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Two-Mean Inference 
 

Two-Group Research 
1.  We wish to know whether two groups (samples) of scores (on some continuous OV, outcome 
variable) are different enough from one another to indicate that the two populations from which they 
were randomly drawn are also different from one another. 
2.  The two groups of scores are from research units (subjects) that differ with respect to some 
dichotomous GV, grouping variable (treatment). 
3.  We shall compute an exact significance level, p, which represents the likelihood that our two 
samples would differ from each other on the OV as much (or more) as they do, if in fact the two 
populations from which they were randomly sampled are identical, that is, if the dichotomous GV has 
no effect on the OV mean. 

Research Designs 
1.  In the Independent Samples Design (also known as the between-subjects design) the 
observations in the one group are independent of those in the other group.  If the research is 
experimental, we not only randomly select our subjects but we also randomly assign them to the 
treatment groups – thus, the name “completely randomized design.”  The assignment of any one 
subject to group A is independent of the assignment of any other subject to group A or B.  Of course, 
if our dichotomous GV is something not experimentally manipulated, such as subject’s sex/gender, 
we do not randomly assign subjects to groups, but subjects may still be in groups in such as way that 
we expect no correlation between the two groups’ scores. 
2.  In the Matched Pairs Design (also called a randomized blocks design, or a correlated samples 
design) we randomly select pairs of subjects, with the subjects matched on some extraneous variable 
(the matching variable) thought to be well correlated with the outcome variable.  Within each pair, one 
subject is randomly assigned to group A, the other to group B.  Again, our dichotomous GV may not 
be experimentally manipulated, but our subjects may be matched up nevertheless—for example, GV 
= sex, subjects = married couples. 
 a.  If the matching variable is in fact well correlated with the outcome variable, the matched 
pairs design should provide a more powerful test (greater probability of rejecting the null hypothesis) 
than will the independent samples design.  If not, it may yield a less powerful test. 
 b.  One special case of the matched pairs design is the Within-Subjects Design (also known 
as the repeated measures design).  Here each subject generates two scores: one after treatment A, 
one after treatment B.  Treatments are counterbalanced so that half the subjects get treatment A 
first, the other half receiving treatment B first, hopefully removing order effects. 

Matched Pairs t 
 The matched pairs design has the less complex analysis.  We have two scores from each 
pair --  one under condition 1, another under condition 2.  For example, we investigate reaction time 
scores as affected by alcohol.  The null hypothesis is that µsober = µdrunk, that alcohol doesn’t affect 
reaction time.  We create a new variable, D.  For each pair we compute D = Y1 - Y2.  The null 
hypothesis becomes µD = 0 and we test it exactly as we previously tested one mean hypotheses, 
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including using one-tailed tests if appropriate [if the alternative hypothesis is µD > 0, that is µ1 > µ2, or 
if it is µD < 0, µ1 < µ2 ]. 

 Remember that null hypotheses always include an equality sign, for example, µ1 = µ2, or µ1 ≥ 
µ2, or µ1 ≤ µ2.  Alternative hypotheses never include an equality sign, for example, µ1 ≠ µ2, or µ1 > µ2, 
or µ1 < µ2. 
 This analysis is aka the related samples t, the correlated samples t, the within-subjects t, and 
the repeated measures t. 
 This test is appropriate whenever data have been collected in a way that results in the two 
samples of scores being related to each other.  Suppose that Farmer Sol is evaluating the yield of two 
varieties of cucumbers that produce superior fruits, the SuperCuke and the Cukazilla.  He has 12 
small plots of land on which he is going to plant cucumbers.  Each plot into split into two halves, and 
one half is planted with SuperCukes and the other half with Cukazilla, with assignment to halves, 
within each plot, being made randomly.  Sol records how many bushels of cucumbers he harvests 
from each split plot.  Here are the data. 
 

Plot SuperCuke Cukazilla Difference 

A 1.4 1.6 .2 
B 1.8 1.8 .0 
C 2.3 2.2 -.1 
D 2.7 2.7 .0 
E 3.3 3.4 .1 
F 3.4 3.7 .3 
G 3.8 3.5 -.3 
H 4.1 4.4 .3 
I 4.7 5.0 .3 
J 4.9 5.1 .2 
K 5.8 6.1 .3 
L 6.0 6.5 .5 

Mean 3.683 3.833 0.15 
SD 1.4899 1.6216 .2195 

 
 Since the data appear to be approximately normally distributed, Sol decides to employ a 
related samples t test to determine whether or not there is a significant difference between the two 
types of cucumbers, with respect to yield.  The correlated samples t is computed by taking the 
difference between the two means and dividing by the standard error of the mean for the difference 
scores. 
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 A table in the back of Sol’s stats text tells him that on 11 degrees of freedom one has to 
obtain a t whose absolute value is at least 2.201 to claim significance at the traditional .05 level.  
Since Sol’s obtained t exceeds that critical value, he concludes that the yield of Cukazilla cucumbers 
is significantly greater than that of Supercuke cucumbers. 
 Sol also should construct a 95% confidence interval for the difference between the means.  
First he needs to find the two-tailed critical value of t for alpha = 1-.95 = .05 and df = 11.  That is the 
same critical value used with the test of the null hypothesis, 2.210.  The confidence interval is now the 
difference in means plus/minus the critical value of t times the standard error:  0.15 ± 2.210(.063364) 
= 0.15 ± .140 = [.01, .19].  Notice that the confidence interval excludes zero, which will be the case 
when the difference between means was statistically significant.  
 

Independent Samples t 
 The independent sampling design is more complex.  The sampling distribution is the 
distribution of differences between means, which has a mean equal to µ1 - µ2.  By the variance sum 
law (in footnote on page 354 of Howell, 7th ed.) the standard deviation of the sampling distribution, the 
Standard Error of Differences Between Means, is the square root of the variance of the sampling 
distribution: 
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 This formula for the standard error actually applies to both matched pairs and independent 
sampling designs.  The ρ (rho) is the correlation between scores in population 1 and scores in 
population 2.  In matched pairs designs this ρ  should be positive and fairly large, assuming that the 
variable used to match scores is itself positively correlated with the dependent variable.  That is, pairs 
whose Group 1 score is high should also have their Group 2 score high, while pairs whose Group 1 
score is low should have their Group 2 score low, relative to other within-group scores.  The larger the 
ρ , the smaller the standard error, and thus the more powerful the analysis (the more likely we are to 
reject a false null hypothesis).  Fortunately there is an easier way to compute the standard error with 
matched pairs, the difference score approach we used earlier. 

 In the independent sampling design we assume that ρ = 0, so the standard error becomes:  
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  assuming that we know the population variances.  Since 

we are not likely to know the population variances (or, with matched samples, the population rho) 
when making inferences about population means, we must estimate them with sample variances (and 
estimate ρ  with r).  Assuming that n1 = n2, we use the same formulas shown above, except that we 
substitute s for σ and s2 for σ2  and r for ρ and the test statistic is not the normally distributed Z but is 
rather Student’s t, assuming that the dependent variable is normally distributed in both populations.  
The t is evaluated on n1 + n2 - 2 degrees of freedom if you can assume that the two populations have 
identical variances, the homogeneity of variance assumption.  Such a test is called the pooled 

variances t-test.  If n1 = n2 = n, then:  
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 If n1 ≠ n2, the pooled variances standard error requires a more elaborate formula.  Given the 
homogeneity of variance assumption, we can better estimate the variance of the two populations by 
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 Remember, SS = s2 (n - 1). 
 The t that you obtain is then evaluated using df = n1 + n2 - 2. 
 If you cannot assume homogeneity of variance, then using the pooled variances estimate is not 

reasonable.  Instead, compute t using the separate variances error term, 
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do not have a computer available to conduct this test, you can evaluate this t with df equal to the 
smaller of (n1 - 1) and (n2 - 1).  This is a very conservative procedure, meaning that alpha is probably 
even less than the a priori criterion you used.  If you do have a computer available, use SPSS or 
another statistical program to conduct the analysis.  It will adjust the degrees of freedom downwards 
to correct for any problem with heterogeneity of variances. 
 So, when should one use the separate variances t ?  One "rule of thumb" which I have 
employed is:  "If the ratio of the larger variance to the smaller variance exceeds 4 or 5, one should not 
pool variances, especially if sample sizes are also greatly unequal."  However, work by Donald W. 
Zimmerman (Some properties of preliminary tests of equality of variances in the two-sample location 
problem, Journal of General Psychology, 1996, 123, 217-231) has indicated that two stage testing 
(comparing the variances to determine whether to conduct a pooled test or a separate variances test) 
is not a good procedure, especially when the sample sizes differ greatly (3 or 4 times as many 
subjects in one group than in the other, in which case the pooled test performs poorly even when the 
ratio of variances is as small as 1.5).  Zimmerman was, by the way, a faculty member in our 
department here at ECU many years ago.  Zimmerman's advice is that the separate variances t 
should be applied unconditionally whenever sample sizes are unequal.  Given the results of his 
Monte Carlo study, I think this is good advice, and I suggest that you adopt the practice of using the 
separate variances test whenever you have unequal sample sizes.  I still believe that the pooled test 
may be appropriate (and more powerful) when your sample sizes are nearly equal and the variances 
not greatly heterogeneous, but carefully defining "nearly equal sample sizes" and "not greatly 
heterogeneous variances" is not something I care to tackle. 
 Heterogeneity of variance may also be removed by transforming the data prior to analysis.  
For example, square root and logarithmic transformations may reduce the heterogeneity of variance.  
These transformations may also reduce positive skewness in the data, helping to meet the normality 
assumption. 
 The t-test is often considered robust, that is, little affected by violations of its assumptions, 
within limits.  With equal sample sizes, violation of the homogeneity of variance assumption has little 
effect on the validity of the p obtained from a pooled t.  If sample sizes are unequal and there is 
considerable heterogeneity of variance, the pooled t should not be trusted, but the separate variances 
t′ with adjusted df should still be OK.  If both populations have similar shapes, or if both are symmetric 
even if their shapes differ, violating the normality assumption should not be too serious. 
 Earlier I noted that use of a matched-pairs design may provide a more powerful analysis than 
use of the independent sampling design, since the standard error in the matched pairs t-test is 
reduced by the term 

21
2  MM σσρ ∗∗∗− .  Please note that the matched pairs test also involves a 

reduction in df from (n1 + n2 - 2) to (n - 1), that is, for the same total number of scores, the matched t 
has half the df of the independent t.  If total N < 30, loosing half the df produces a considerable 
increase in the critical value of t, which reduces power.  One generally hopes that the reduction in 
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power caused by the loss of df is more than offset by the increase in power resulting from having a 
smaller standard error (which increases the computed value of t). 

 One may compute a confidence interval for µ1 - µ2  by: 

( )
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Computation of t by Hand. 

 See my slideshow . 

Effect Size Estimates 

 You should always provide an estimate of the size of the effect that you are reporting.  There 
are several effect size estimates available for two group designs.  I recommend that you use the 
standardized difference between group means.  You should also present a confidence interval for the 
effect size. 

 Cohen’s d.  The parameter being estimated here is 
σ
µµδ 21 −= .  Our estimator is 
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= , also known as Hedges’ g, where the pooled standard deviation is the square root of the 

within groups mean square (from a one-way ANOVA comparing the two groups).  If you have equal 
sample sizes, the pooled standard deviation is )(5. 2
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proportion of the total number of scores (in both groups, N) which are in that group (nj).  You can also 

estimate d as 
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= , where t is the pooled variances independent samples t comparing the 

two group means. 

 Constructing a confidence interval for d is unreasonably difficult to do by hand, but easy to do 
with SPSS or SAS.  It will require that you give the sample sizes and the values of t and df.  Use the 
pooled variances values of t and df. 

 I shall illustrate using the Howell data (participants were students in Vermont), comparing boys’ 
GPA with girls’ GPA.  Here is the computer output. 

 
Group Statistics 

 gender N Mean Std. Deviation Std. Error 
Mean 

gpa 
1 male 55 2.2358 .80767 .10891 

2 female 33 2.8236 .83305 .14501 

Independent Samples Test 

 t-test for Equality of Means 

t df Sig. (2-tailed) 95% Confidence Interval of the 
Difference 

http://core.ecu.edu/psyc/wuenschk/PP/T-2.pptx
http://core.ecu.edu/psyc/wuenschk/SPSS/CI-d-SPSS.zip
http://core.ecu.edu/psyc/wuenschk/SAS/Conf-Interval-d2.sas
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Lower Upper 

gpa 
Equal variances assumed -3.267 86 .002 -.94553 -.23010 

Equal variances not assumed -3.241 65.860 .002 -.94992 -.22572 
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5533267.3d̂ .72 (there is a little rounding error in the earlier 

computations). 

 

 You should memorize the following benchmarks for d̂ , but keep in mind that they are not 
appropriate in all contexts: 

Size of effect d 

small .2 

medium .5 

large .8 

 Please see my document Cohen's Conventions for Small, Medium, and Large Effects . 

 

 Glass’ Delta.  
controls

MM 21 −=∆ .  That is, in computing the standardize difference between group 

means we use the control group standard deviation in the denominator. 

 Point-Biserial r.  This is simply the Pearson r  between the grouping variable (coded 
numerically) and the criterion variable.  It can be computed from the pooled variances independent t :  
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is the standardized slope for the regression line for predicting the criterion variable from the grouping 

http://core.ecu.edu/psyc/wuenschk/docs30/EffectSizeConventions.pdf
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variable.  The unstandardized slope is the difference between the group means.  We standardize 
this difference by multiplying it by the standard deviation of the grouping variable and dividing by the 

standard deviation of the criterion variable.  For our comparison, .33.
861.

)487(.588.
==pbr  

 
Correlations 

 gpa 

gender 

Pearson 
Correlation 

.332 

Sig. (2-tailed) .002 
N 88 

 

 Eta-squared.  For a two-group design, this is simply the squared point-biserial correlation 
coefficient.  It can be interpreted as the proportion of the variance in the criterion variable which is 
explained by the grouping variable.  For our data, η2 = .3322 = .11.  To put a confidence interval on 
eta-squared, use SPSS or SAS.  For our data, a 95% confidence interval runs from .017 to .240. 

 Omega-squared.  Eta-squared is a biased estimator, tending to overestimate the population 
parameter.  Less biased is the omega-squared statistic, which we shall study when we cover one-way 
independent samples ANOVA. 

 Common Language Effect Size Statistic.  See 
http://core.ecu.edu/psyc/wuenschk/docs30/CL.pdf .  This interesting but obscure statistic estimates 
the probability that a randomly selected score from the one population will be greater than a randomly 
sampled score from the other population. 

 Correlated Samples Designs.  Treat the data as if they were from independent samples – 

that is, use this formula:  
pooleds

MMd 21ˆ −
=  .  See “D-EqN-- Estimate Cohen's d, equal n data (including 

correlated samples)” at my SPSS Programs page for the syntax to make SPSS compute estimated d 
for you. 

 If you base your effect size estimate on the correlated samples analysis, you will overestimate 
the size of the effect.  You cannot use the SPSS scripts to construct a confidence interval for d when 
the data are from correlated samples.  With correlated samples the distributions here are very 
complex, not following the noncentral t.  You can construct an approximate confidence interval, 
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, but such a confidence interval is not very accurate 

unless you have rather large sample sizes.  I do have SAS scripts to conduct confidence intervals for 
d from correlated samples, but we shall not use them in this class. 

 You can use the apps linked below to compute d (but not the confidence interval) from means 
and standard deviations, as long as the samples sizes are equal, as they always will be with 
correlated samples. 

• Excel 
• SPSS 

http://core.ecu.edu/psyc/wuenschk/SPSS/CI-R2-SPSS.zip
http://core.ecu.edu/psyc/wuenschk/SAS/Conf-Interval-R2-Regr.sas
http://core.ecu.edu/psyc/wuenschk/docs30/CL.pdf
http://core.ecu.edu/psyc/wuenschk/SPSS/SPSS-Programs.htm
http://core.ecu.edu/psyc/wuenschk/SPSS/CI-d.zip
http://core.ecu.edu/psyc/wuenschk/docs30/Cohen-d_Equal-n.xlsx
http://core.ecu.edu/psyc/wuenschk/SPSS/d-EqN.zip
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 You could compute 
Diff

Diff s
MMd 21ˆ −

= , where sDiff is the standard deviation of the difference 

scores, but this would artificially inflate the size of the effect, because the correlation between 
conditions will probably make sDiff smaller than the within-conditions standard deviation.  Cohen 
defined dz as the mean difference score divided by the standard deviation of the difference scores.  
The “z” was added to note that the unit of analysis is no longer X (the one mean) or Y (the other 
mean) but their difference, Z.  While I and others (Dunlap, Cortina, Vaslow, & Burke, 1996) think it is 
most often not a good idea to use dz as an effect size estimator, there may be cases where it is 
defensible.  In such cases the confidence interval for dz could be obtained in exactly the same 
manner that one would obtain the confidence interval for d for a one sample test. 
 Why not use the standard deviation of the difference scores as the standardizer?  Think about 
the ρ in the variance sum law:  21

2
2

2
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difference on a test of clerical accuracy between individuals tested after taking a placebo and 
individuals tested after taking a sedating antihistamine.  The difference in means is 3.  Within each 
group the standard deviation is 10.  You have independent samples.  The d is 3/10 = .3.  Now 
suppose that you had correlated samples with the same difference in means and the same within-
condition standard deviations.  The correlation between samples will result in the standard deviation 
of the difference scores being less than the standard deviation within each group (again, remember 
the ρ in the variance sum law).  Suppose it is reduced to a value of 7.  If you were to use the standard 
deviation of the difference scores as the standardizer when estimating d, you would obtain a value of 
3/7 = .43 – but the difference between the means is still just 3 points.  Why should d = .3 with 
independent samples but .43 with correlated samples when the difference between means is the 
same in both cases and the within-conditions standard deviations the same as well? 
 

 Importance of Providing Effect Size Estimates.  IMHO, effect size estimates, especially 
when presented as confidence intervals, are a lot more informative than are p values.  Consider the 
research of Kramer, Guillory, and Hancock (2014).  They manipulated the number of positive and 
negative entries in Facebook users’ new feeds and estimated the size of the effect of that 
manipulation on the subsequent number of positive and negative posts by those users.  Do note that 
the only consent obtained from these users was in the fine print that nobody ever reads (basically, 
you consent to let Facebook do whatever it wants to with your posts).  The sample size was 689,003.  
Such an enormous sample size almost certainly lead to “statistically significant” effects, regardless of 
whether or not the actual effect size in trivial in magnitude.  Accordingly, getting a small p value is 
pretty much meaningless.  If you look at page 8789 you will see that the estimates of Cohen’s d 
ranged from .008 to .02.  Cohen suggested the values of d below .2 represent trivial effects, and 
these are closer to zero than to .2.  If you were to put confidence intervals on these effect size 
estimates, it would be apparent that the conclusion to be drawn from this research is that the effects 
of the manipulations were so very small that they might as well be zero. 

Assumptions of Parametric Tests 
 Parametric tests are those for which the hypothesis tested specifies that some parameter has 
some particular value – for example, µ = 100, or, for two-group research, (µ1 - µ2) = 0.  Such 
parametric tests (including the t tests we have been studying) typically have certain assumptions 
which must be met if the obtained p value is to be correct.  For the t tests, we assume that the 
population distribution(s) of scores is(are) normally distributed.  For the pooled t test, we also assume 
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that the two populations of scores have identical variances.  Some parametric procedures are 
considered to be somewhat “robust” to violation of their assumptions – that is, the assumptions can 
be somewhat violated without having a great effect on the validity of the obtained p value. 

Writing an APA Style Summary for Two-Group Research Results 
 Using our example data, a succinct summary statement should read something like this:  
Among Vermont school-children, girls’ GPA (M = 2.82, SD = .83, N = 33) was significantly higher than 
boys’ GPA (M = 2.24, SD = .81, N = 55), t(65.9) = 3.24, p = .002, d = .72.  A 95% confidence interval 
for the difference between girls’ and boys’ mean GPA runs from .23 to .95 in raw score units and from 
.27 to 1.16 in standardized units. 
 Please note the following important components of the summary statement: 

• The subjects are identified. 
• The variables are identified:  Method of motivation and time to cross the finish line. 
• The group means, standard deviations, and sample sizes are given. 
• Rejection of the null hypothesis is indicated (the difference is significant). 
• The direction of the significant effect is indicated. 
• The test statistic ( t ) is identified, and its degrees of freedom, computed value, and p-value are 

reported. 

• An effect size estimate is reported. 

• Confidence intervals are reported for the difference between means and for d. 
 The style for reporting the results of correlated t test would be the same. 
 If the result were not significant, we would not emphasize the direction of the difference 
between the group means, unless we were testing a directional hypothesis.  For example, among 
school-children in Vermont, the IQ of girls (M = 101.8, SD = 12.7, N = 33) did not differ significantly 
from that of boys (M = 99.3, SD = 13.2, N = 55), t(69.7) = 0.879, p = .38, d = .19.  A 95% confidence 
interval for the difference between girls’ and boys’ mean IQ runs from -3.16 to 8.14 in raw score units 
and from -.24 to .62 in standardized units. 
 As an example of a nonsignificant test of a directional hypothesis: As predicted, the GPA of 
students who had no social problems (M = 2.47, SD = 0.89, N = 78) was greater than that of students 
who did have social problems (M = 2.39, SD = .61, N = 10), but this difference fell short of statistical 
significance, one-tailed t(14.6) = 0.377, p = .36, d = .09.  A 95% confidence interval for the difference 
between mean GPA of students with no social problems and that of students with social problems 
runs from -.38 to .54 in raw score units and from -.56 to .75 in standardized units. 
 Notice that I have set all of the statistical symbols in italic font.  This is standard practice, and 
you should do the same. 

• Link:  Complete Example of Independent Samples t Test 
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