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One Mean Inference 

 

Z.  Population Standard Deviation Known 

 To use Z as the test statistic when testing the null hypothesis that  = some value, 

one must know the   and be able to assume that the distribution of sample means is 
normal.  The distribution of Z will be normal if: 

 the population distribution of the variable being tested (Y) is normally distributed 
or 

 the central limit theorem [CLT] applies. 

 The CLT states that the distribution of sample means will become approximately 
normal with large sample sizes, even if Y is not normally distributed.  If Y is nearly 
normal, the distribution of sample means will approach normal very quickly with 
increasing N, but if Y is very nonnormal, N may need be relatively large (30 or more) for 
the sampling distribution to be close to normal. 

 How large N must be to produce approximately normal sampling distributions can be 
investigated with computer Monte Carlo simulations.  One instructs the computer to 
sample randomly a large number of samples of given N from a population of a specified 
shape, mean, and variance.  The shape of the resulting sampling distribution is noted 
and then the whole process is repeated with a larger N, etc. etc. until the sampling 
distribution looks approximately normal. 

 The standard error of the mean, the standard deviation of the distribution of 

sample means, is:
N

M


  . 

 For example, suppose we wish to test the H that for IQ,  = 100 for ECU students.  

Assuming a population  of 15 (that found in the general population) and a normal 

sampling distribution, we compute:  
M

M
Z




   Suppose that our sample of 25 

students has 107M . 33.2
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
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 Now, P(Z  +2.33) = .0099; doubling for a two-tailed test, p = .0198.  Thus, we 

could reject the H with an -criterion of .05, but not at .01.  Were we to have done a 

one-tailed test with H being    100, H1 being   > 100, p = .0099 and we could reject 

the H even at .01. 

 With a one-tailed test, if the direction of the “effect”, (sample mean is > or < ) is 
as specified in the alternative hypothesis, one always uses the “smaller portion” 
column of the normal curve table to obtain the p .  If the direction is opposite that 
specified in the alternative hypothesis, one uses the “larger portion” column.  For a 
two-tailed test, always use the smaller portion column and double the value that 
appears there. 
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 Confidence intervals may be constructed by taking the point estimate of  and 
going out the appropriate number of standard errors.  The general formula is: 

MM CVMCVMCI    

where CV = the critical value for the appropriate sampling distribution.  For our sample 

problem 88.11212.101)515(96.1107)515(96.110795. CI .  Once we have 

this confidence interval we can decide whether or not to reject a hypothesis about μ 
simply by determining whether the hypothesized value of μ falls within the confidence 
interval or not.  The hypothesized value of 100 does not fall within 101.12 to 112.88, so 
we could reject the hypothesis that μ = 100 with at least 95% confidence – that is, with 
alpha not greater than 1 - .95 = .05. 

 The wider the confidence interval is, the more error there is in our estimation of .  
To reduce error and obtain a more narrow confidence interval, one can take steps to 
reduce the standard error of the mean.  For example, one can increase the sample size.  
For our sample problem, imagine that we have 100 cases rather than just 25.  The 
standard error of the mean is then reduced from 15/5 = 3 to 15/10 = 1.5.  The 

confidence interval is then narrowed from [101.12, 112.88] to 107  1.96(1.5) = [104.06, 
109.94]. 

 The meaning of the confidence coefficient (typically 95%) is difficult to grasp for 
some students, so I shall review it here.  If you were to spend an eternity constructing 
an uncountably large number of 95% confidence intervals, 95% of those intervals would 

contain the true value of the estimated parameter (the ) and 5% of them would not. 

Student’s t.  Population Standard Deviation Not Known 

 One big problem with what we have done so far is knowledge of the population .  If 

we really knew the , we would likely also know , and thus not need to make 

inferences about .  The assumption we made above, that IQ at ECU = 15, is probably 

not reasonable.  Assuming that ECU tends to admit brighter persons and not persons 

with low IQ, the IQ at ECU should be lower than that in the general population.  We 

shall usually need to estimate the population  from the same sample data we use to 
test the mean.  Unfortunately, sample variance,  SS / (N - 1), has a positively skewed 
sampling distribution.  Although unbiased [the mean of the distribution of sample 
variances equals the population variance], more often than not sample s2 will be smaller 

than population 2 and sample s smaller than population . 

 Thus, the quantity 
Ns

M
t 



  will tend to be larger than 

N

M
Z




 .  The result of 

all this is that the sampling distribution of the test statistic will not be normally 
distributed, but will rather be distributed as Student’s t, a distribution developed by 
Gosset (his employer, Guinness Brewers, did not allow him to publish under his real 
name).  For more information on Gosset, point your browser to: 
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Gosset.html. 

 At Guiness, Gosset applied his skills in chemistry and mathematics towards 
developing new methods for evaluating data address questions like how to identify the 

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Gosset.html
https://en.wikipedia.org/wiki/William_Sealy_Gosset
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best yielding strains of barley (a primary ingredient in beers).  Most of the statisticians of 
his day were interested in dealing with large samples of data, but Student typically had 
small data sets, and thus he developed statistical methods appropriate for working with 
small data set.  It was R. A. Fisher who recognized the importance of Gosset’s work and 
who named the statistic “t.” 

 Student’s t-distribution is plumper in its tails (representing a greater number of 
extreme scores in its tails) than is the normal curve.  That is, Student’s t is has kurtosis 
> 0, it is leptokurtic, with the kurtosis becoming greater as the sample size becomes 
smaller.  Because the distribution of sample variances is more skewed with small 
sample sizes than when N is large, the t distribution becomes very nearly normal when 
N is large.  Pull out a table of critical values.  Find the column that gives the critical 
value of Student’s t for marking off the extreme 5% (two-tailed).  Note that when df = 1, 
the critical value is 12.706 – wow, that t distribution has some seriously fat tails.  Now 
observe what happens as the df increase.  With df = 2, critical t drops to 4.303, with df = 
5 to 2.571, with df = 10 to 2.228, with df = 20 to 2.086, with df = 40 to 2.021, with df = 
100 to 1.984, and with df uncountably large to 1.96.  As df increase, Student’s t 
becomes more and more nearly normal. 

 One of the parameters going into the probability density function of t is df, degrees 
of freedom.  We start out with df = N and then we lose one df  for each parameter we 
estimate when computing the standard error.  We compute the sample standard error 

as 
N

s
sM  .  When computing the sample s we estimate the population mean when 

using (Y minus sample mean) rather than (Y minus ) to compute the sum-of-squares.  

That one estimation cost us one df, so df = N - 1.  The fewer the df, the plumper the t is 
in its tails, and accordingly the greater the absolute critical value of t.  With infinite df, t 
has the same critical value as Z. 

 Here is an abbreviated table of critical values of t marking off the upper 2.5% of the 
area under the curve.  Notice how the critical value is very large when df are small, but 
approaches 1.96 (the critical value for z) as df increase. 

df 1 2 3 10 30 100  

Critical 
Value 

12.706 4.303 3.182 2.228 2.042 1.984 1.960 

 

 When df are small, a larger absolute value of computed t is required to reject the null 
hypothesis.  Accordingly, low df translates into low power.  When df are low, sample 
size will be low too, and that also reduces power. 

 I shall illustrate the use of Student’s t for testing a hypothesis about the mean score 
that my students in undergraduate statistics get on the math section of the Scholastic 
Aptitude Test.  I shall use self-report data provided by students who took my 
undergraduate statistics class between 2000 and 2004.  During that five year period the 
national mean score on the math SAT was 516.  For North Carolina students it was 503.  
For the 114 students on whom I have data, the mean is 534.78 and the standard 
deviation is 93.385.  I shall test the null hypothesis that the mean of the population from 

https://en.wikipedia.org/wiki/Ronald_Fisher
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which my students’ scores were randomly drawn is 516.  I shall employ the usual .05 
criterion of statistical significance. 

746.8
114

385.93
Ms , and 147.2

746.8

51678.534



t .  To get P(t > 2.147) go to the t 

table.  Df is 113, but there is not a row for df = 113 in the table, so use the row for df = 
100.  Then go across looking for t = 2.147.  T = 2.147 is not there, but 1.984 and 2.364, 
between which 2.147 falls, are.  Since these two t’s have two-tailed p’s of .05 and .02, 
our p is between .02 and .05.  Were we doing a one-tailed test with correct prediction of 
the direction of effect, we would now say .01 < p < .025.  In both cases, p ≤ .05, and we 

reject the H.  If we were doing a one-tailed test but the predicted direction were wrong, 
p would be 1 minus the value for the one-tailed p with direction correct, that is, .975 < p 
< .99.  We can use SPSS or SAS to get the exact p, which is, for these data, .034. 

 A confidence interval should also be constructed.   MM sCVMsCVMCI  .  

For CC = 95%,  = 1 - .95 = .05, = .025 in upper tail.  From the t table for df = 100, CV = 

1.984.  13.55243.517)746.8(984.178.534)746.8(984.178.53495. CI . 

Effect Size 

 When you test a hypothesis about a population mean, you should report an estimate 

of (μ - μ), where μ is the true population mean and μ is the hypothesized population 
mean, and you should put a confidence interval about that estimate.  For our SAT data 

the estimated (μ - μ) = 534.78 – 516 = 18.78.  Note that this is the numerator our the t 
ratio.  To get a confidence interval for this difference, just take the confidence interval 
for the mean and subtract the hypothesized mean from both the lower and the upper 

limits.  For our SAT data, the 95% confidence interval for (μ - μ) is 1.43 to 36.13. 

 When you are dealing with data where the unit of measurement is easily understood 
by most persons (such as inches, pounds, dollars, etc.), reporting an effect size in that 
unit of measurement is fine.  Psychologists, however, typically deal with data where the 
unit of measurement is not so easily understood (such as score on a personality test).  
Accordingly, it useful to measure effect size in standard deviation units.  The 

standardized effect size parameter for the one-sample design is 






 . 

Confusingly,  is also used as the symbol for the noncentrality parameter, which we 
shall soon discuss. 

  We can estimate  with  the statistic:  20.
385.93

78.18





s

M
d


.  This statistic is also 

known as Hedges’ g (see McGrath & Meyer, 2006).  You can also compute d simply by 
dividing the obtained t by the square root of the sample size.  Our best point estimate of 
the amount by which my students’ mean math SAT exceeds that of the national norm is 
1/5 of a standard deviation.  Jacob Cohen suggested that a d of 0.2 is small but not 
trivial, a d of 0.5 is medium sized, and a d of 0.8 is large.  These are very general 
guidelines, and are not likely appropriate in all contexts. 
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 Constructing a confidence interval for d is unreasonably difficult to do by hand, but 
easy to do with SPSS or SAS. It involves an iterative procedure and use of the 
noncentral t distributions.  Central t distributions have only one parameter, df.  
Noncentral t distributions have a second parameter, the noncentrality parameter.  The 
noncentrality parameter is a function of the amount by which the null hypothesis is 
incorrect. 

 Non-Normal Data.  Using the t table involves the assumption that Y is normally 
distributed.  If that is not a reasonable assumption, and if the data cannot be 
transformed (via SQRT, LOG, etc.) to make them normal, one can use different 
statistical procedures called “nonparametric” or “distribution-free” tests that do not 
assume that Y is normally distributed (they do, however, have other assumptions which 
must be met).  For more information on the use of data transformation to reduce 
skewness, see my documents Using SAS to Screen Data and Using SPSS to Screen 
Data. 

 Summary Statements.  When you test hypotheses for this class, I want you to state 
your conclusion as it would be stated in an APA (American Psychological Association) 
style journal.  Your summary statement should include each of the following: 

 who or what the research units were (sometimes called “subjects” or “participants”) 

 what the null hypothesis was (implied, not explicitly stated) 

 descriptive statistics such as sample sizes, means and standard deviations 

 whether or not you rejected the null hypothesis (implied, not explicitly stated) 

 if you did reject the null hypothesis, what was the observed direction of the 
difference between the obtained results and those expected under the null 
hypothesis 

 what test statistic (such as t) was employed 

 the degrees of freedom 

 if not obtainable from the degrees of freedom, the sample size 

 the computed value of the test statistic 

 the p value (use SPSS or SAS to get an exact p value) 

 an effect size estimate 

 and a confidence interval for the effect size parameter. 

 For the t-test that we did earlier, here is a APA-style summary statement:  The mean 
math SAT of my undergraduate statistics students (M = 535, SD = 93.4) was 
significantly greater than the national norm (516), t(113) = 2.147, p = .034, d = .20.  
A 95% confidence interval for the mean runs from 517 to 552.  A 95% confidence 
interval for d runs from .015 to .386. 

 Suppose that the sample mean we obtained was not 534.78 but 532.  Our summary 
statement would read:  The mean math SAT of my undergraduate statistics 
students (M = 532, SD = 93.4) was not significantly different from the national 
norm (516), t(113) = 1.83, p = .07, d = .17.  A 95% confidence interval for the mean 
runs from 515 to 549.  A 95% confidence interval for d runs from -.014 to .356.  
Note that I did not indicate a direction of difference with this “nonsignificant” result -- to 
do so would imply that I was testing directional rather than nondirectional hypotheses. 

http://core.ecu.edu/psyc/wuenschk/SPSS/CI-d-SPSS.zip
http://core.ecu.edu/psyc/wuenschk/SAS/Conf-Interval-d1.sas
http://core.ecu.edu/psyc/wuenschk/MV/Screening/Screen.docx
http://core.ecu.edu/psyc/wuenschk/SPSS/Screen-SPSS.docx
http://core.ecu.edu/psyc/wuenschk/SPSS/Screen-SPSS.docx
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 Suppose that I was testing directional hypotheses, with the alternative hypothesis 
being that the mean is greater than 516, and the obtained sample mean being 532.  
Now my summary statement would read:  Employing a one-tailed test, the mean 
math SAT of my undergraduate statistics students (M = 532, SD = 93.4) was 
significantly greater than the national norm (516), t(113) = 1.83, p = .035, d = .17.  A 
90% confidence interval for the mean runs from 517 to 547.  A 90% confidence 
interval for d runs from .016 to .326.  Notice that I shifted to a 90% confidence 
interval, because with the one-tailed test I put all of alpha in one tail rather than splitting 
it into two tails – but confidence intervals are, IMHO, naturally bidirectional, so I put 5% 
in both tails for the confidence interval.  If I did not make this change in the confidence 
coefficient, the confidence interval would include the null value, which would be in 
disagreement with the prior decision to reject the null hypothesis. 

 Suppose that the mean was only 530, still testing the directional hypotheses.  Now 
my summary statement would read:  Employing a one-tailed test, the mean math 
SAT of my undergraduate statistics students (M = 530, SD = 93.4) was not 
significantly greater than the national norm (516), t(113) = 1.60, p = .057, g = .15.  A 
90% confidence interval for the mean runs from 515 to 545.  A 90% confidence 
interval for d runs from -.005 to .305.  Even though the result is not “significant,” I use 
the phrase “not significantly greater than” rather than “not significantly different from” 
because the test was directional. 
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