Chapter 8

Estuarine Zooplankton

  1. Classification:
    1. Macrozooplankton: net-collectable zooplankton (> 200 m m)
      1. Holoplankton – spend entire life in plankton (e.g. copepods, chaetognaths, Daphnia, etc)
      2. Meroplankton – spend part of life in plankton (larvae of fishes, invertebrates)
    2. Microzooplankton: not collectable in nets, filterable (< 200 m m)
  2. Holoplankton
    1. Calanoid copepods (Phylum Crustacea)
      1. Acartia tonsa, A. clausi abundant and widespread species in estuaries 2,933/m2 in Florida estuary
        1. Can comprise 80 –90 % of numbers in plankton
        2. 0 – 70 ppt broad salinity tolerance (euryhaline)
        3. 0 – 40 ° C broad temperature tolerance (eurythermal)
      2. Other genera: Temora, Eurytemora, Paracalanus, Oithona, Labidocera, Centropages, Undinula
      3. Some special terms for life stages of copepods:
        1. nauplii – small just hatched larval stage (< 250 m m)
        2. copepodites – looks like small adult, but non-reproductive intermediate stage (250-850 m m)
        3. adults – large stage, reproductive (850-1000 m m)
    2. Other crustaceans
      1. Mysids (Mysidacea) – small crustaceans
      2. Daphnia (water fleas) – in freshwater parts of estuary
    3. Chaetognaths - Arrow worms (Phylum Chaetognatha)
      1. Sagitta – found worldwide, abundant, in its own phylum, larval fish predator of great importance
    4. Comb Jellyfish - Phylum Ctenophora
      1. Mnemiopsis – Ctenophore that is a predator on larval fishes
  3. Meroplankton (> 200 m m)
    1. Benthic invertebrate larvae –(See Table 8.1)
      1. Polychaete larvae – trochophore (Nereis, Notomastus)
      2. Crustacean larvae – nauplius, cyprid (barnacles Balanus), zoea, megalops (crabs Callinectes)
      3. Mollusc larvae – velliger (gastropods Littorina, oysters Crassostrea, mussels, Mytilis)
      4. Cnidarian larvae – planula, medusa (Aurelia)
      5. Echinoderm larvae – pleuteus larvae (Asterias)
    2. Vertebrate and Chordates - (See Table 8.1)
      1. Tunicate larvae (tadpole larvae) – Ectinocidia
      2. Fish larvae and eggs – Pinfish Lagodon rhomboides, Spot Leiostomus xanthurus, weakfish Cynoscion regalis , to name but a few
  4. Microzooplankton (20 – 200 m m)
    1. Size is main classification criterion
      1. Many are too small for plankton nets (which are as small as 80 m m)
      2. May be underestimated in zooplankton surveys (twice as abundant as the net zooplankton)
      3. Taxa in the microzooplankton
        1. Tintinids (ciliates)
        2. Flagellates (protozoans)
        3. Rotifers (metazoans)
  5. Abundance patterns
    1. Zooplankton peaks timed to phytoplankton peaks
      1. Zooplankton are herbivores on phytoplankton - highest peaks in Spring and Summer for zooplankton
      2. Rapid changes in abundance are possible - "blooms" - in response to phytoplankton growth spurts
      3. During spawning periods of fishes and invertebrates, meroplankton can dominate plankton numerically
    2. Geographic trends in seasonal abundance differ
      1. Canadian arctic, Eskimo Lakes/Liverpool Bay (Fig. 8.4) - peak in summer (June & July); copepods, polychaetes and barnacles
      2. Raritan Bay, NJ (Fig. 8.2) - Acartia tonsa peaks in June & July, present April through February, lowest in Winter Spring; absence of all stages in March.
      3. Card Sound, FL (Fig. 8.3) - Peak macrozooplankton in Jan ---> May, Sep --> Dec. Low abundance in summer. Microzooplankton remain high in summer
    3. Geographical Patterns of Abundance (Macrozooplankton)
    4. Geographic Area

      Total macro-zooplankton (no./m3)

      Acartia adults

      Acartia im-mature forms

      Other copepods

      Mero-plankton

      Florida

      3,765

      75 %

      16 %

      8 %

      South Carolina

      9,258

      20 %

      18 %

      30 %

      24 %

      Virginia

      20,191

      13 %

      67 %

      7 %

      11 %

      Maryland

      1,425

      61 %

      36 %

      1 %

      New Jersey

      8,052

      32 %

      29 %

      17 %

      9 %

      Canada

      121,000

      4 %

      41 %

      12 %

      3 %

    5. Geographic patterns of abundance(Microzooplankton):
        1. Card Sound, FL : 50,000 --> 200,000 microzooplankters/m3 (Reeve and Cosper 1973)
        2. Long Island Sound: 1000 --> 10,500 microzooplankters/L (or 1,000,000 ---> 10,500,000 microzooplankters/m3 ) (Capriulo & Carpenter 1980)
        3. Terrebonne Bay, LA: (Gifford & Dagg, 1988):

        Microzooplankton taxa

        Number of cells/L

        Number of cells/m3

        Tintinids

        540-->1400

        540,000 -->1,400,000

        nonloricate ciliates

        3160-->20360

        3,160,000-->20,360,000

        other ciliates

        420-->3500

        420,000-->3,500,000

        zooflagellates

        18,000

        18,000,000

        Totals

        22,120-->43,260

        22,120,000-->43,260,000

      1. Compare these estimates with the abundances of the macrozooplankton above. Notice that the microzooplankton are numerically dominant.
  6. Feeding, Growth and Reproduction
    1. Feeding in copepods:
      1. Copepods are important as larval fish food
      2. Copepods are larval fish predators
      3. Food chain: phytoplankton --> copepods ---> larval fish
      4. Also: phytoplankton --> microzooplankton (rotifers) --> larval fishes---> macrozooplankton (ctenophores/chaetognaths/copepods)
    2. Factors affecting copepod growth
      1. Temperature
        1. In arctic: 1-2 generations/year for Acartia clausi
        2. In Massachusetts: 1-2 generations/year for Acartia clausi
        3. In Florida: 11 generations/year for Acartia tonsa
        4. Time to reach maturity varies with temperature for Arcartia tonsa in Pautuxtent River, MD (Heinle 1966):

        Temperature ° C

        Days (egg to egg)

        15.5

        13

        22.4

        9

        29.5

        7

         

      2. Food (phytoplankton) is limiting at times
          1. Copepods graze 2 - 50 % of the phytoplankton production
          2. Phytoplankton production does not always provide sufficient energy for the copepod populations; detritus often makes up the difference (Heinle & Flemer 1975)

       

    3. Microzooplankton feeding and growth
      1. Feeding is on nanophytoplankton; heterotrophic bacteria; detritus;
      2. Microzoplankters can consume 40-45 % of bacterioplankton (Sherr et al. 1986) or up to 88 % of the nanophytoplankton production (Paranjape 1987)
      3. Tintinids are eaten by Acartia, Uca (fiddler crab larvae)
      4. Population doubling times: 10 - 20 hours possible