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An Introduction to Path Analysis

 

 

 Developed by Sewall Wright, path analysis is a method employed to determine 
whether or not a multivariate set of nonexperimental data fits well with a particular (a 
priori) causal model.  Elazar J. Pedhazur (Multiple Regression in Behavioral Research, 
2nd edition, Holt, Rinehard and Winston, 1982) has a nice introductory chapter on path 
analysis which is recommended reading for anyone who intends to use path analysis.  
This lecture draws heavily upon the material in Pedhazur's book. 

 Consider the path diagram presented in Figure 1. 

Figure 1 
 

 
 

 Each oval represents a variable.  We have data on each variable for each 
subject.  In this diagram SES and IQ are considered to be exogenous variables -- their 
variance is assumed to be caused entirely by variables not in the causal model.  The 
connecting line with arrows at both ends indicates that the correlation between these 
two variables will remain unanalyzed because we choose not to identify one variable as 
a cause of the other variable.  Any correlation between these variables may actually be 
casual (1 causing 2 and/or 2 causing 1) and/or may be due to 1 and 2 sharing common 
causes.  For example, having a certain set of genes may cause one to have the 
physical appearance that is necessary to obtain high SES in a particular culture and 
may independently also cause one to have a high IQ, creating a spurious correlation 
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between 1 and 2 that is totally due to their sharing a common cause, with no causal 
relationship between 1 and 2.  Alternatively, some genes may cause only the physical 
appearance necessary to obtain high SES and high SES may cause high IQ (more 
money allows you to eat well, be healthy, afford good schools, etc., which raises your 
IQ).  Alternatively, the genes may cause only elevated IQ, and high IQ causes one to 
socially advance to high SES. In this model we have chosen not to decide among these 
alternatives. 

 GPA and nAch are endogenous variables in this model -- their variance is 
considered to be explained in part by other variables in the model.  Paths drawn to 
endogenous variables are directional (arrowhead on one end only).  Variance in GPA is 
theorized to result from variance in SES, IQ, nAch, and extraneous (not in the model) 
sources.  The influence of these extraneous variables is indicated by the arrow from EY.  
Variance in nAch is theorized to be caused by variance in SES, IQ, and extraneous 
sources. 

 Please note that the path to an endogenous variable must be unidirectional in 
path analysis.  Were we to decide that not only does high SES cause high nAch but that 
also high nAch causes high SES, we could not use path analysis. 

 For each path to an endogenous variable we shall compute a path coefficient, p
ij
, 

where "i" indicates the effect and "j" the cause. If we square a path coefficient we get 
the proportion of the affected variable's variance that is caused by the causal variable. 
The coefficient may be positive (increasing the causal variable causes increases in the 
dependent variable if all other causal variables are held constant) or negative 
(increasing causal variable decreases dependent variable). 

 A path analysis can be conducted as a hierarchical (sequential) multiple 
regression analysis.  For each endogenous variable we shall conduct a multiple 
regression analysis predicting that variable (Y) from all other variables which are 
hypothesized to have direct effects on Y.  We do not include in this multiple regression 
any variables which are hypothesized to affect Y only indirectly (through one or more 
intervening variables).  The beta weights from these multiple regressions are the path 
coefficients shown in the typical figures that are used to display the results of a path 
analysis. 

 Consider these data from Pedhazur: 

 

 IQ nAch GPA 

SES .300 .410 .330 

IQ  .160 .570 

nAch   .500 

 

 For our analysis, let us make one change in Figure 1:  Make IQ an endogenous 
variable, with SES a cause of variance in IQ (make unidirectional arrow from SES to 
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IQ).  Our revised model is illustrated in Figure 1A, to which I have added the path 
coefficients computed below. 

Figure 1A 
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 Obtain and run Path-1.sas from my SAS Programs page.  Here is the code that 
produced the coefficients for the model in the figure above: 

PROC REG; 

 Figure_1_GPA: MODEL GPA = SES IQ NACH; 

 Figure_1_nACH: MODEL NACH = SES IQ; 

 

Parameter Estimates for Predicting GPA 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

SES 1 0.00919 0.11881 0.08 0.9387 

IQ 1 0.50066 0.10978 4.56 <.0001 

NACH 1 0.41613 0.11481 3.62 0.0007 

SES 
1 

IQ 
2 

nACH 
3 

GPA 
4 

http://core.ecu.edu/psyc/wuenschk/SAS/SAS-Programs.htm
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 Our diagram indicates that GPA is directly affected by SES, IQ, and nAch.  We 

regress GPA on these three causal variables and obtain R2
4.123 = .49647, 41.23 = p41 = 

.009, 42.13 = p42 = .501, and 43.12 = p43 = .416. 

R-Square 0.4965 

 The path coefficient from extraneous variables is 710.49647.11 2

123.4 R .  

 We see that GPA is directly affected by IQ, nAch, and extraneous variables much 
more than by SES, but we must not forget that SES also has indirect effects (through IQ 
& nAch) upon GPA.  We shall separate direct from indirect effects later. 

Parameter Estimates for Predicting nAch 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

SES 1 0.39780 0.13934 2.85 0.0064 

IQ 1 0.04066 0.13934 0.29 0.7717 

 

 Achievement motivation is affected by both SES and IQ in our model, and these 
causes are correlated with one another. We regress nAch on these two causal variables 

and obtain R2
3.12 = .1696, 31.2 = p31 = .398, and 32.1 = p32 = .041. 

R-Square 0.1696 

 

The path coefficient from E3 to nAch is 911.1696.11 2

12.3 R . 

 We see that nAch is more strongly caused by SES than by IQ, and that 
extraneous variables exert great influence. 

 Now consider the path to IQ from SES.  Since there is only one predictor variable 
in this model, the path coefficient is the simple (zero-order) r between IQ and SES, 
which is .300.  This would also be the case if the Y variable were theorized to be 
affected by two independent causes (see Figure 2, in which our model theorizes that the 
correlation between 1 and 2 equals 0). 

 The path coefficient from extraneous variables to IQ is the residual of the SES-IQ 

correlation, 954.09.11 2

1.2  r . 
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Figure 2 
 
 
 
 
 
 r12 = 0 
 
 p31 
 
 p31 = r31 
 
 
 
 p32 = r32 
 
 p32 
 
 
 
 
 
 
 

Note that the program contains the correlation matrix from Pedhazur.  I decided 
to use an N of 50, but did not enter means and standard deviations for the variables, so 
the parameter estimates that SAS produces are standardized (the slope is a beta). 

 

Decomposing Correlations 

 The correlation between two variables may be decomposed into four 
components: 

1. the direct effect of X on Y, 

2. the indirect effect of X (through an intervening variable) on Y, 

3. an unanalyzed component due to our not knowing the direction of causation for 
a path, and 

4. a spurious component due to X and Y each being caused by some third 
variable or set of variables in the model. 

 Consider first the correlations among the variables in Figure 1. 

The correlation between SES and IQ, r12, will be unanalyzed because of the 
bi-directional path between the two variables. 

1 

2 

3 
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The correlation between SES and nAch, r13 = .410 is decomposed into:   

 p31, a direct effect,  SES to nAch, which we already computed to be .398, and  

 p32r12, an unanalyzed component, SES to IQ to nAch, whose size = .041(.3) = 
.012.  -- SES could indirectly affect nAch if SES causes changes in IQ which in 
turn cause changes in nAch, but we do not know the nature of the causal 
relationship between SES and IQ, so this component must remain unanalyzed.  

 When we sum these two components, .398 + .012, we get the value of the 
original correlation, .410. 

The correlation between IQ and nAch, r23 = .16,  is decomposed into: 

 p32, the direct effect, = .041 and 

 p31r12, an unanalyzed component, IQ to SES to nAch, = .398(.3) = .119. 

 Summing .041 and .119 gives the original correlation, .16. 

The SES - GPA correlation, r14 =.33 is decomposed into: 

 p41, the direct effect, = .009. 

 p43p31, the indirect effect of SES through nAch to GPA,  = .416(.398) = .166. 

 p42r12, SES to IQ to GPA, is unanalyzed, = .501(.3) = .150.  

 p43p32r12, SES to IQ to nAch to GPA, is unanalyzed, = .416(.041)(.3) = .005. 

  When we sum .009, .166, ,150, and .155, we get the original correlation, .33. 

 The total effect (or effect coefficient) of X on Y equals the sum of X's direct and 
indirect effects on Y -- that is, .009 + .166 = .175. 

The IQ - GPA correlation, r24, =.57 is decomposed into: 

 p42, a direct effect, = .501. 

 p43p32, an indirect effect through nAch to GPA, = .416(.041) = .017. 

 p41r12, unanalyzed, IQ to SES to GPA, .009(.3) = .003 

 p43p31r12, unanalyzed, IQ to SES to nAch to GPA, = .416(.398)(.3) = .050. 

 The original correlation = .501 + .017 + .003 .050 = .57. 

 The nAch - GPA correlation, r34 = .50, is decomposed into: 

 p43, the direct effect, = .416 

 and a spurious component due to nAch and GPA sharing common causes 
SES and IQ 

o p41p31,  nAch to SES to GPA, = (.009)(.398). 

o p41r12p32,  nAch to IQ to SES to GPA, = (.009)(.3)(.041). 

o p42p32,  nAch to IQ to GPA, = (.501)(.041). 
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o p42r12p31, nAch to SES to IQ to GPA, = (.501)(.3)(.398). 

o These spurious components sum to .084.  Note that in this decomposition 
elements involving r12 were classified spurious rather than unanalyzed 
because variables 1 and 2 are common (even though correlated) causes 
of variables 3 and 4. 

Here is a summary of the decomposition of correlations from Figure 1: 

r12 = unanalyzed r13 = p31 + p32r12 
r23 = p32 + p31r12 

 DE U DE U 

 

r14 = p41 + p43p31 + (p43p32r12 + p42r12) r24 = p42+ p43p32 + (p41r12 + p43p31r12) 

 DE IE U DE IE U 

 

r34 = p43+ (p41p31 + p41r12p32 + p42p32 + p42r12p31) 

 DE S 

 

 Are you sufficiently confused yet?  I get confused doing these decompositions 
too.  Here is a relatively simple set of instructions to help you decide whether a path is 
direct, indirect, spurious, or unanalyzed:  Put your finger on the affected variable and 
trace back to the causal variable.  Now,  

 If you cross only one arrowhead, head first, you have a direct effect. 

 If you cross two or more arrowheads, each head first, you have an indirect effect. 

 If you cross a path that has arrowheads on both ends, the effect is unanalyzed 
(or possibly spurious) 

 Only cross a path not head first when you are evaluating a spurious effect -- that 
is, where a pair of variables is affected by a common third variable or set of 
variables.  For example, some of the correlation between X and Y below is due to 
the common cause Z. 

 Z 

 

 X Y 

 An effect that includes a bidirectional path can be considered spurious rather 
than unanalyzed if both of the variables in the bidirectional path are causes of 
both of the variables in the correlation being decomposed, as illustrated below: 

 Z1 Z2 

 

 X Y 
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 Next, consider Figure 1A, with SES a cause of variance in IQ. 

 The r12 is now p21, the direct effect of SES on IQ. 

The correlation between SES and nAch, r13 = .410 is decomposed into:   

 p31, a direct effect,  SES to nAch, .398, and  

 p32p21, an indirect effect, SES to IQ to nAch, whose size = .041(.3) = .012.  -- 
Note that this indirect effect was an unanalyzed component of r13 in the previous 
model. 

 The total effect (or effect coefficient) of X on Y equals the sum of X's direct and 
indirect effects on Y.  For SES to nAch, the effect coefficient = .398 + .012 = .410 
= r13.  Note that making SES a cause of IQ in our model only slightly increased 
the effect coefficient for SES on IQ (by .012). 

The correlation between IQ and nAch, r23 = .16,  is decomposed into: 

 p32, the direct effect, = .041 and 

 p31p21, a spurious component, IQ to SES to nAch, = .398(.3) = .119.  Both nAch 
and IQ are caused by SES, so part of the r23 must be spurious, due to that 
shared common cause rather than to any effect of IQ upon nAch.  This 
component was unanalyzed in the previous model. 

The SES - GPA correlation, r14 =.33 is decomposed into: 

 p41, the direct effect, = .009. 

 p43p31, the indirect effect of SES through nAch to GPA,  = .416(.398) = .166. 

 p42p21, the indirect effect of SES to IQ to GPA, .501(.3) = .150.  

 p43p32p21, the indirect effect of SES to IQ to nAch to GPA, = .416(.041)(.3) = 
.005. 

 The indirect effects of SES on GPA total to .321.  The total effect of SES on GPA 
= .009 + .321 = .330 = r14.  Note that the indirect and total effects of SES upon 
GPA are greater in this model than in the previous model.  Considering SES a 
cause of variance in IQ moved what otherwise would be SES' unanalyzed effects 
into its indirect effects. 

The IQ - GPA correlation, r24, =.57 is decomposed into: 

 p42, a direct effect, = .501. 

 p43p32, an indirect effect through nAch to GPA, = .416(.041) = .017. 

 p41p21, spurious, IQ to SES to GPA, .009(.3) = .003 (IQ and GPA share the 
common cause SES). 
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 p43p31p12, spurious, IQ to SES to nAch to GPA, .416(.398)(.3) = .050 (the 
common cause also affects GPA through nAch). 

 The total effect of IQ on GPA = DE + IE = .501 + .017 = .518 = r24 less the 
spurious component. 

 The nAch - GPA correlation, r34 = .50, is decomposed in exactly the same way 
it was in the earlier model. 

Here is a summary of the decompositions for the correlations in Figure 1A: 

r12 = p21 r13 = p31 + p32p21 r23 = p32 + p31p21 

 DE IE DE S 

 

r14 = p41 + (p43p31 + p43p32p21 + p42p21) r24 = p42 + p43p32 + (p41p21 + p43p31p21) 

 DE IE DE IE S 

 

r34 = p43 + (p41p31 + p41p21p32 + p42p32 + p42p21p31) 

 DE S 

Overidentified Models 

 Consider a simple three variable model where r12 = r23 = .50 and r13 = .25.  In 
Figure 3A and Figure 3B are two different "just-identified" models of the causal 
relationships among these three variables.  In a just-identified model (aka “saturated 
model” there is a direct path (not through an intervening variable) from each variable to 
each other variable.  In such a model the fit between the data and the model will always 
be perfect.  Note that the decomposed correlations for both models can be used to 
"reproduce" the original correlations perfectly, even though the two models present 
quite different pictures of the casual relationships among the variables. 
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Figure 3A 
 
Model A:  r12 = r23 = .50 and r13 = .25 
 
 
 
 
 
 p31 
 .00 
 
 
 p21 .50 
 
 
 .866 
 p32 .50 E3 

 
 
 
 .866 
 E2 

 
 
 

Figure 3B 
Model B:  r12 = r23 = .50 and r13 = .25 
 
 .968 E1 

 
 
 
 p13 
 .25 
 
 
 p21 .40 
 
 
 
 p23 .40 

 
 
 
 .775 
 E2 

 

1 

2 

3 

1 

2 

3 
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 Model A Model B 

r12 = .50 p21 = .50 p21 + p23p13 

 .50 .40 + .10 

 DE DE + spurious component 

r13 = .25 p31 + p32p31 p31 

 0.00 + .25 .25 

 DE + IE DE 

r23 = .50 p32 + p31p21 p23 + p21p13 

 .50 + 0.00 40 + .10 

 DE + spurious DE + IE 

 

 In Figure 4A and Figure 4B  are two "overidentified" models, models in which at 
least one pair of variables are not connected to each other by direct paths.  In Model A it 
is hypothesized that 1 causes 2, 2 causes 3, and there is no direct effect of 1 on 3.  In B 
it is hypothesized that 2 causes both 1 and 3 with no nonspurious effect between 1 and 
3.  Both models attempt to explain the r13 in the absence of any direct effect of 1 on 3. 

Figure 4A 
 
Model A:  r12 = r23 = .50 and r13 = .25 
 
 
 
 
 
 
 
 
 p21 .50 
 
 
 .866 
 E2 p32 E3 

 .866 
 .50 
 
 

1 

2 3 
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Figure 4B 
Model B:  r12 = r23 = .50 and r13 = .25 
 
 
 
 .866 
 E1 

 
 
 
 p12 .50 
 
 
 .866 
  p32 E3 

 
 .50 
 
 
 

 

 In Model A, r13 = p32p21 = .5(.5) = .25 = IE of 1 through 2 on 3. 

 In Model B, r13 = p32p21 = .5(.5) = .25 = spurious correlation between 1 and 3 due 
to their sharing 2 as a common cause. 

 One may attempt to determine how well an overidentified path model fits the data 
by checking how well the original correlation matrix can be reproduced using the path 
coefficients.  Any just-identified model will reproduce the correlation matrix perfectly. 
However, two radically different overidentified models may reproduce the correlation 
matrix equally well.  For our overidentified models A and B, r13 = p32p21 in A = .25 = 
p32p21 in B.  That is, A and B fit the data equally well (perfectly).  Being able to 
reproduce the correlation matrix should lend support to your model in the sense that you 
have attempted to refute it but could not, but it does not in any way "prove" your model 
to be correct -- other models may pass the test just as well or even better! 

 Consider another overidentified model, based on the same data used for all 
models in Figures 3 and 4.  As shown in Figure 5, this model supposes that 3 affects 1 
directly and 2 only indirectly.  That is, r23 is due only to an indirect effect of 3 on 2.  The 
r23 here decomposes to p21p13 = (.50)(.25) = .125, the IE of 3 through 1 on 2 -- but the 
original r23 = .50.  This model does such a lousy job of reproducing r23 that we conclude 
that it is not supported by the data. 

1 

2 3 
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Figure 5 

r12 = r23 = .50 and r13 = .25 
 
 
 E1 p13 

 .968 .25 
 
 
 p21 .50 
 
 
 
 E2 

 .866 
 
 
 

 Let us now consider an overidentified model based on Figure 1. As shown in 
Figure 6, we hypothesize no direct effects of SES on GPA or of IQ on nAch, and we 
choose not to directionalize the SES - IQ relationship.  Since nAch is now caused only 
by SES and E3, p31 = r13. Since GPA is now directly affected only by nAch and IQ (and 

E4), we regress GPA on nAch and IQ and obtain  = p42 = .503 and  = p43 = .420 
Path-1.sas includes computation of the path coefficients for the model in Figure 6:  
Figure_6: MODEL GPA = IQ NACH; 

Figure 6 
 
 
 
 
 
 
 E3 

 p31  
 .410 .912 
 
 
 p43 

 r12 .3 .420 
 
 

  p42 .710 
 
 .503 E4 
 
 

1 

2 

3 

SES 
1 

IQ 
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nACH 
3 

GPA 
4 
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 Now, to see how well this overidentified model fits the data, we reproduce the 
original correlations (rr = reproduced correlation coefficient, r = original coefficient)  

rr12 = r12 = .3 rr13 = p31 = .41 = r13 

 U DE 

 

rr14 = p43p31 + p42r12 = .172 + .151 = .323 r14 = .330 

 IE U 

 

rr23 = p31r12 = .123 r23 = .160 

U 

 

rr24 = p42 + p43p31r12 = .503 + .052 = .555 r24 = .570 

 DE U 

rr34 = p43 + p42r12p31 = .420 + .062 = .482 r34 = .500 

 DE S 

 Note that there are relatively small discrepancies between the reproduced 
correlations and the original correlations, indicating that the model fits the data well. 

 See output from PROC CALIS showing analysis of the saturated model and the 
overidentified model. 

 Path analysis models are frequently much more complex than those we have 
covered so far.  Such a complex model is presented in Figure 7.  The X’s are Fathers’ 
education, Fathers’ occupation, and number of siblings.  The Y’s are subjects’ 
education, occupation, and income.  Subjects were "non-Negro men, 35-44 age group."  
Path coefficients to Y1 were obtained by regressing Y1 on X1, X2, and X3; to Y2 by 
regressing Y2 on Y1, X1, X2, and X3; and to Y3 by regressing Y3 on Y1, Y2, X1, X2, and X3.  
Run Path-1.sas to see the computation of the path coefficients for the models in 
Figures 1, 6, and 7. 

http://core.ecu.edu/psyc/wuenschk/MV/SEM/Pedhazur_Calis.pdf
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Trimming Models 

 Starting with a just-identified model, one may want to do some "theory 
trimming" -- that is, evaluate whether or not dropping one or more of the paths would 
substantially reduce the fit between the model and the data.  For example, consider the 
model in Figure 7.  We regressed Y1 on X1, X2, and X3 to obtain the path coefficients 
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(Beta weights) to Y1.  If we wished to use statistical significance as our criterion for 
retaining a coefficient, we could delete any path for which our multiple regression 
analysis indicated the Beta was not significantly different from zero.  One problem with 
this approach is that with large sample sizes even trivially small coefficients will be 
"statistically significant" and thus retained.  One may want to include a "meaningfulness" 

criterion and/or a minimum absolute value of Beta for retention.  For example, if || < 

.05, delete the path; if .05 < || < .10 and the path "doesn't make (theoretical) sense," 
delete it.  In Figure 7 all paths to Education are large enough to pass such a test. 

 Consider Occupation regressed on Education, Dad’s Education, Dad’s 
Occupation, and Sibs.  The Beta for Dad’s Education is clearly small enough to delete.  
We might also decide to delete the path from Sibs if it does not seem sensible to us that 
one's occupation be directly affected by the number of sibs one has.  Of course, 
deleting one predictor will change the Beta weights of remaining predictors, so one may 
want to delete one variable at a time, evaluating all remaining predictors at each step.  If 
you are eliminating two or more predictors at one stage (for example, Dad’s Education 
and Sibs to Occupation) and wish to test whether simultaneously eliminating them 
significantly affects the model at that stage, use a partial F test. 

 For Income regressed on all other variables, it appears that the direct paths from 
Dad’s Education, Dad’s Occupation, and Sibs could all be eliminated.  Notice, however, 
that we have evaluated this model in three separate stages.  It is possible that 
eliminating one path might not have a significant effect on the model at that stage, but 
nonetheless might have a significant effect on the entire model. Later I shall show you 
how to test the entire model. 

 Perhaps the most serious criticism of the sort of theory trimming described above 
is that it is applied a posteriori.  Some argue that the data should not be allowed to tell 
one which hypotheses to test and which not to test.  One should always feel more 
comfortable with a priori trimming, that is, trimming that is supported on theoretical 
grounds.  To some extent, that is the function of the "meaningfulness" criterion I 
mentioned earlier.  We might have a priori suspicions that a particular path is not 
important, but include it in our just identified model anyhow, later trimming it away if the 
data results in it receiving the low Beta we expected. 

 

Evaluating Trimmed Models 

 Once one has trimmed away some paths (a priori or a posteriori) from a just 
identified model, e is left with an overidentified model.  Specht (On the evaluation of 
causal models, Social Science Research, 1975, 4, 113-133) developed a goodness of 
fit statistic (Q) to measure how well a trimmed model fits the data (the reproduced 
correlation coefficients differ little from the observed correlation coefficients) and a test 
statistic (W) to test the null hypothesis that the trimmed model fits the data as well as 
does the just-identified model.  If our trimmed model is not significantly different from the 
just-identified model, then we feel more comfortable with it.  The flaw in this is that even 
a poorly fitting model will not differ significantly from the just-identified model if sample 
size (and thus power) is low, and a good fitting model will differ significantly from the 
just-identified model if sample size (and power) is large.  Specht’s Q seems to have 
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been replaced by more modern goodness of fit statistics.  I have not seen it in modern 
statistical packages.  If you would like to learn a bit about Specht’s Q and W, see my 
document Specht’s Goodness of Fit Estimate and Test for Path Analyses .  See 
http://davidakenny.net/cm/fit.htm for a summary of some commonly used modern 
goodness of fit indices. 

 

PROC CALIS 

 These days path analyses are typically conducted using software that makes it a 
lot easier to do the analysis than what I have shown above using Proc Reg.  In SAS, 
Proc Calis can be used to conduct the complete analysis, including computation of the 
effect coefficients, which ounce were tediously computed by matrix algebra.  Please do 
look at the Proc Calis document linked above.  I shall include part of the output here. 

 The model in Figure 1 is saturated --  that is, there is a direct path from each 
variable to each other variable.  With a saturated model, the fit between data and model 
will be perfect.  The observed correlations can be perfectly reconstructed from the 
decomposed correlation.  The chi-square that tests the null that the fit is perfect will 
have a value of zero, indicating perfect fit.  Here is the goodness of fit output: 

Fit Summary 

Modeling Info N Observations 10000 

  N Variables 4 

  N Moments 10 

  N Parameters 10 

  N Active Constraints 0 

 Absolute Index Chi-Square 0.0000 

  Chi-Square DF 0 

  Pr > Chi-Square . 

  Root Mean Square Residual (RMSR) 0.0000 

  Goodness of Fit Index (GFI) 1.0000 

 

 Since this is a saturated model, the fit is perfect. 

 

 Now I remove from the model the direct path from IQ to nACH and from SES to 
GPA.  The model is no longer saturated.  Look at the goodness of fit statistics now: 

http://core.ecu.edu/psyc/wuenschk/MV/SEM/Path-Specht.docx
Measuring%20Model%20Fit%20(David%20A%20Kenney)
http://core.ecu.edu/psyc/wuenschk/MV/SEM/Pedhazur_Calis.pdf
http://core.ecu.edu/psyc/wuenschk/MV/SEM/Path_Effect-Coefficients_Matrix.docx
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Fit Summary 

Modeling Info N Observations 10000 

  N Variables 4 

  N Moments 10 

  N Parameters 8 

  N Active Constraints 0 

 Absolute Index Chi-Square 19.3988 

  Chi-Square DF 2 

  Pr > Chi-Square <.0001 

  Goodness of Fit Index (GFI) 0.9990 

  RMSEA Estimate 0.0295 

 

 Although we reject the null hypothesis of perfect fit, this is meaningless, given the 
very large sample size.  Notice that our fit statistics are still excellent. 
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