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Basic Concepts

	We have already studied the one‑way independent‑samples ANOVA, which is used when we have one categorical “independent” variable and one continuous “dependent” variable.  Research designs with more than one independent variable are much more interesting than those with only one independent variable.  When we have two categorical independent variables (with nonexperimental research, these are better referred to as factors, predictors, grouping variables, or classification variables), and one continuous dependent variable (with nonexperimental research these are better referred to as criterion variables, outcome variables, or response variables), with all combinations of levels of the first independent variable with levels of the second independent variable (or factor) consider the following design: we have measures of drunkenness for each of four groups—participants given neither alcohol nor a barbiturate, participants given a vodka screwdriver but no barbiturate, participants given a barbiturate tablet but not alcohol, and participants given both alcohol and the barbiturate.  We have a 2 x 2 factorial design, factor A being dose of alcohol and factor B being dose of barbiturate.  Suppose that our participants were some green alien creatures that showed up at our party last week, and that we obtained the following means: 



	
	Alcohol
	
	

	Barbiturate
	none
	one
	
	marginal

	none
	00
	10
	
	05

	one
	20
	30
	
	25

	marginal
	10
	20
	
	15





	Cells.  Look at the table above.  There are two levels of Alcohol and two levels of Barbiturate.  That gives us 2 x 2 = 4 “cells.”  Each cell is a different group or treatment, where one level of Factor A is combined with one level of Factor B.  Suppose we had 3 levels of Alcohol and 2 levels of Barbiturate.  That would a 3 x 2 ANOVA with six cells.

	The 2 x 2 = 4 group means (0, 10, 20, 30) are called cell means.  I can average cell means to obtain marginal means, which reflect the effect of one factor ignoring the other factor.  For example, for factor A, ignoring B, participants who drank no alcohol averaged a 
(0 + 20) / 2 = 10 on our drunkenness scale, those who did drink averaged (10 + 30) / 2 = 20.  From such marginal means one can compute the main effect of a factor, its effect ignoring the other factor.  For factor A, that main effect is (20 ‑ 10) = 10  participants who drank alcohol averaged 10 units more drunk than those who didn’t.  For factor B, the main effect is (25 ‑ 5) = 20, the barbiturate tablet produced 20 units of drunkenness, on the average.

	A simple main effect is the effect of one factor at a specified level of the other factor.  For example, the simple main effect of the vodka screwdriver for participants who took no barbiturate is (10 ‑ 0) = 10.  For participants who did take a barbiturate, taking alcohol also made them (30 ‑ 20) = 10 units more drunk.  In this case, the simple main effect of A at level 1 of B is the same as it is at level 2 of B.  The same is true of the simple main effects of B—they do not change across levels of A.  When this is the case, the simple main effects of one factor do not change across levels of the other factor, the two factors are said not to interact.  In such cases the combined effects of A and B will equal the simple sum of the separate effects of A and B—for our example, taking only the drink makes one 10 units drunk, taking only the barbiturate makes one 20 units drunk, and taking both makes one (10 + 20) = 30 units drunk.  The combination of A and B is, in this case, additive.

	Look at the interaction plot next to the table above.  One line is drawn for each simple main effect.  The lower line represents the simple main effect of alcohol for subjects who had no barbiturate, the upper line represents the simple main effect of alcohol for subjects who had one barbiturate.  The main effect of alcohol is evident by the fact that both lines have a slope.  The main effect of barbiturate is evident by the separation of the lines in the vertical dimension.

	Suppose that we also conduct our experiment on human participants and obtain the following means:


	
	Alcohol
	
	

	Barbiturate
	none
	one
	
	marginal

	none
	00
	10
	
	05

	one
	20
	40
	
	30

	marginal
	10
	25
	
	17.5





	Note that I have changed only one cell mean, that of the participants who washed down their sleeping pill with a vodka screwdriver (a very foolish thing to do!).  Sober folks taking only the drink still get (10 ‑ 0) = 10 units drunk and sober folks taking the pill still get (20 ‑ 0) = 20 units drunk, but now when you combine A and B you do not get (10 + 20) = 30, instead you get (10 + 20 + 10) = 40.  From where did that extra 10 units of drunkenness come?  It came from the interaction of A and B in this nonadditive combination.  An interaction exists when the effect of one factor changes across levels of another factor, that is, when the simple main effects of one factor vary across levels of another.  For our example, the simple main effect of drinking a screwdriver is (10 ‑ 0) = 10 units drunker if you have not already taken a pill, but it is twice that, (40 ‑ 20) = 20, if you have.  The screwdriver has a greater effect if you already took a pill than if you haven’t.  Likewise, the simple main effect of taking a pill if you already drank, (40 ‑ 10) = 30 units drunker, is more than the simple main effect of taking a pill if you did not already drink, (20 ‑ 0) = 20.

	The interaction between alcohol and barbiturates that we are discussing is a monotonic interaction, one in which the simple main effects vary in magnitude but not in direction across levels of the other variable.  Alcohol increases your drunkenness whether or not you have taken a pill, it just does it more so if you have taken a pill.  Likewise, the pill increases your drunkenness whether or not you have taken a drink, it just does so more if you have been drinking.  With such a monotonic interaction, one can still interpret main effects—in our example, drinking alcohol or taking a pill increases drunkenness.  In the plot, the fact that the two lines are not parallel indicates that there is an interaction.  The fact that the direction of the slope is the same (positive) for both lines indicates that the interaction is monotonic.

	Sometimes the direction of the simple main effects changes across levels of the other variable.  In such a case the interaction may be described as a nonmonotonic interaction.  For example, consider the following means from a group of purple aliens who crashed our party: 


	
	Alcohol
	
	

	Barbiturate
	none
	one
	
	marginal

	none
	00
	20
	
	10

	one
	30
	10
	
	20

	marginal
	15
	15
	
	15





	Alcohol has absolutely no main effect here,  (15 ‑ 15) = 0, and the barbiturate does, but the interesting effect is the strange interaction.  For purple aliens who took no barbiturate the simple main effect of a drink was to make them (20 ‑ 0) = 20 units more drunk, but for those who had taken a pill the simple main effect of the drink was to make them (10 ‑ 30) = 20 units less drunk.  Likewise, the effect of a pill for those who had not been drinking was (30 ‑ 0) = +30, but for those who had been drinking it was (10 ‑ 20) = ‑10.

	The presence of such a nonmonotonic interaction may make it unreasonable to interpret the main effects.  For example, asked what the effect of alcohol is on purple aliens, you cannot honestly answer, “It makes them more drunk.”  You must qualify your response, “If they haven’t been abusing barbiturates, it makes them more drunk, but if they have been abusing barbiturates it makes them less drunk.”

	The plot for our purple aliens makes it clear that the interaction is nonmonotonic -- the direction of the slope for the one line is positive, for the other it is negative.

	In a three‑way factorial design (three categorical independent variables) one can evaluate three main effects (A, B, and C), three two‑way interactions (A x B, A x C, and B x C) and one three‑way interaction (A x B x C).  A three‑way interaction exists when the simple two‑way interactions (the interaction between two factors at  each level of a third factor) differ from one another.  For the contrived data with which we have been playing, consider the third factor, C, to be species of participant, with level one being Alienus greenus, level two being Homo “sapiens,” and level three being Alienus purpurs.  We have already seen that the A x B interactions differ across levels of C, so there is indication of a triple interaction in our 2 x 2 x 3 design.

	You should be able to generalize the concepts of main effects, simple effects, and interactions beyond the three‑factor example we used here, but do not be surprised if you have trouble understanding higher‑order interactions, such as four‑way interactions—most people do—three dimensions is generally as many as a “Homo sapiens” can simultaneously handle!


Two‑Way ANOVA:  The Hypotheses

	Now that we have the basic ideas of factorial designs, let us discuss the inferential procedure, the ANOVA.  We generally have sample data, not entire populations, so we wish to determine whether the effects in our sample data are large enough for us to be very sure that such effects also exist in the populations from which our data were randomly sampled.  For our two‑way design we have three null hypotheses:

	1.	1 = 2 = . . . = a
		That is, the mean of the dependent variable is constant across the a levels of factor A.

	2.	1 = 2 = . . . = b
		That is, Factor B does not affect the mean of the dependent variable.

	3.	Factors A and B do not interact with one another, A and B combine additively to influence the dependent variable.
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Be sure to complete the exercise on Interaction Plots. 
no barb.	no alch.	one alch	0	10	one barb.	no alch.	one alch	20	30	



no barb.	no alch.	one alch.	0	10	one barb.	no alch.	one alch.	20	40	



no barb.	no alch.	one alch	0	20	one barb.	no alch.	one alch	30	10	



Factorial-Basics.doc

Factorial


-


Basics.doc


 


0


10


20


30


no alch.


one alch


no barb.


one barb.


An Introduction to Factorial Analysis of Variance


ã


 


 


Basic Concepts


 


 


 


We have already studied the one


-


way independent


-


samples ANOVA, which is used 


when we have one categorical “independent” variable and one continuous “dependent” 


variable.  Research designs with more than one independent variable are much more 


interesting than those with only one independent variable.  Wh


en we have 


two


 


categorical 


independent variables


 


(with nonexperimental research, these are better referred to as 


factors


, predictors, grouping variables, or classification variables), 


and 


one continuous 


dependent variable


 


(with nonexperimental research the


se are better referred to as criterion 


variables, outcome variables, or response variables), 


with all combinations of levels of the first 


independent variable with levels of the second independent variable (or 


factor


)


 


con


sider the 


following design: we have


 


measures of drunkenness for each of four groups


—


participants 


given neither alcohol nor a barbiturate, participants given a vodka screwdriver but no 


barbiturate, participants given a barbiturate tablet but not alcohol, and participants given both 


alcohol a


nd the barbiturate.  We have a 


2 x 2


 


factorial design, factor A being dose of alcohol 


and factor B being dose of barbiturate.  Suppose that our participants were some green alien 


creatures that showed up at our party last week, and that we obtained the following means: 


 


 


 


 


 


Alcohol


 


 


 


Barbiturate


 


none


 


one


 


 


marginal


 


none


 


00


 


10


 


 


05


 


one


 


20


 


30


 


 


25


 


marginal


 


10


 


20


 


 


15


 


 


 


 


 


Cells.  Look at the table above.  There are two levels of Alc


o


hol


 


and two levels of 


Barbiturate.  That gives us 2 x 2


 


= 4


 


“


cells.


”


  


Each cell is a different group or treatment, where 


one level of Factor A is combined wit


h one level of Factor B.


  


Suppose we had 3 levels of 


Alcohol and 2 levels of Barbiturate.  That would a 3 x 2 ANOVA with six cells.


 


 


 


The 2 x 2 = 4 group means (0, 10, 20, 30) are called 


cell means


.  I can average cell 


means to obtain 


marginal means


, which reflect the effect of one factor ignoring the other 


factor.  For example, for factor A, ignoring B, participants who drank no alcohol averaged a 


 


(0 + 20) / 2 = 10 on our drunkenness scale, those who did drink averaged (10 + 30) / 2 = 20.  


From suc


h marginal means one can compute the 


main effect


 


of a factor, its effect ignoring the 


other factor.  For factor A, that main effect is (20 


-


 


10) = 10 


®


 


participants who drank alcohol 


averaged 10 units more drunk than those who didn’t.  For factor B, the ma


in effect is 


(25


 


-


 


5)


 


=


 


20, the barbiturate tablet produced 20 units of drunkenness, on the average.


 


                                        


                        


 


ã


 


Copyright 20


12


, Karl L. 


Wuensch 


-


 


All rights reserved.


 


 




Factorial - Basics.doc  

0

10

20

30

no alch. one alch

no barb.

one barb.
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 Alcohol    

Barbiturate  none  one   marginal  

none  00  10   05  

one  20  30   25  

marginal  10  20   15  

        Cells.  Look at the table above.  There are two levels of Alc o hol   and two levels of  Barbiturate.  That gives us 2 x 2   = 4   “ cells. ”    Each cell is a different group or treatment, where  one level of Factor A is combined wit h one level of Factor B.    Suppose we had 3 levels of  Alcohol and 2 levels of Barbiturate.  That would a 3 x 2 ANOVA with six cells.       The 2 x 2 = 4 group means (0, 10, 20, 30) are called  cell means .  I can average cell  means to obtain  marginal means , which reflect the effect of one factor ignoring the other  factor.  For example, for factor A, ignoring B, participants who drank no alcohol averaged a    (0 + 20) / 2 = 10 on our drunkenness scale, those who did drink averaged (10 + 30) / 2 = 20.   From suc h marginal means one can compute the  main effect   of a factor, its effect ignoring the  other factor.  For factor A, that main effect is (20  -   10) = 10     participants who drank alcohol  averaged 10 units more drunk than those who didn’t.  For factor B, the ma in effect is  (25   -   5)   =   20, the barbiturate tablet produced 20 units of drunkenness, on the average.  
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