
window.  Enter .95 and hit the enter key.  The window should now look like this: 

 

 Enter G to begin computing.  Hit any key to display the results. 

 

 As you can see, we get a confidence interval for r2 that extends from .224 to .393. 

 Hit any key to continue, F to display the File drop-down menu, and X to exit the program. 

 The R2 program will not handle sample sizes greater than 5,000.  In that case you can use the 
approximation procedure which is programmed into my SAS program Conf-Interval-R2-Regr-
LargeN.sas.  This program assumes a regression model (fixed predictors) rather than a correlation 
model (random predictors), but in my experience the confidence intervals computed by R2 differ very 
little from those computed with my large N SAS program when sample size is large (in the 
thousands). 

http://www.statpower.net/Software.html#R2
http://core.ecu.edu/psyc/wuenschk/SAS/Conf-Interval-R2-Regr-LargeN.sas
http://core.ecu.edu/psyc/wuenschk/SAS/Conf-Interval-R2-Regr-LargeN.sas
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 What Confidence Coefficient Should I Employ?  When dealing with R2, if you want your 
confidence interval to correspond to the traditional test of significance, you should employ a 
confidence coefficient of (1 - 2α).  For example, for the usual .05 criterion of statistical significance, 
use a 90% confidence interval, not 95%.  This is illustrated below. 

 Suppose you obtain r = .26 from n = 62 pairs of scores.  If you compute t to test the null that 
rho is zero in the population, you obtain t(60) = 2.089.  If you compute F, you obtain F(1, 60) = 4.35.  
The p value is .041.  At the .04 level, the correlation is significant.  When you put a 95% confidence 
interval about r you obtain .01, .48.  Zero is not included in the confidence interval.  Now let us put a 
confidence interval about the r2 (.0676) using Steiger & Fouladi’s R2. 

 

 
 Oh my, the confidence interval includes zero, even though the p level is .04.  Now lets try a 
90% interval. 

 

 

 That is more like it.  Note that the lower limit from the 90% interval is the same as the “lower 
bound” from the 95% interval. 

 Confidence Interval for , Regression Analysis.  If you consider your predictor variable to 
be fixed rather than random (that is, you arbitrarily chose the values of that variable, or used the 
entire population of possible values, rather than randomly sampling values from a population of 
values), then the confidence interval for r2 is computed somewhat differently.  The SAS program 
Conf-Interval-R2-Regr can be employed to construct such a confidence interval.  If you are using 
SPSS, see CI-R2-SPSS at my SPSS Programs Page.  

 Bias in the Point Estimate of ρ2.  Sample R2 tends to overestimate population ρ2.  When the 
numerator df are large, this can result in the production of a confidence interval that excludes the 
sample R2.  This should not happen if you use the shrunken R2 as your point estimate.  For more 
details, see Conf-Interval-R2-Regr-Warning . 

http://core.ecu.edu/psyc/wuenschk/SAS/Conf-Interval-R2-Regr.sas
http://core.ecu.edu/psyc/wuenschk/SPSS/SPSS-Programs.htm
http://core.ecu.edu/psyc/wuenschk/SAS/Conf-Interval-R2-Regr-Warning.doc
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 Common Language Effect Size Statistic.  Dunlap (1994, Psychological Bulletin, 116: 509-
511) has extended the CL statistic to bivariate normal correlations.  Assume that we have randomly 
sampled two individuals’ scores on X and Y.  If individual 1 is defined as the individual with the larger 
score on X, than the CL statistic is the probability that individual 1 also has the larger score on Y.  
Alternatively the CL statistic here can be interpreted as the probability that an individual will be above 

the mean on Y given that we know e is above the mean on X.  Given r, 5.
)(sin 1






r
CL .  Dunlap 

uses Karl Pearson’s (1896) data on the correlation between fathers’ and sons’ heights (r = .40).  CL = 
63%.  That is, if Joe is taller than Sam, then there is a 63% probability that Joe’s son is taller than 
Sam’s son.  Put another way, if Joe is taller than average, then there is a 63% probability that Joe’s 
son is taller than average too.  Here is a little table of CL statistics for selected values of r, just to give 
you a feel for it. 

 

r .00 .10 .20 .30 .40 .50 .60 .70 .80 .90 .95 .99 

CL 50% 53% 56% 60% 63% 67% 70% 75% 80% 86% 90% 96% 

 

Multiple Correlation and Associated Statistics 

 The programs mentioned above can be used to put confidence intervals on multiple R2 too.  

Cohen employed the effect size statistic f2.  For the overall model, 
2

2
2

1 R

R
f


 .  Cohen considered an 

f2 of .02 to be a small effect, .15 a medium effect, and .35 a large effect.  We can translate these 
values of f2 into proportions  of variance by dividing f2 by (1 + f2 ):  A small effect accounts for 2% of 
the variance in the criterion variable, a medium effect accounts for 13%, and a large effect 26%. 

 For a squared partial correlation, Cohen employed the same definition, that is, 
2

2
2

1 pr

pr
f


 .  

You can convert a squared semipartial coefficient to a partial coefficient this way:  
2

)......(12

2
2

1 piy

i
i

R

sr
pr


  

and then compute f2, or, more easily, compute f2 this way:  
2

2
2

1 full

i

R

sr
f


 . 

 Consider this example.  We are predicting graduate students’ grade point average from their 
GRE scores (Verbal and Quantitative), Miller Analogies Test scores, and Average Rating obtained 
from faculty who interviewed the student prior to admission. 

                                        The REG Procedure 

                                          Model: MODEL1 

                                     Dependent Variable: GPA 

 

                             Number of Observations Read          30 

                             Number of Observations Used          30 

 

 

                                       Analysis of Variance 

 

                                              Sum of           Mean 

          Source                   DF        Squares         Square    F Value    Pr > F 
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          Model                     4        6.68313        1.67078      11.13    <.0001 

          Error                    25        3.75153        0.15006 

          Corrected Total          29       10.43467 

 

 

                       Root MSE              0.38738    R-Square     0.6405 

                       Dependent Mean        3.31333    Adj R-Sq     0.5829 

                       Coeff Var            11.69147 

 

 

                                       Parameter Estimates 

 

                                                                         Squared        Squared 

                     Parameter      Standard                        Semi-partial        Partial 

  Variable    DF      Estimate         Error   t Value   Pr > |t|   Corr Type II   Corr Type II 

 

  Intercept    1      -1.73811       0.95074     -1.83     0.0795              .              . 

  GRE_Q        1       0.00400       0.00183      2.18     0.0385        0.06860        0.16023 

  GRE_V        1       0.00152       0.00105      1.45     0.1593        0.03027        0.07766 

  MAT          1       0.02090       0.00955      2.19     0.0382        0.06887        0.16076 

  AR           1       0.14423       0.11300      1.28     0.2135        0.02343        0.06118 

 

 For the full model R2, 78.1
6405.1

6405.2 


f , a whopper effect. 

 

 For the partial effect of GRE_Q, 191.
16023.1

16023.2 


f , a medium partial effect. 

 

 Equivalently, using the semipartial, .191.
6405.1

0686.

1 2

2
2 







full

i

R

sr
f  

 

One Way Analysis of Variance, Independent Samples 

 Consider this source table: 

 

Source SS df MS F 

Teaching Method 130 3 43.33 86.66 

Error 8 16 0.50  

Total 138 19   

 

Strength of Effect Estimates – Proportions of Variance Explained 

 This ANOVA is really just a multiple regression analysis with k–1 dummy variables, where k is 
the number of groups.  Not surprisingly, the most commonly used strength of effect estimates are 
essentially R2 statistics. 

The 2 statistic can be computed as 
Total

sAmongGroup

SS

SS
 from the ANOVA source table.  This 

provides a fine measure of the strength of effect of the classification variable in the sample data, but it 
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generally overestimates the population 2 .  My program Conf-Interval-R2-Regr.sas will compute an 
exact confidence interval about eta-squared.  If you are using SPSS, see CI-R2-SPSS at my SPSS 

Programs Page.  For our data 2 = 130/138 = .94.  A 95% confidence interval for the population 
parameter extends from .84 to .96. 

 One well-known alternative is omega-squared, 2 , which estimates the proportion of the 

variance in Y in the population which is due to variance in X, and is less biased than is 2.  

ErrorTotal

ErrorAmong

MSSS

MSKSS






)1(
2 .  For our data, 93.

5.138

5).3(1302 



 . 

Cohen’s f 

 Cohen’s f (effect size) is computed as 
2

2

1

)(

error

j

k

j

k

 


, where j is the population mean for a 

single group,  is the grand mean, k is the number of groups, and error variance is the mean within 

group variance.  This can also be computed as 
error

means




, where the numerator is the standard 

deviation of the population means and the denominator is the within-group standard deviation. 

We assume equal sample sizes and homogeneity of variance. 

 Suppose that the effect size we wish to use is one where the three populations means are 480, 
500, and 520, with the within-group standard deviation being 100.  Using the first formula above, 

163.
)100(3

4000400
2




f .  Using the second formula, the population standard deviation of the 

means (with k, not k-1, in the denominator) is 16.33, so f = 16.33  100 = .163.  By the way, David 

Howell uses the symbol ' instead of f. 

Eta-Squared 

 You should be familiar with 2 as the treatment variance expressed as a proportion of the total 

variance.  If 2 is the treatment variance, then 1-2 is the error variance.  With this in mind, we can 

define 
2

2

1 




f .  Accordingly, if you wish to define your effect size in terms of proportion of 

variance explained, you can use this formula to convert 2 into f. 

 Cohen considered an f of .10 to be a small effect, .25 a medium effect, and .40 a large effect.  

Rearranging terms in the previous formula, 
2

2
2

1 f

f


 .  Using this to translate Cohen’s guidelines 

into proportions of variance, a small effect is one which accounts for about 1% of the variance, a 
medium effect 6%, and a large effect 14%. 

Benchmarks for 2. 

 .01 (1%) is small but not trivial 

 .06 is medium 

http://core.ecu.edu/psyc/wuenschk/SAS/SAS-Programs.htm
http://core.ecu.edu/psyc/wuenschk/SPSS/SPSS-Programs.htm
http://core.ecu.edu/psyc/wuenschk/SPSS/SPSS-Programs.htm
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 .14 is large 

A Word of Caution.  Rosenthal has found that most psychologists misinterpret strength of 

effect estimates such as r2 and 2.  Rosenthal (1990, American Psychologist, 45, 775-777.) used an 
example where a treatment (a small daily dose of aspirin) lowered patients’ death rate so much that 
the researchers conducting this research the research prematurely and told the participants who were 
in the control condition to start taking a baby aspirin every day.  So, how large was the effect of the 
baby aspirin?  As an odds ratio it was 1.83 – that is, the odds of a heart attack were 1.83 times higher 
in the placebo group than in the aspirin group.  As a proportion of variance explained the effect size 
was .0011 (about one tenth of one percent). 

One solution that has been proposed for dealing with r2-like statistics is to report their square 
root instead.  For the aspirin study, we would report r = .033 (but that still sounds small to me). 

 Also, keep in mind that anything that artificially lowers “error” variance, such as using 

homogeneous subjects and highly controlled laboratory conditions, artificially inflates r2, 2, etc.  

Thus, under highly controlled conditions, one can obtain a very high 2  even if outside the laboratory 
the IV accounts for almost none of the variance in the DV.  In the field those variables held constant 
in the lab may account for almost all of the variance in the DV. 

 

What Confidence Coefficient Should I Employ for 2 and RMSSE? 

 If you want the confidence interval to be equivalent to the ANOVA F test of the effect (which 
employs a one-tailed, upper tailed, probability) you should employ a confidence coefficient of (1 - 2α).  
For example, for the usual .05 criterion of statistical significance, use a 90% confidence interval, not 
95%.  Please see my document at http://core.ecu.edu/psyc/wuenschk/docs30/CI-Eta2-Alpha.doc . 

 

Strength of Effect Estimates – Standardized Differences Among Means 

 When dealing with differences between or among group means, I generally prefer strength of 
effect estimators that rely on the standardized difference between means (rather than proportions of 
variance explained).  We have already seen such estimators when we studied two group designs 
(Hedges’ g) – but how can we apply this approach when we have more than two groups? 

 My favorite answer to this question is that you should just report estimates of Cohen’s d for 
those contrasts (differences between means or sets of means) that are of most interest – that is, 
which are most relevant to the research questions you wish to address.  Of course, I am also of the 
opinion that we would often be better served by dispensing with the ANOVA in the first place and 
proceeding directly to making those contrasts of interest without doing the ANOVA. 

 There is, however, another interesting suggestion.  We could estimate the average value of 
Cohen’s d for the groups in our research.  There are several ways we could do this.  We could, for 
example, estimate d for every pair of means, take the absolute values of those estimates, and then 
average them. 

 James H. Steiger (2004: Psychological Methods, 9, 164-182) has proposed the use of RMSSE 
(root mean square standardized effect) in situations like this.  Here is how the RMSSE is calculated: 

 






 












k
j

MSE

GMM

k
RMSSE

1

2

1

1
, where k is the number of groups, Mj is a group mean, GM is the 

overall (grand) mean, and the standardizer is the pooled standard deviation, the square root of the 
within groups mean square, MSE (note that we are assuming homogeneity of variances).  Basically 

http://core.ecu.edu/psyc/wuenschk/docs30/CI-Eta2-Alpha.doc
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what we are doing here is averaging the values of (Mj – GM)/SD, having squared them first (to 
avoid them summing to zero), dividing by among groups degrees of freedom (k -1) rather than k, and 
then taking the square root to get back to un-squared (standard deviation) units. 

 Since the standardizer (sqrt of MSE) is constant across groups, we can simplify the expression 

above to 

2
)(

1

1

MSE

GMM

k
RMSSE

j 










 . 

 For our original set of data, the sum of the squared deviations between group means and 
grand mean is (2-5)2 + (3-5)2 + (7-5)2 + (8-5)2 = 26.  Notice that this is simply the among groups sum 

of squares (130) divided by n (5).  Accordingly, 16.4
5.

26

14

1











RMSSE , a Godzilla-sized 

average standardized difference between group means. 

 We can place a confidence interval about our estimate of the average standardized difference 
between group means.  To do so we shall need the NDC program from Steiger’s page at 
http://www.statpower.net/Content/NDC/NDC.exe .  Download and run that exe.  Ask for a 95% CI and 
give the values of F and df: 

 

 

 Click “COMPUTE. 

 

 You are given the CI for lambda, the noncentrality parameter: 

 

http://www.statpower.net/Content/NDC/NDC.exe
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 Now we transform this confidence interval to a confidence interval for RMSSE by with the 

following transformation (applied to each end of the CI):  
nk

RMSSE
)1( 




.  For the lower 

boundary, this yields 616.2
5)3(

646301.102
 , and for the upper boundary 659.5

5)3(

288073.480
 .  

That is, our estimate of the effect size is between King Kong-sized and Godzilla-sized. 

 Steiger noted that a test of the null hypothesis that  (the parameter estimated by RMSSE) = 0 
is equivalent to the standard ANOVA F test if the confidence interval is constructed with 100(1-2α)% 
confidence.  For example, if the ANOVA were conducted with .05 as the criterion of statistical 

significance, then an equivalent confidence interval for  should be at 90% confidence --  cannot be 

negative, after all.  If the 90% confidence interval for  includes 0, then the ANOVA F falls short of 
significance, if it excludes 0, then the ANOVA F is significant. 

 

Factorial Analysis of Variance, Independent Samples 

 Eta-squared and omega-squared can be computed for each effect in the model.  For 2, 
simply divide the effect sum of squares by the total (corrected) sum of squares.  With 
omega-squared, substitute the effect’s df for the term (k-1) in the formula shown earlier for the 
one-way design. 

 Partial Eta-Squared.  The value of 2 for any one effect can be influenced by the number of 
and magnitude of other effects in the model.  Suppose we were conducting research on the effect of 
sex (female, male) and type of experimental therapy on a health variable.  We wish to generalize our 
results to the population of persons for whom the experimental therapy might be useful.  Type of 
therapy is not a variable in the general population, since it is experimental and is only being used in 
this study.  Accordingly, when estimating the magnitude of effect for the sex variable, we might elect 
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to exclude from the denominator of eta-squared the variance due to type of therapy and its 

interaction with sex.  The resulting statistic is called partial eta-squared,   
ErrorEffect

Effect
p

SSSS

SS


2 .  Of 

course, this will make partial eta-squared larger than regular eta-squared.  The question answered by 
partial eta-squared is this:  Of the variance that is not explained by other effects in the model, what 
proportion is explained by this effect. 

 For Sex x Therapy analysis, when estimating the magnitude of effect for type of therapy and its 
interaction with sex, it would not be reasonable to exclude from the denominator the variance due to 
sex, since sex is variable in the population of interest. 

 Partial eta-square values can be considerably larger than the eta-square or omega-square 
values.  Clearly this statistic can be used to make a small effect look moderate in size or a moderate-
sized effect look big.  It is even possible to get partial eta-square values that sum to greater than 
100%.  That makes me a little uncomfortable.  Even more discomforting, many researchers have 
incorrectly reported partial eta-squared as being regular eta-squared.  Pierce, Block, and Aguinis 
(2004, Educational and Psychological Measurement, 64, 916-924) found articles in prestigious 
psychological journals in which this error was made.  Apparently the authors of these articles (which 
appeared in Psychological Science and other premier journals) were not disturbed by the fact that the 
values they reported indicated that they had accounted for more than 100% of the variance in the 
outcome variable – in one case, the authors claimed to have explained 204%.  Oh my. 

 Eta-Squared or Partial Eta-Squared?  Which one should you use?  I am more comfortable 
with eta-squared, but can imagine some situations (like the Sex x Therapy example above) where the 
use of partial eta-squared might be justified.  Kline (2004, Beyond significance testing:  Reforming 
data analysis methods in behavioral research.  Washington, DC:  American Psychological 
Association.  325 pp.) has argued that when a factor like sex is naturally variable in both the 
population of interest and the sample, then variance associated with it should be included in the 
denominator of the strength of effect estimator, but when a factor is experimental and not present in 
the population of interest, then the variance associated with it may reasonably be excluded from the 
denominator. 

 To learn more about this controversial topic, read Chapter 7 in Kline (2004).  You can find my 
notes taken from this book on my Stat Help page, Beyond Significance Testing. 

 Constructing a Confidence Interval for Eta-Squared or Partial Eta-Squared.   As 
was the case with one-way ANOVA, one can use my program Conf-Interval-R2-Regr.sas to put a 
confidence interval about eta-square or partial eta-square.  You will, however, need to compute an 

adjusted F when putting the confidence interval on 2.  See my document Two-Way Independent 
Samples ANOVA on SAS. 

Contingency Table Analysis 

 I find phi an appealing estimate of the magnitude of effect of the relationship between two 
dichotomous variables and Cramér’s phi appealing for use with tables where at least one of the 
variables has more than two levels. 

 The phi coefficient is, quite simply, the Pearson r computed between two dichotomous 
variables.  When using SAS or SPSS you can request the phi and Cramer Cramér’s phi statistics.  
Cramér’s phi does not suffer from the problems common to other strength of effects statistics for 

http://core.ecu.edu/psyc/wuenschk/StatHelp/BeyondSigTest.pdf
http://core.ecu.edu/psyc/wuenschk/SAS/SAS-Programs.htm
http://core.ecu.edu/psyc/wuenschk/SAS/ANOVA2-SAS.pdf
http://core.ecu.edu/psyc/wuenschk/SAS/ANOVA2-SAS.pdf
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contingency tables – for example, the value of Cramér’s phi is not influenced by the dimensionality 
of the table (2 x 2, 2 x 3, 3 x 3, etc.), but other strength of effect estimates are. 

 For 2 x 2 tables, I generally prefer odds ratios.  Consider the results of some of my research 
on attitudes about animals (Wuensch, K. L., & Poteat, G. M.  Evaluating the morality of animal 
research: Effects of ethical ideology, gender, and purpose. Journal of Social Behavior and 
Personality, 1998, 13, 139-150.  Participants were pretending to be members of a university research 
ethics committee charged with deciding whether or not to stop a particular piece of animal research 
which was alleged, by an animal rights group, to be evil.  After hearing the evidence and arguments 
of both sides, 140 female participants decided to stop the research and 60 decided to let it continue.  
That is, the odds that a female participant would stop the research were 140/60 = 2.33.  Among male 
participants, 47 decided to stop the research and 68 decided to let it continue, for odds of 47/68 = 
0.69.  The ratio of these two odds is 2.33 / .69 = 3.38.  In other words, the women were more than 3 
times as likely as the men to decide to stop the research. 

 With the appropriate software, it is easy to construct a confidence interval for an odds ratio.  
For example, with SPSS simply do the analysis as a binary logistic regression and ask for confidence 
intervals for the odds ratios. 

 Benchmarks. 

Phi Odds Ratio* Size 

0.1 1.5 Small, not trivial 

0.3 3.5 Medium 

0.5 9 Large 

*For a 2 x 2 table with both marginals distributed uniformly. 

For examples of contingency tables with small, medium, and large effects, see my document 
Estimating the Sample Size Necessary to Have Enough Power.  Please note that the correspondence 
between phi and odds ratios in the table above assumes that the marginals are uniform.  For a fixed 
value of the odds ratio, the more the marginals deviate from uniform the lower the phi.  See this 
document for more details.  

Multivariate Statistics 

 Most multivariate analyses provide statistics very similar to r2 and 2.  For example, in a 
canonical correlation/regression analysis one obtains squared canonical correlations for each root.  
For each root the canonical correlation is simply the correlation between a weighted linear 
combination of the Y variables and a weighted linear combination of the X variables. 

 MANOVA and DFA.  For each root (canonical variate, discriminant function) one can easily 

obtain the squared canonical correlation.  This absolutely equivalent to the 2 that would be obtained 
were you to compute the canonical variate or discriminant function scores for each subject and then 
conduct and ANOVA comparing the groups on the canonical variate or discriminant function.  From 

that ANOVA the eta-squared would be computed as 
total

groupsamong

SS

SS _
. 

In MANOVA and DFA we may test our treatment by finding the ratio of the determinant 
(generalized variance) of the error SSCP matrix to the determinant of the sum of the treatment and 

error SSCP matrices.  This ratio is called Wilks' Lambda (  ).  Since the ratio is 
treatment  error

error


, 

http://core.ecu.edu/psyc/wuenschk/docs30/Power-N.doc
http://core.ecu.edu/psyc/wuenschk/StatHelp/Phi-OddsRatio.doc
http://core.ecu.edu/psyc/wuenschk/StatHelp/Phi-OddsRatio.doc
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one may interpret the Wilks' Lambda as the proportion of variance in the DVs that is not accounted 

for by the IV.  An eta-squared statistic can be computed as 2 =  1 - .  We may interpret this statistic 
as being the proportion of variance in the continuous variables that is accounted for by the 

classification variable.  When there are only two treatment groups (and thus only one root), this 2 will 
equal the squared canonical correlation. 

 Binary Logistic Regression.  For the overall model, the Cox & Snell R2 can be interpreted 
like R2 in a multiple regression, but cannot reach a maximum value of 1.  The Nagelkerke R2 can 
reach a maximum of 1.  Classification result statistics (total percentage correct classifications, 
sensitivity, specificity, false positive and false negative error rates) also speak to magnitude of effect.  
The strength of the partial effect of individual predictors is measured by odds ratios. 

 It may be useful to standardize continuous predictor variables prior to computing odds ratios.  
Consider recent research showing the relationship between retention in ECU’s engineering program 
and three continuous predictors:  high school GPA, quantitative SAT, and score on the Openness 
scale of a Big Five personality test. 

 

 B S.E. Wald df Sig. Exp(B) 

Step 1a HSGPA 1.296 .506 6.569 1 .010 3.656 

SATQ .006 .003 4.791 1 .029 1.006 

Openness .100 .045 4.832 1 .028 1.105 

Constant -10.286 2.743 14.063 1 .000 .000 

a. Variable(s) entered on step 1: HSGPA, SATQ, Openness. 

 

 Look at the odds ratios [Exp(B)].  One might be fooled into thinking that the effect of HSGPA is 
very much greater than that of SATQ and Openness, but one need consider the scale of 
measurement of the predictors.  For each one point increase in HSGPA the odds of being retained 
are multiplied by 3.656.  For each one point increase in SATQ the odds are multiplied by 1.006 – but 
a one point increase in GPA is a very large increase in GPA, and a one point increase in SATQ is a 
very small increase. 

 Now look at the odds ratios after standardizing the predictors. 

 B S.E. Wald df Sig. Exp(B) 

Step 1a ZHSGPA .510 .199 6.569 1 .010 1.665 

ZSATQ .440 .201 4.791 1 .029 1.553 

ZOpenness .435 .198 4.832 1 .028 1.545 

Constant -.121 .188 .414 1 .520 .886 

a. Variable(s) entered on step 1: ZHSGPA, ZSATQ, ZOpenness. 
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 Aha, now it is clear that the three predictors have similar unique contributions to the model. 

 

 

Why Confidence Intervals? 

 It is not common practice to provide confidence intervals about point estimates of effect size 
estimates, but it should be.  Why is it not adequate to provide just a test of a null hypothesis and an 
associated point estimate of effect size?  My answer to this question is that the p value and the point 
estimate tell you nothing about the precision with which you have estimated the strength of effect.  
Consider the following possible outcomes, where the confidence intervals are given for r or an r-like 
strength of effect estimator: 

Significant Results 

 CI = .01, .03 – Although we can be confident of the direction of the effect, we can also be 
confident that the size of the effect is so small that it might as well be zero.  “Significant” in this 
case is a very poor descriptor of the effect. 

 CI = .02, .84 – We can be confident of the direction of the effect and that the effect is probably 
large enough to be of importance, but we have estimated it with very little precision – it could 
be trivially small or humongous.  We really need to get more data so we can obtain a more 
precise estimate of the size of the effect. 

 CI = .51, .55 – We can be quite confident that we have an effect that would, in the behavioral 
sciences, be considered large (in most contexts). 

Not Significant Results 

 CI = -.46, +.43 – About all this tells us is that the researcher needs a lot more data than he has 
on hand. 

 CI = -.74, +.02 – Although we cannot be confident about the direction of the effect, I’d bet it is 
negative.  Clearly we need more data. 

 CI = -.02, +.01 – This is actually a very impressive confidence interval, because it tells us that 
the size of the effect is so small as to be trivial.  Although “not significant,” this CI is telling us 
pretty much the same thing that the significant CI of .01, .03 told us.  Suppose that the two 
variables were type of drug (brand name or generic) and physiological response.  Knowing 
with confidence that the association is essentially zero is very useful information. 
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