Power Analysis Homework PSYC 2101 March, 2018[©]

Work each of the exercises first by hand and then using G*Power 3. Check your solutions with those shown at the end of the document.

1. We wish to determine whether a morale problem exists among the employees of the Müller salt mines. We plan to administer a standardized test of morale to some number of miners. We know that among miners nationwide the mean score on this test is **50**, with a standard deviation of **10**. How many Müller miners should we test if we want to have an **85%** chance of detecting a difference between the mean for Müller miners and the nationwide mean? Assume that we have decided that **3** points is the minimum nontrivial effect size – that is the three point difference between 50 (the national mean) and 47 (the mean for our miners were there a three point morale problem). Employ a **.05** criterion for α .

2. Suppose you are to evaluate the effectiveness of a new program at Müller mines. The program, which involves employees participating in loosely structured recreational activities at the employer's expense, was expected to change workers' morale, productivity, etc. For a random sample of **36** employees you have both pre- and post-program morale scores. Assuming that morale scores have a standard deviation of **10** and that the correlation between pre-program morale and post-program morale is **+0.595**, what are your chances of detecting a change in mean morale as small as **3** points if you employ a **.05** criterion for alpha?

3. You are going to evaluate the effectiveness of Program A (that described in problem number 2 above) versus Program B. Program B involves more rigidly structured recreational activities. If you have morale-change scores (post-program morale minus pre-program morale) for each of **40** employees under Program A and for each of **60** employees under Program B, what are your chances of detecting an effect as small as **three-tenths** of a standard deviation? That is, if the programs differ from one another by less than 0.3 of a standard deviation, you consider the two programs to be essentially equivalent in effectiveness. Assume that you employ a **.05** criterion for alpha.

[©] Copyright 208, Karl L. Wuensch - All rights reserved.

Solutions

1.
$$d = \frac{3}{10} = .3$$
 $N = \left(\frac{\delta}{d}\right)^2 = \left(\frac{3.00}{.3}\right)^2 = 100$

lest family Statistical te	st				
t tests 💉 Means: Diff	Means: Difference from constant (one sample case)				
Type of power analysis					
A priori: Compute required sam	ple size – given α, po	wer, and effect size			
nput Parameters		Output Parameters			
Tail(:	;) Two 💌	Noncentrality parameter δ	3.029851		
Determine => Effect size	d 0.3	Critical t	1.983731		
			101		
α err pro	b 0.05	Df	101		
α err pro Power (1-β err prot	b 0.05 I) 0.85	Df Total sample size	101		

2. *d* is still .3, but we need correct it for the power-enhancing effect of the within-subjects design.

$$d_{\text{Diff}} = \frac{d}{\sqrt{2(1-\rho)}} = \frac{.3}{\sqrt{2(1-.595)}} = 1/3. \ \delta = d_{\text{diff}}\sqrt{n} = 1/3\sqrt{36} = 2.00$$

From the power table, power = 0.52.

Test family Statistical tes	t				
t tests 💙 Means: Differ	Means: Difference between two dependent means (matched pairs)				
Type of power analysis					
Post hoc: Compute achieved pow	er – given α, sample	e size, and effect size	~		
Innut Paramaters		Output Parameters			
Input Parameters	[Output Parameters			
Input Parameters Tail(s)	Two 💌	Output Parameters Noncentrality parameter δ	2.000000		
Input Parameters Tail(s) Determine => Effect size dz	Two	Output Parameters Noncentrality parameter δ Critical t	2.000000		
Input Parameters Tail(s) Determine => Effect size dz α err prob	Two 0.333333333 0.05	Output Parameters Noncentrality parameter δ Critical t Df	2.000000 2.030108 35		

3. d = .3.
$$\tilde{n} = \frac{2}{\frac{1}{40} + \frac{1}{60}} = 48$$
 $\delta = d\sqrt{\frac{\tilde{n}}{2}} = .3\sqrt{\frac{48}{2}} = 1.47$

From the table:

1 10111 0110		
Delta	Power	Interpolation for delta = 1.47
1.40	.29	$P_{0} = \frac{7}{20} + \frac{7}{20} + \frac{20}{20} + \frac{21}{20} + \frac{1}{20} +$
1.50	.32	Power = $.29 + \frac{10}{10}(.3229) = .31$

Test family Statistical test						
t tests Means: Differ	Means: Difference between two independent means (two groups)					
Type of power analysis						
Post hoc: Compute achieved powe	er - given α, sample	size, and effect size	~			
land Britania		Output Brownstein				
Input Parameters		Output Parameters				
Tail(s)	Two 💌	Noncentrality parameter δ	1.469694			
Determine => Effect size d	0.3	Critical t	1.984467			
α err prob	0.05	Df	98			
Sample size group 1	40	Power (1-β err prob)	0.307217			