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Chapter 1.  Changing Times. 

 Webpage at http://www.apa.org/books/resources/kline/ . 

 Presents a short history of NHST. 

 

Chapter 2.  Fundamental Concepts. 

 Introduces the basics of confidence interval estimation. 

 Notes that many statistics have more complex sampling distributions than do means, for 

example, , the standardized difference between means.  Briefly discusses ways to construct 
confidence intervals about such statistics.  Mentions confidence interval transformation (Steiger & 
Fouladi, 1997) – the statistic is transformed into normally distributed units, lower/upper limits of the 
interval are obtained by subtracting/adding ZccSE to the transformed statistic, resulting in a 
confidence interval for the transformed statistic.  The limits are then transformed back to the original 
metric.  Construction of a CI about Pearson r is given as a well-known example of this approach. 

 A second approach briefly mentioned involves placing the CI limits -/+ the product of the two-
tailed critical value of a central test statistic and an estimate of the asymptotic standard error.  This 
generally requires large sample sizes and for some statistics (such as multiple R) requires a 
computer to conduct the calculations. 

 The third approach mentioned is noncentrality interval estimation (Steiger & Fouladi, 1997).  
It is noted that noncentral distributions include an additional parameter, the noncentrality parameter.  
A noncentral t, for example, has df and the noncentrality parameter.  If the value of the noncentrality 
parameter is 0, we have the central t.  As the |noncentrality parameter| becomes increasingly large, 
the noncentral t becomes increasingly skewed in one or the other direction.  It is noted that one needs 
specialized software to compute noncentral confidence intervals. 

 The fourth approach very briefly mentioned is bootstrapping/resampling. 

 The rest of this chapter is a quick review of the basic of several common NHST. 

 

Chapter 3.  What’s Wrong With Statistical Tests --- Where Do We Go From Here? 

 Starts out with a listing of common fallacies about NHST. 

 Misinterpretation of p. 

 Fallacy 1.  p is the probability that the results are due to sampling error.  Duh, unless you have 
the entire population, the probability that the results include sampling error is 1. 

 Fallacy 2:  p is the probability of the null being true given the data – the “inverse probability 
error (Cohen, 1994) or the “Bayesian Id’s wishful thinking error” (Gigerenzer, 1993).  Duh, it is the 
probability of the data given the null.  Bayes is briefly noted: 
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 Fallacy 3:  p is the probability that the null is true given that we have rejected it. 
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 Fallacy 4:  1-p is the probability that the alternative hypothesis is true given the data. 

 Fallacy 5:  1-p is the probability that a replication attempt will also reject the null. 

 Mistaken Conclusions. 

 Fallacy 1.  The smaller p, the larger the effect. 

 Fallacy 2.  “Rejection of the null hypothesis confirms the alternative hypothesis and the 
research hypothesis behind it.”  Kline argues that there are two conceptual errors here.  First, the 
posterior probability of the statistical alternative hypothesis is not brought to absolutely one following 
rejection of the null hypothesis.  Clearly Kline is using “confirm” to mean “establish veracity beyond all 
doubt,” rather than to mean “increase belief in the truth of.”  Second, the truth of the statistical 
alternative hypothesis does not require the truth of the substantive research hypothesis.  Kline uses 
research by John Arbuthnot to illustrate this error.  Arbuthnot noted that in 82 consecutive years more 
boys than girls were born in London.  This led him to reject the null hypothesis that 50% of births will 
be boys.  Our accepting of the statistical alternative hypothesis does not, however, automatically lead 
to our accepting of his substantive research hypothesis, which was that God arranged to have more 
boys than girls born so that every woman will have a man, even though wars and the like lead to boys 
and men leaving this life earlier than do girls and women. 

 Of course, we all know that the truth is that more boys are born because Y bearing sperm 
swim more quickly than do X bearing sperm (but the X bearing sperm live longer in the acidic 
envrionment in which they are thrust).  God has blessed us with wars and adolescent 
male automobile drivers to get rid of the troublesome extra men.  ;-) 

 Fallacy 3.  If you have not rejected the null, then it must be true. 

 Fallacy 4.  Same as 3 in different words. 

 Fallacy 5:  Rejecting the null means your results are of value. 

 Fallacy 6.  Failing to reject the null means that your research is of no value. 

 Fallacy 7.  Rejecting the null means that you have identified a causal mechanism producing 
the observed correlation. 

 Fallacy 8.  If A rejects the null today, and B tests the same null tomorrow but does not reject it, 
the B’s results cast doubt on A’s conclusion. 

 At this point I found myself thinking “there can’t be many people who subscribe to these 
fallacies, can there?”  Kline goes on to provide evidence that there are. 

 Kline next argues that null hypotheses are almost always false, that one need not worry about 
making Type I errors, but that one should worry about making Type II errors. 

 The next several pages are spent on detailing how NHST have impeded scientific progress in 
those disciplines where it flourishes. 

 Kline then briefly presents some variations on NHST, including the testing of range null 
hypotheses (see Serlin & Zumbo, 2001), equivalence testing, inferential confidence intervals (Tyron, 
2001), and three-valued logic (Kaiser, 1960 -- see Serlin & Zumbo, 2001).  It was Kaiser who coined 
the term “Type III error” to mean “deciding upon a difference in the wrong direction.”  Tyron’s 
inferential confidence intervals are constructed such that one can compare different groups’ 
confidence intervals and conclude that the group means differ significantly if the confidence intervals 
overlap.  The intervals are adjusted so that the they will always lead to the same conclusion about the 

value of 1-2 that would be made using a traditional t test. 

 Kline wraps up this chapter with some suggestions regarding what changes we should make in 
the way we analyze our research data.  One of those is dropping the word “significant” from our 
research discourse. 

  

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Arbuthnot.html
http://core.ecu.edu/psyc/wuenschk/docs30/Equivalence-EffectSizeCI.pdf


Chapter 4.  Parametric Effect Size Indexes. 

 Cohen’s d and Glass’  are introduced as estimates of the standardized difference between 
two population means.   When variances are heterogeneous, it is recommended that one compute 

and report two values of , one using, in the denominator, the standard deviation of the one group, 
and the other using the standard deviation of the other group. 

 With correlated samples, one can compute d or  just as one would with independent samples, 
or one can compute the ratio of the mean difference score divided by the standard deviation of the 
difference scores.  The statistic on the difference scores does not seem very useful to me, as it 
factors in the variance-reducing effect of the correlation between conditions. 

 Approximate confidence intervals can be computed by d  ZccSE where SE is 
21

2

2 nn

N

df

d
  .  

For , use 
212

2

)1(2 nn

N

n





, where n1 is for the group whose standard deviation was used to 

compute .  For correlated samples, use 
n

r

n

d )1(2

)1(2

12

2 



, where d is computed as for 

independent samples.  Of course, this interval is narrowed by the correlation between conditions. 

 Wuensch’s example of an approximate confidence interval.  Suppose M1 = 95, M2 = 105, 

SD1 = 20, SD2 = 20, n1 = 200, and n2 = 200.  Cohen’s d = 10/20 = .5, 2
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10/2 = 5, p < .001.  The unstandardized CI.95 for (μ1 μ2)= 10  1.96(2) = 6.08, 13.92.  An 

approximate CI.95 for d is 20.5.
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  = 0.3, .7.  Notice that this is nothing 

more than the unstandardized confidence interval after dividing each end of the interval by the pooled 
standard deviation, that is, 6.08/20, 13.92/20. 

 Now reduce the sample sizes to 10.  944.8
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MMSE , t = 10/8.944 = 1.118.  The 

unstandardized CI.95 for (μ1 μ2)= 10  2.101(8.944) = 8.79, 28.79.  Divide the ends by 20 and the 

approximate CI.95 for d is  .44, 1.44. 

 Exact confidence intervals can be computed using noncentral t.  One first obtains a CI for 

the noncentrality parameter, ncp.  Each endpoint of the ncp is then multiplied by 
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CI for d.  Wuensch’s SAS program Conf_Interval-d2.sas will do this. 

 Wuensch’s example of exact confidence interval.  Using my SAS program and the same 
statistics used for the approximate confidence interval above, we get the same answer, .3, .7.  The 
approximation is very good with large sample sizes.  Reduce the sample sizes to 10 and the exact 

confidence interval computes to .40, 1.39.  Clearly the approximation is off a bit with small sample 
sizes, but, at least for my example, not by that much. 

 I found, at http://psychology3.anu.edu.au/people/smithson/details/CIstuff/CI.html , SAS and 
SPSS scripts for doing all this and more.  Joy! 

 Wuensch’s SAS program Conf_Interval-d1.sas will construct an exact confidence interval for d 
for a single sample mean or the difference between means from correlated samples.  With correlated 
samples one need keep in mind that g will be made larger and its confidence interval more narrow by 
the correlation between scores in the two samples.  If you want to use the standard deviation of one 

http://psychology3.anu.edu.au/people/smithson/details/CIstuff/CI.html


or both samples not corrected for that correlation, you need to use the approximation method – with 
correlated samples the distributions here are very complex, not following the noncentral t. 

 One can also estimate the magnitude of differences between/among group means with r or , 
often squared so as to represent a proportion of variance.  For within-subjects effects, one can 

compute a partial 2 by dividing the effect SS by (SStotal – SSsubjects). 

 One can use Fisher’s transformation of r to produce a confidence interval for the point biserial 
r, but this approximate method may not be very accurate, especially with uneven sample sizes.  
Better is to construct a confidence interval with a noncentral F distribution.  First construct a CI for the 

noncentrality parameter and then convert it to 2 

units.  My program Conf-Interval-R2-Regr.sas does this.  This program is also appropriate for 
constructing a CI about R2 from multiple regression (fixed effects).  At the present time, there are no 
easy ways to get confidence intervals for eta-squared for correlated samples. 

 Jim Steiger’s R2 program can be used to construct a CI about  R2 from multiple correlation 
(random effects). 

 Measures of overlap.  Cohen described three of these.  Look at the overlapping distributions.  
U1 is the proportion of all scores that are in the shaded areas where the distributions do not overlap.  
U1 ranges from 0 to 1. 

 

 U2 is the proportion of scores in the lower group exceeded by the same proportion of scores in 
the upper group.  U2 ranges from .5 to 1. 

 

 U3 is the proportion of scores in the lower group that are below the median of the upper group.  
U3 ranges from .5 to 1. 

 

 Schematic plots are mentioned as a graphical means of showing overlap between 
distributions. 

 Tail ratios tell one how much more likely a case from one group is to fall in the upper (or lower) 
tail of the combined distribution than is a case from the other group.  An example is given comparing 
the verbal ability of men and women.  Using a cutting point of 1 SD above the mean of the combined 

http://www.statpower.net/Software.html#R2


groups, 18.67% of women were in the upper tail and 12.92% of men were, yielding a right tail ratio of 
.1867/.1292 = 1.45. 

 The Common Language Effect Size statistic is presented. 

 When group membership is being predicted (DFA or logistic regression), one can construct a 
statistic that describes effect size in terms of how much better classification is compared to what it 

would be by chance.  Huberty and Lowman (2000) defined such a statistic, 
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sample size for group i, and N is the total number of cases.  Of course, one could get classification 
better than He simply by classifying all cases into whichever group has the higher pr.  Huberty and 
Lowman suggested that values of I less than .1 represent small effects and those greater than .35 
represent large effects. 

 Page 131 has a table showing correspondence between these various measures, assuming 
we are comparing two normally distributed distributions with equal sample sizes and variances. 

 

Chapter 5.  Nonparametric Effect Size Indexes 

 Despite the title, this chapter is about contingency table analysis. 

 Consider a 2 x 2 table where one variable is type of therapy (some vs none) and outcome 
(success, failure – such as death of patient).  Let pc represent the sample probability of failure in the 
control group and pt that in the treatment group.  The sample risk difference, RD, is pc-pt.  The sample 

risk ratio, RR, is pcpt.  The odds are 
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logit is the natural log of the odds ratio.  Kline describes the logistic distribution as being 

approximately normal with a SD of 
3


 where  is 3.14……..  Kline then suggests the logit d as an 

effect estimate comparable to the Hedges g.  Logit d is simply the logit divided by the SD of the 

logistic distribution, that is, logit d = 


3)ln(OR
.  The phi coefficient is also discussed. 

 Kline shows how to construct confidence intervals about proportions, RD, RR, and OR.  For 

the logit, the SE is 
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.  For the Gender x Decision data from my lesson on 

binary logistic regression, the SE for the logit is, using this formula and with some rounding error, 
.2455.  The OR is 3.3759, so the logit is 1.2166.  Going out 1.96(.2455) from the logit gives a 95% CI 
of .73542 to 1.69778.  Taking the antilog of each endpoint give the CI for the OR, 2.086 to 5.462.  Of 
course, it is a hell of a lot easier to get this CI by using the binary logistic regression procedure in 
SPSS.  It gave the CI as 2.090 to 5.452. 

 Kline describes the computations for a CI on phi as “quite complicated” and refers those 
interested to Fleiss (1994). 

 Kline briefly describes Cramér’s V (also known as Cramér’s phi) for contingency tables with 
more than two rows and/or more than two columns. 

 Sensitivity and specificity are described using as an example a screening test for some 
medical disorder.  Sensitivity is, of those who have the disorder, the percentage that are correctly 
identified.  Specificity is, of those who do not have the disorder, the percentage that are correctly 
identified.  He notes that sensitivity and specificity are affected by the cutting point that is used.  Kline 
defines “predictive value” as the overall percentage of cases which are correctly classified.  “Positive 

http://core.ecu.edu/psyc/wuenschk/MV/multReg/Logistic-SPSS.pdf


predictive value” is the percentage of all predicted occurrences of the disorder that are correctly 
identified – in other words, 100% minus the false positive rate.  “Negative predictive value” is the 
percentage of all predicted nonoccurrences that are correctly identified – in other words, 100% less 
the false negative rate.  Kline then demonstrates that the base rate of the disorder can greatly affect 
predictive values (but does not affect sensitivity and specificity).  As the base rate increases, positive 
predictive value rises and negative predictive value falls. 

 

Chapter 6.  Effect Size Estimation in One-Way Designs 

 Defines a contrast in the usual way, but adds an additional stipulation for a “standard set of 
weights”:  the coefficients for the one set must equal +1 divided by the number of conditions in that 
set while those for the other set must equal -1 divided by the number of conditions in that other set.  
For three means, -2, 1, 1 codes a contrast between the first mean and the next two means, but are 

not standard.  -1, ½, ½ codes the same contrast but with standard weights.  iiMc̂ .  The use of 

standard weights is assumed for all that follows on standardized contrasts. 

A contrast SS is computed as 
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The contrast SS is divided by an appropriate error MS to yield the contrast F.  Of course, the contrast 
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 With correlated samples one may use the same error term used to test the omnibus main 
effect of the within-subjects factor, or one may use an error term based on only the conditions 
involved in the particular contrast being tested.  The latter would be advised when there is a problem 

with the sphericity assumption.  For t, the denominator would be the familiar 
n

sD , where the 

difference scores are computed, for each subject, from the contrast coefficients.  Suppose we had 
four conditions and wanted to contrast the first condition with the (second and third) conditions.  For 
each subject we would compute the mean of e’s scores in the second and third conditions and use a 
standard correlated t test to compare those means with e’s scores in the first condition. 

 To construct a confidence interval about ̂ , simply go out in each direction ̂stcrit .  When one 

is constructing multiple confidence intervals, one can use Bonferroni to adjust the per contrast alpha.  
Such intervals have been called simultaneous or joint confidence intervals. 

 A population standardized contrast,   , can be estimated by s̂ , where s is the 

standard deviation of just one of the groups being compared (Glass’ ), the pooled standard deviation 
of the two groups being compared (Hedges’ g), or the pooled standard deviation of all of the groups 
(the square root of the MSE).  Having obtained a contrast F from your computer program, you can 

take the square root to obtain the contrast t and then compute 
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computed in exactly the same way with correlated samples designs, but if computing from t you need 
to be sure to use the independent samples t, not the correlated samples t.  One could standardize the 
contrast with the standard deviation of the difference scores, but I think that not usually appropriate. 

 An approximate confidence interval for a contrast g can be computed simply by taking the 
confidence interval for the contrast and dividing its endpoints by the pooled standard deviation 



(square root of MSE).  In this case the confidence interval amounts to 
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 When the samples are correlated, the same method is employed – that is, construct a 

confidence interval for the contrast as 

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ˆ stcrit , where the standard error is based on the difference 

scores, that is, 
n

sD .  The width of this confidence interval is appropriately affected by the correlations 

between conditions.  The endpoints of the unstandardized interval are then divided by the pooled 
standard deviation across conditions (computing this standardizer as if the samples were 
independent). 

 At http://www.psy.unsw.edu.au/research/research-tools/psy-statistical-program one can obtain 
PSY: A program for contrast analysis, by Kevin Bird, Dusan Hadzi-Pavlovic, and Andrew Isaac.  This 
program computes unstandardized and approximate standardized confidence intervals for contrasts 
with between-subjects and/or within/subjects factors.  It will also compute simultaneous confidence 
intervals.  Contrast coefficients are provided as integers, and the program converts them to standard 
weights. 

 An exact confidence interval for a standardized contrast involving independent samples can be 
computed with my SAS program Conf_Interval-Contrast.sas. 

 Eta-squared is introduced as an estimator of the proportion of variance accounted for by a 
given effect.  The intraclass correlation coefficient is briefly mentioned as the corresponding estimator 

when the effect is random rather than fixed.  Partial eta-squared is introduced as 
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have yet to be convinced that partial eta-squared estimates a parameter of as much interest as that 
estimated by eta-squared. 

 My program Conf-Interval-R2.sas will compute an exact confidence interval about eta-squared.  
This could be done for contrast eta-squared too, but I think a confidence interval about the 
standardized contrast probably more useful. 

 Effect-size estimation in ANCOV is briefly discussed.  For a standardized contrast one can use 
in the denominator the difference between the original means or the difference between the adjusted 
means, and in the denominator one can use the square root of the error variance from an ANOVA 
(not removing the effect of the covariates) or the square root of the error variance from the ANCOV 
(with the effect of the covariate removed).  Likewise, one could compute eta-squared using 
unadjusted scores (SSeffect divided by SStotal from ANOVA, ignoring covariate) or the adjusted scores 
(SSeffect from ANCOV divided by SStotal with effect of covariates removed).  I prefer computing the 
increase in R2 that accompanies adding the effect to a model that already has the covariates. 

 

Chapter 7.  Effect Size Estimation in Multifactor Designs 

 Kline presents a terse introduction to the various complexities of multifactor designs, including 
interaction contrasts.  I have not often found it useful to employ interaction contrasts, but do find them 
of some interest. 

  

http://www.psy.unsw.edu.au/research/research-tools/psy-statistical-program


 The coefficients for an interaction contrast must be doubly centered in the sense that the 
coefficients must sum to zero in every row and every column of the a x b matrix.  For example, 
consider a 2 x 2 ANOVA.  The interaction has only one df, so there is only one contrast available. 

 Coefficients  Means 

 B1 B2  B1 B2 

A1 1 -1  M11 M12 

A2 -1 1  M21 M22 

 This contrast is M11 – M12 – M21 + M22.  From one perspective, this contrast is the combined 
cells on one diagonal (M11 + M22) versus the combined cells on the other diagonal (M21 + M12).  From 
another perspective, it is (M11 - M12) – (M21 – M22), that is, the simple main effect of B at A1 versus the 
simple main effect of B at A2.  From another perspective it is (M11 – M21) – (M12 – M22), that is, the 
simple main effect of A at B1 versus the simple main effect of A at B2.  I recall that Dave Howell had 
an exercise in his Methods text that led the student into realizing that a one df interaction does make 
this contrast.  All of this is illustrated in my program Interact2x2.sas. 

 Now consider a 2 x 3 design.  The interaction has two df and can be broken down into two 
orthogonal interaction contrasts.  For example, consider the contrast coefficients in the table below: 

 A x B12 vs 3  A x B1 vs 2 

 B1 B2 B3  B1 B2 B3 

A1 1 1 -2  1 -1 0 

A2 -1 -1 2  -1 1 0 

 The contrast on the left side of the table compares the simple main effect of A at combined 
levels 1 and 2 of B with the simple main effect of A at level 3 of B.  From another perspective, it 
compares the simple main effect of (combined B1 and B2) versus B3 at A1 with that same effect at A2.  
Put another way, it is the AxB interaction with levels 1 and 2 of B combined. 

 The contrast on the right side of the table compares the simple main effect of A at level 1 of B 
with the simple main effect of A at level 2 of B.  From another perspective, it compares the simple 
main effect of B12 (excluding level 3 of B) at A1 with that same effect at A2.  Put another way, it is the 
AxB interaction with level 3 of B excluded. 

 If we had reason to want the coefficients on the left side of the table above to be a standard set 
of weights, we would divide each by 2. 

 A x B12 vs 3 

 B1 B2 B3 

A1 .5 .5 -1 

A2 -.5 -.5 1 

 

 My program Interact2x3.sas illustrates the computation of these interaction contrasts and 
more. 

 Kline also briefly discusses the use coefficients to make trend contrasts.  I prefer to handle 
such contrasts with a polynomial regression rather than with coefficients. 

 In introducing the topic of standardized mean differences, Kline notes that there is much 
disagreement regarding how to compute them with data from a multifactorial design, and opines that 
1.)  such estimates should be comparable to those that would be obtained from a one-way design, 
and 2.) changing the number of factors in the design should not necessarily change the effect size 



estimates.  Adding factors to a design is, IMHO, not different from adding covariates.  Should the 
additional variance explained by added factors be excluded from the denominator of g?  Imagine a 2 
x 2 design, where A is type of therapy, B is sex of patient, and Y is post-treatment wellness.  The 
MSE excludes variance due to sex, but in the population of interest sex may naturally account for 
some of the variance in wellness, so using the root mean square error as the standardizer will 
underestimate the population standard deviation.  It may be desirable to pool the SSwithin-cells, SSB, 
and SSAxB to form an appropriate standardizer in a case like this.  I’d just drop B and AxB from the 
model, run a one-way ANOVA, and use the root mean square error from that as the standardizer. 

 Kline argues that when a factor like sex is naturally variable in both the population of interest 
and the sample then variance associated with it should be included in the denominator of g.  While I 
agree with this basic idea, I am not entirely satisfied with it.  Such a factor may be associated with 
more or less of the variance in the sample than it is in the population of interest.  In experimental 
research it is often the case that the distribution of such a factor can be quite different in the 
experiment than it is in the population of interest.  For example, in the experiment there may be 
approximately equal numbers of clients assigned to each of three therapies, but in the natural world 
patients may be given the one therapy much more often than the others. 

 Now suppose that you are looking at the simple main effects of A (therapy) at levels of B (sex).  
Should the standardizer be computed within-sex, in which case the standardizer for men would differ 
from that for women, or should the standardizer be pooled across sexes?  Do you want each g to 
estimate d in a single-sex population, or do you want a g for men that can be compared with the g for 
women without having to consider the effect of the two estimators having different denominators? 

 Kline shows how to compute eta-squared and omega-squared in factorial designs and notes 
that confidence intervals can be constructed about such estimates using the same methods 
presented in the previous chapter.  He then concludes by presenting results of factorial analyses with 
effect size estimates included.  Added to one source table is a column which gives the effect size 
estimate and, in parentheses, a confidence interval. 

 

Chapter 8.  Replication and Meta-Analysis 

 The importance of replication is stressed, and Kline notes that editorial policies discourage 
such replication. 

 Meta-analytic methods are reviewed, not in sufficient detail to teach one how to conduct meta-
analysis, but sufficiently to allow one to be an educated consumer of such analyses. 

 With respect to how many studies are necessary to conduct a meta-analysis, Kline says “A 
researcher can use meta-analytic methods to synthesize as few as two results, but more are typically 
needed.  Although there is no absolute minimum number, it seems to me that at least 20 different 
studies would be required  before a meta-analysis is really viable.  This assumes that the studies are 
relatively homogeneous, and that only a small number of moderator variables are associated with 
study outcome.” 

 In addition to estimating effect sizes, the modern meta-analysis attempts to explain observed 
variability in effect sizes.  Commonly used predictors (moderators) of effect size include:  Substantive 
factors such as subject characteristics, setting in which the data were collected, the date the data 
were collected (societal norms may change across time), and intensity of the treatment (for example, 
10 mg dose or 50 mg dose); Methodological factors such as method of manipulation of independent 
variable, method of measuring the dependent variable, and the quality of the research design; and  
Extrinsic factors such as the gender or professional background of the author, whether the research 
was published or not, and who funded the research. 

 When computing an effect size across studies, one can weight the individual study effect sizes 
by factor such as sample size and quality of the study. 



 There is available a statistic that can be employed to test the null hypothesis that there is a 
single universe of studies with a single true effect size.  If the variability among individual study effect 
sizes is sufficiently great, then this null hypothesis will be rejected.  Following rejection of this 
hypothesis, one can segregate the studies on the basis of suspected moderators and retest within 
each segregated group of studies.  Alternatively, one adopt a random-effects model for the meta-
analysis (the sources of differences between studies is random, or cannot be identified) or a mixed-
effects model (there are both random sources of differences and moderators that can be identified). 

 When the hypothesis that the overall effect size is zero has been rejected, one can estimate 
the “fail safe number” of studies with effect sizes of zero that would have to out there in file drawers 
(unavailable to the meta-analyst) to reduce to nonsignificance the test of the overall effect size. 

 

Chapter 9.  Resampling and Bayesian Estimation. 

 Resampling techniques are briefly described, and David Howell’s program mentioned.  Kline is 
not very enthusiastic about resampling techniques. 
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