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One-Way Independent Samples Analysis of Variance(



If we are interested in the relationship between a categorical IV and a continuous DV, the analysis of variance (ANOVA) may be a suitable inferential technique.  If the IV consisted of only two categories we could  just as well do a t-test, but the ANOVA allows us to have 2 or more categories.  The null hypothesis tested is that (1 = (2 = ... = (k, that is, all k treatment groups have identical population means on the DV.  The alternative hypothesis is that at least two of the population means differ from one another.


We start out by making two assumptions:


1.  Each of the k populations is NORMALLY DISTRIBUTED and


2.  HOMOGENEITY of VARIANCE - each of the populations has the same variance, the IV does not affect the variance in the DV.  Thus, if the populations differ from one another they differ in location (central tendency, mean).


The MODEL we employ here states that each score on the DV has two components:


1.  the effect of the treatment (the IV, Groups) and


2.  Error, which is anything else that affects the DV scores, such as individual differences among subjects, errors in measurement, and other extraneous variables.  That is,

Yij = ( + (j + eij,  or,
  Yij - ( = (j + eij.
The difference between the grand mean (( ) and the DV score of subject number i in group number j, Yij, is equal to the effect of being in treatment group number j, (j, plus error, eij.  [Note that I am using i as the subscript for subject # and j for group #]


Let us work with the following contrived data set.  We have randomly assigned five students to each of four treatment groups, A, B, C, and D.  Each group receives a different type of instruction in the logic of ANOVA.  After instruction, each student is given a 10 item multiple-choice test.  Test scores (# items correct) follow:

	Group
	Score

	A
	1
	2
	2
	2
	3

	B
	2
	3
	3
	3
	4

	C
	6
	7
	7
	7
	8

	D
	7
	8
	8
	8
	9


Computing ANOVA From Group Means and Variances, Equal Sample Sizes

Now, do these four samples differ enough from each other to reject the null hypothesis that type of instruction has no effect on mean test performance?  First, we use the sample data to estimate the amount of error variance in the scores in the population from which the samples were randomly drawn.  That is variance (differences among scores) that is due to anything other than the IV.  One simple way to do this, assuming that you have an equal number of scores in each sample, is to compute the average within group variance,
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 is the sample variance in Group number j.  MSE is the MEAN SQUARE ERROR, “mean” because we divided by k, the number of groups, “square” because we are working with variances, and “error” because we are estimating variance due to things other than the IV.  For our sample variances the MSE = (.5 + .5 + .5 + .5) / 4 = 0.5


MSE is not the only way to estimate the population error variance.  If we assume that the null hypothesis is true, we can get a second estimate of population error variance that is independent of the first estimate.  We do this by finding the sample variance of the k sample means and multiplying by n, where n = number of scores in each group (assuming equal sample sizes). That is,
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I am using MSA to stand for the ESTIMATED AMONG GROUPS or TREATMENT VARIANCE for Independent Variable A.  Although you only have one IV now, you should later learn how to do ANOVA with more than one IV.  For our sample data we compute the variance of the four sample means, VAR(2,3,7,8) = 26 / 3 and multiply by n, so MSA  = 5 ( 26 / 3 = 43.33.


Now, our second estimate of error variance, the variance of the means, MSA , assumes that the null hypothesis is true.  Our first estimate, MSE, the mean of the variances, made no such assumption.  If the null hypothesis is true, these two estimates should be approximately equal to one another.  If not, then the MSA  will estimate not only error variance but also variance due to the IV, and MSA  > MSE.  We shall determine whether the difference between MSA  and MSE is large enough to reject the null hypothesis by using the F-statistic.  F is the ratio of two independent variance estimates.  We shall compute F = MSA / MSE which, in terms of estimated variances, is the effect of error and treatment divided by the effect of error alone.  If the null hypothesis is true, the treatment has no effect, and F = error / error = approximately one.  If the null hypothesis is false, F = (error + treatment) / error > 1.


For our data, F = 43.33 / .5 = 86.66.  Is this F large enough to reject the null hypothesis or might it have happened to be this large due to chance?  To find the probability of getting an F this large or larger, our exact significance level, p, we must work with the SAMPLING DISTRIBUTION of F.  This is the distribution that would be obtained if you repeatedly drew sets of k samples of n scores each all from identical populatons and computed MSA / MSE for each set.  It is a positively skewed sampling distribution with a mean of about one.  Using the F-table, we can approximate p.  Like t-distributions, F-distributions have degrees of freedom, but unlike t, F has df for numerator (MSA ) and df for denominator (MSE).  The total df in the k samples is N - 1 (where N = total # scores) because the total variance is computed using sums of squares for N scores about one point, the grand mean.  The treatment A df is k - 1 because it is computed using sums of squares for k scores (group means) about one point, the grand mean.  The error df is k(n - 1) because MSE is computed using k within groups sums of squares each computed on n scores about one point, the group mean.


For our data, total df = N - 1 = 20 - 1 = 19.  Treatment A df = k - 1 = 4 - 1 = 3.  Error df = k(n - 1) = N - k = 20 - 4 = 16.  Note that total df = treatment df + error df.


So, what is p?  Using the F-table on page 516 we see that there is a 5% probability of getting an F(3, 16) > = 3.24.  Our F > 3.24, so our p < .05.  On page 517 we see that the upper 1% of an F-distribution on 3, 16 df is at and beyond F = 5.29, so our p < .01.  We can reject the null hypothesis even with an a priori alpha criterion of .01.  Note that we are using a one-tailed test with nondirectional hypotheses, because regardless of the actual ordering of the population means, for example, (1 > (2 > (3 > (4 or (1 > (4 > (3 > (2, etc., etc., any deviation in any direction from the null hypothesis that (1 = (2 = (3 = (4  will cause the value of F to increase.  Thus we are only interested in the upper tail of the F-distribution.

The Deviation Method, Equal or Unequal Sample Sizes

Let’s do the ANOVA again using different formulae.  Let’s start by computing the total sum-of-squares (SSTOT) and then partition it into treatment (SSA) and error (SSE) components.

SSTOT = ( (Yij - GM)2.

For our data, SSTOT = (1 - 5)2 + (2 - 5)2 +...+ (9 - 5)2 = 138.


To get the SSA, the among groups or treatment sum of squares, for each score subtract the grand mean from the mean of the group in which the score is.  Then square each of these deviations and sum them.  Since the squared deviation for group mean minus grand mean is the same for every score within any one group, we can save time by computing SSA as

SSA = ( [nj ( (Mj - GM)2]

or, given equal sample sizes, as

SSA =  n ( ( (Mj - GM)2.

For our data, SSA  = 5[(2 - 5)2 + (3 - 5)2 + (7 - 5)2 + (8 - 5)2] = 130.


The error sum of squares, SSE = ( (Yij - Mj)2.


These error deviations are all computed within treatment groups, so they reflect variance not due to the IV, that is, error.  Since every subject within any one treatment group received the same treatment, variance within groups must be due to things other than the IV.  For our data, SSE = (1 - 2)2 + (2 - 2)2 + .... + (9 - 8)2 = 8.  Note that SSA + SSE = SSTOT.  Also note that for each SS we summed across all N scores the squared deviations between either Yij or Mj and either Mj or GM.  If we now divide SSA by its df and SSE by its df we get the same mean squares we earlier obtained.

The Computational Method, Equal or Unequal Sample Sizes

Unless group and grand means are nice small integers, as was the case with our contrived data, the above method (deviation formulae) is unwieldly.  It is, however, easier to see what is going on in ANOVA with that method than with the computational method I am about to show you.  Use the following computational formulae to do ANOVA on a more typical data set.  In these formulae G stands for the total sum of scores for all N subjects and Tj stands for the sum of scores for treatment group number j.






,  which simplifies to:   

   when sample size is constant across groups.

SSE = SSTOT - SSA.


For our sample data,

SSTOT = (1 + 4 + 4 +.....+ 81) - [(1 + 2 + 2 +.....+ 9)2] ( N = 638 - (100)2 ( 20 = 138.
SSA = [(1+2+2+2+3)2 + (2+3+3+3+4)2 + (6+7+7+7+8)2 + (7+8+8+8+9)2] ( 5 - (100)2 ( 20 = 130.
SSE = 138 - 130 = 8.

Computing ANOVA From Group Means and Variances with Unequal Sample Sizes


Wilbur Castellow (while he was chairman of our department) wanted to evaluate the effect of a series of changes he made in his introductory psychology class upon student ratings of instructional excellence.  Institutional Research would not provide the raw data, so all we had were the following statistics:
	Semester
	Mean
	SD
	N
	pj

	Spring 89
	4.85
	.360
	34
	34/133 = .2556

	Fall 88
	4.61
	.715
	31
	31/133 = .2331

	Fall 87
	4.61
	.688
	36
	36/133 = .2707

	Spring 87
	4.38
	.793
	32
	32/133 = .2406



1.  Compute a weighted mean of the K sample variances.  For each sample the weight is 
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2.  Obtain the Among Groups SS, ( nj (Mj ‑ GM)2.  The GM = ( pj Mj =.2556(4.85) + .2331(4.61) + .2707(4.61) + .2406(4.38) = 4.616.

Among Groups SS =

 34(4.85 ‑ 4.616)2 + 31(4.61 ‑ 4.616)2 + 36(4.61 ‑ 4.616)2 + 32(4.38 ‑ 4.616)2 = 3.646.

With 3 df, MSA = 1.215, and F(3, 129) = 2.814, p = .042.

Source Table
	Source
	SS
	df
	MS
	F
	p

	Teaching Method
	130
	3
	43.33
	86.66
	< .001

	Error
	8
	16
	0.50
	
	

	Total
	138
	19
	
	
	


Magnitude of Effect


How might we assess whether our treatment had a large effect versus a small, trivial effect.  If sample sizes are large and error variance small, even small effects will be “statistically significant,” but they may be of no practical significance.  When comparing two means we may simply look at the difference between the two, perhaps in standard deviation units (( in power analysis). With more than two means one may want a single number that reflects the overall magnitude of affect, not just that between two of the means.


One very simple solution is to compute eta-squared, (2, the ratio between SSA and SSTOT from the ANOVA.  For our data (2  = .942.  Eta-squared is a good descriptive statistic.  It describes the proportion of the total variance in the DV that is accounted for by the IV.  It is a correlation coefficient used for nonlinear correlation.  If the IV is dichotomoous, then (2  is identical to the (point-biserial) Pearson r2.


If you report (2, you should also report a confidence interval for it.  Eta-squared is identical to the R2 from a multiple regression analysis, so you can put a confidence interval on (2  with the PASW script I have provided.  Please see my document at http://core.ecu.edu/psyc/wuenschk/SPSS/CI-R2-SPSS.doc .

Sample eta-squared is, however, a biased estimate of population eta-squared.  It tends to overestimate the proportion of the variance in the DV that is attributable to the IV in the population from which the sample was randomly drawn.  A less biased estimator is omega-squared, (2, which is computed as:
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For our data, (2  = .927.  Cohen’s guidelines are:  A small effect is one which accounts for about 1% of the variance, a medium effect 6 %, and a large effect 14% -- see http://core.ecu.edu/psyc/wuenschk/docs30/Power-N.doc.  One note of caution:  the (2  computed from data collected under controlled conditions, where variance in “extraneous” variables that might be causally related to the DV is reduced or eliminated, will be much larger than the actual parameter in the real-world population where such “noise” from “extraneous” variables is present.  If when collecting data you artificially remove much of the variance in the DV that is due to things other than your IV, then you will get a larger omega-squared than you would if you had not controlled those extraneous variables.  That does not, however, make the IV any more potent out in the real world.  If all extraneous variables are absolutely eliminated, even a very weak IV will account for 100% of the variance in the DV.

Pairwise Comparisons:  Fisher’s Procedure


Now we know that teaching method does affect test performance (and, we assume, amount learned), but we still don’t know which methods are significantly different from which other methods. What we need to do now is to make specific comparisons between pairs of means.  For our sample problem there are 6 such comparisons, A-B, A-C, A-D, B-C, B-D, and C-D.  We shall use a modified t-test called “the protected t,” “Fisher’s LSD,” or “Fisher’s procedure.” Why didn’t we just do 6 t-tests in the first place?  Because doing so would increase the chances of our making one or more Type I errors among the 6 specific comparisons.  There is an inequality called the Bonferroni inequality which states that alpha familywise, the probability of making one or more Type I errors in a set (family) of C comparisons is ( c(pc, where (pc is the alpha per comparison, the a priori criterion for p used with each specific comparison.  For our 6 comparisons, if we used (pc of .01 for each t-test, alpha familywise might be as high as 6(.01) = .06.  One way to temper the inflation of alpha familywise when doing multiple comparisons is to first do an ANOVA and not do the specific comparisons unless that ANOVA is significant—such a procedure is called a “protected test.”  If you have only three treatment groups (and thus three pairwise comparisons), Fisher’s procedure is the best available procedure (it does hold the familywise error rate at the nominal level and has more power than the other available procedures).  A more detailed explanation of this can be found in the article “A Controlled, Powerful Multiple-Comparison Strategy for Several Situations,” by Levin, Serlin, and Seaman (Psychological Bulletin, 1994, 115: 153-159).  Howell (see page 399 of his Fundamentals text, 6th edition) is comfortable with Fisher’s procedure even with four groups (because the familywise error rate, although inflated beyond the nominal level, is not very much beyond the nominal level), but not with more than four groups.

Aside from requiring that the omnibus ANOVA be significant before doing specific comparisons, the Fisher’s LSD protected t uses a modified formula for t.  To compare Mi with Mj use:
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where MSE = MSE from the omnibus ANOVA.  The t is then evaluated on N - K df (dferror from omnibus ANOVA) rather than ni + nj - 2 df.  This increased number of df resulting from pooling the error variance across K rather than across 2 groups provides a more powerful test, since critical t is lower with increasing df.  If there is heterogeneity of variance, this procedure must be altered to account for such (consult an advanced text for details).


For our sample data, comparing teaching methods

· A versus D, 
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· A versus C and B versus D, 
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· B versus C, 
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· A versus D and C versus D, 
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Thus, using LSD tests with a criterion of .01 for alpha, we can conclude that significant differences exist between all possible pairwise comparisons except A versus B and C versus D. One convenient way to illustrate results of pairwise comparisons is to arrange the means in ascending order and then underline them such that any two means underlined by the same line are not significantly different from one another.  For our sample data,


Group

A
B
C
D


Mean

2
3
7
8

Pairwise Comparisons:  The Bonferroni Procedure

There are many more sophisticated (and usually more conservative, that is, less powerful) ways of handling this problem.  One of the easiest is the Bonferroni procedure (also called the Dunn test).  With this procedure, which does not require that the omnibus ANOVA be significant, one adjusts the (pc so that alpha familywise will not exceed some a priori criterion therefor.  One can be sure that alpha familywise does not exceed some desired maximum value by using an adjusted alpha per comparison that equals the desired maximum alpha familywise divided by c, that is, 
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.  In other words, you compute a t for each desired comparison, usually using an error term pooled across all k groups, obtain an exact p from the test statistic, and then compare that p to the adjusted alpha per comparison.

For an alpha familywise of .01, one would use an (pc of .01/6 = .00167.  Each t-test would then be evaluated with an adjusted criterion of .00167 for each p.  This requires that you be able to compute exact significance levels for t (use SPSS to do so) or have special tables which you do not have.  If you take a second course in statistics or research you will then learn much more about other multiple comparison techniques.  For our data, all of the comparisons are significant except A vs B and C vs D.

Pairwise Comparisons:  The Ryan-Einot-Gabriel-Welsch Test


Although not presented in our textbook, there is another procedure, the Ryan-EInot-Gabriel-Welsch test (REGWQ for short), which controls familywise error rate as well as does the Bonferroni procedure but which has more power than does the Bonferroni procedure.  It is not reasonable to work this test by hand, but it is easily accomplished using SPSS.  My general recommendation is that you employ Fisher's procedure if you have only three groups, and employ the REGWQ if you have four or more groups.

APA-Style Summary Statement:

Table 1

Effectiveness of Four Methods of Teaching ANOVA

	Method
	M
	SD

	Ancient
	2.00A
	.707

	Backwards
	3.00A
	.707

	Computer-Based
	7.00B
	.707

	Devoted
	8.00B
	.707



Note.  Means with the same letter in their superscripts do not differ significantly from one another according to a Bonferroni test with a .01 limit on familywise error rate.


Teaching method significantly affected test scores, F(3, 16) = 86.66, MSE = 0.50, p < .001, (2  = .942.  A 95% confidence interval for (2 runs from .84 to .96.  Pairwise comparisons were made with Bonferroni tests, holding familywise error rate at a maximum of .01.  As shown in Table 1, the computer-based and devoted methods produced significantly better student performance than did the ancient and backwards methods.

If the researcher had a means of computing the exact significance level (and she should), that would be reported.  For example, one might report “p = .036” rather than “p < .05” or “.01 < p < .05.”
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