Why Standardize?

Statisticians sometimes bicker regarding whether or not it is helpful to standardize effect size estimates.  My opinion on this is that it depends, in part, on whether or not the original units of measure are meaningful to the consumers of the research report.


Suppose we have developed a new drug to treat tachycardia.  To evaluate the drug we randomly assign some patients to a placebo group and others to a treatment group.  After treatment, the mean heart rate for the placebo group is 120 (SD = 15), that for the treatment group is 100 (SD = 10).  A medical practitioner would likely have no difficulty deciding that a mean difference of 20 is a pretty big difference.

Now suppose that we have developed a Likert-type survey to measure the frequency and intensity of the sort of apprehension often felt by those with tachycardia.  We administer it to the same groups of patients and find that the mean of the placebo group is 120 and the mean of the treatment group is 100.  How big is that 20 point difference?  Here, I would argue, it is helpful to have the standard deviations.  Suppose that the standard deviation in the control group is 20 points.  Using 20 as the standardizer, the difference is pretty big, a whole standard deviation.  On the other hand, if the standard deviation were 40, the difference would be considered more modest (about average for the effects typically reported in behavioral research).

Another circumstance in which the utility of standardization comes up is in multiple regression analysis, especially when we wish to compare the unique effects of predictors.  For example, consider this result:
	Table 1.

Graduate Grade Point Averages Related to Criteria Used When Making Admission Decisions (N = 30).

	
	Zero-Order r
	(
	sr2
	b

	Variable
	AR
	MAT
	GREV
	GREQ
	GPA
	
	
	

	GREQ
	
	
	
	
	.611*
	.32*
	.07
	.0040

	GREV
	
	
	
	.468*
	.581*
	.21
	.03
	.0015

	MAT
	
	
	.426*
	.267
	.604*
	.32*
	.07
	.0209

	AR
	
	.525*
	.405*
	.508*
	.621*
	.20
	.02
	.1442

	
	
	
	
	
	
	Intercept = 
	-1.738

	Mean
	3.57
	67.00
	575.3
	565.3
	3.31
	
	
	

	SD
	0.84
	9.25
	83.0
	48.6
	0.60
	R2 = 
	.64*
	



*p < .05


The predicted variable is Graduate GPA, and the predictors are Graduate Record Examination scores (Quantitative and Verbal), the Miller Analogies Test, and the average rating that the student received from a panel of faculty when interviewing for admission to the program.


If you look at the unstandardized slopes (b), you might conclude that AR has a much greater unique effect than do the other predictors and that the GRE predictors have very little utility at all.  However, you must consider the differences in the scales of these predictors.  A one-point change in AR is a very large change, but a one-point change in a GRE score is a miniscule change.  If we standardize the variables, we see that the standardized slope for AR (() is actually rather small compared to that of GREQ and MAT.

I should point out that when comparing beta weights it is important to consider the context in which the predictors are being evaluated, that is, what other predictors are in the model.  For example, one might suspect that GREV and MAT are redundant, and if we were to remove either one from the model then the beta weight for the other would increase considerably.

Return to Wuensch’s Stat Help page.
