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Abstract. Raman tweezers and quantitative differential interference
contrast �DIC� microscopy are combined to monitor the dynamic ger-
mination of individual bacterial spores of Bacillus species, as well as
the heterogeneity in this process. The DIC bias phase is set properly
such that the brightness of DIC images of individual spores is propor-
tional to the dipicolinic acid �DPA� level of the spores, and an algo-
rithm is developed to retrieve the phase image of an individual spore
from its DIC image. We find that during germination, the rapid drop in
both the intensity of the original DIC image and the intensity of the
reconstructed phase image precisely corresponds to the release of all
DPA from that spore. The summed pixel intensity of the DIC image of
individual spores adhered on a microscope coverslip is not sensitive
to the drift of the slide in both horizontal and vertical directions,
which facilitates observation of the germination of thousands of indi-
vidual spores for long periods of time. A motorized stage and synchro-
nized image acquisition system is further developed to effectively ex-
pand the field of view of the DIC imaging. This quantitative DIC
technique is used to track the germination of hundreds or thousands
of individual spores simultaneously. © 2010 Society of Photo-Optical Instrumen-
tation Engineers. �DOI: 10.1117/1.3494567�

Keywords: Raman tweezers; quantitative differential interference contrast
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Introduction
acterial spores of Bacillus species are metabolically dor-
ant, extremely resistant to a variety of harsh conditions, and

an survive for years in this state.1 However, spores can rap-
dly return to life through germination followed by outgrowth
f appropriate nutrients and some non-nutrient agents are
rovided.2 One important step in spore germination is the
apid release of the spore’s large depot ��10% of spore dry
t� of pyridine-2, 6-dicarboxylic acid �dipicolinic acid

DPA�� and its associated divalent cations, predominantly
a2+ �CaDPA�, that is present in the dormant spores’ central

egion or core.2 Germination of spores in populations exhibits
ignificant heterogeneity, with some spores germinating very
apidly and some extremely slowly, as is indicated by the
ariable time between the addition of germinants and the re-
ease of CaDPA.3–5 Noninvasive monitoring of hundreds or
housands of individual spores under physiological germina-
ion conditions will thus be necessary to quantify the hetero-
eneity in the germination of individual spores in populations.
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Phase contrast �PC�6 and differential interference contrast
�DIC�7 microscopy are well-known techniques for imaging
transparent phase objects without the need for exogenous con-
trast agents, which produce very little intensity contrast in
bright-field microscopy. Although different principles and op-
tical components are used, both of these methods convert an
invisible phase image into an amplitude image. The optical
phase shifts experienced by the illumination light that passes
through transparent objects are associated with the specimen’s
refractive index and contain both structural and dynamic fea-
tures. Therefore, the changes in intensity of PC or DIC images
that result from variations in phase shift allow real-time in-
spection of biological specimens noninvasively. Dormant bac-
terial spores are transparent and appear phase-bright in PC
and DIC microscopy due to the high refractive index in the
spore’s core that results from the high levels of CaDPA and
the core’s relatively low water content. However, when spores
germinate, CaDPA is released into the environment and the
spore’s peptidoglycan cortex is hydrolyzed such that the spore
core’s refractive index decreases, thus appearing phase-dark.
PC and DIC microscopy has been used to monitor the kinetics
of germination of single Bacillus and Clostridium spores.8–11
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owever, because the relationship between the intensity of
mages and the phase of objects is generally nonlinear, only
ualitative information has been obtained by PC and DIC
echniques.

Phase-shifted differential interference contrast �PS-DIC�
icroscopy was developed to obtain the linear phase gradient

f an object along the shear direction through a mathematical
peration on four frames of a phase-shifted image.12 Further-
ore, when a spiral phase integration �SPI� technique is ap-

lied to a PS-DIC image, linear phase images can be
etrieved.13,14 However, this quantitative phase technique re-
uires multiple frames to produce a single PS-DIC image, and
lso requires the rotation of the direction of shear to apply the
PI algorithm,13,15 which makes it difficult to use for real-time
etection of kinetic processes in biological specimens. In re-
ent years, several quantitative phase microscopy techniques
ave been developed that are based on the interference be-
ween the spatially varying field through the sample and a
niform reference beam, including Fourier phase microscopy
FPM�,16 Hilbert phase microscopy �HPM�,17,18 and diffrac-
ion phase microscopy �DPM�.19 These techniques have been
sed for monitoring cell growth20 and membrane fluctuations

f red blood cells.19

Raman spectroscopy is another useful technique in bio-
hemical studies that benefits from this spectroscopy’s high
ensitivity and rapid response to subtle changes in molecular
tructure.21–23 When Raman spectroscopy is combined with
onfocal microscopy and optical trapping, the resultant Ra-
an tweezers �LTRS� have the ability to probe biochemical

rocesses at the single-cell level in liquid media,24,25 and have
een used to monitor the kinetics of germination and heat
nactivation of individual Bacillus spores.4,5,26 However, this
echnique becomes less efficient when hundreds of individual
pores need to be monitored simultaneously. Recently, phase
ontrast microscopy was combined with LTRS, which al-
owed observation of the germination kinetics of hundreds of
ndividual Bacillus cereus spores simultaneously.10 However,
ue to the artifacts of Zernike phase contrast, quantitative
hase �refractive index� information on the spores was not
etrieved.15 In addition, to combine with Raman tweezers
pectroscopy, a special external phase configuration in the mi-
roscope has to be used. Furthermore, since the depth of focus
s shallower in PC microscopy than in DIC microscopy, PC
bservation of spore germination requires higher stability of
icroscope stage in the vertical direction.
In this work, we report a system that combines Raman

weezers and quantitative DIC microscopy for studies of ger-
ination dynamics of individual bacterial spores. The advan-

ages in choosing DIC microscopy are: 1. it has no artifacts of
ernike phase contrast such that quantitative phase images
an be retrieved from the original DIC images; 2. ordinary
igh numerical aperture �NA� objectives can be used for both
IC images and Raman spectroscopy and no special external
hase design is needed; and 3. DIC images have higher con-
rast and wider depth of focus, lowering the requirement for
he stability of the microscope stage. We first established the
orrespondence between CaDPA release using Raman spec-
roscopy and the changes in the intensity of DIC images of
ingle spores using DIC imaging, and then applied quantita-
ive DIC imaging to measure the heterogeneity in germination
ournal of Biomedical Optics 056010-
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of hundreds of individual spores in a population. An image in
which the intensity is linearly proportional to the optical
phase of that spore was retrieved. During germination, the
changes in the intensity of the reconstructed phase image have
essentially the same correlation with the CaDPA release of
that spore. To expand the full field of the DIC imaging, we
used a motorized microscope stage and synchronously ac-
quired the DIC images of each field of view. By this tech-
nique, we were able to simultaneously monitor thousands of
individual spores during the germination process for up to
2 h.

2 Materials and Methods
2.1 Bacillus Species Used, Preparation, and

Germination
The Bacillus species used in this work were all wild-type
strains and were Bacillus subtilis PS533,27 Bacillus cereus T
�originally obtained from Halvorson�, and Bacillus mega-
terium QM B1551 �originally obtained from Levinson�.
Spores of these species were prepared and stored as
described.28–30 All spores used in this work were free
��98%� of growing or sporulating cells and germinated
spores, as determined by phase contrast microscopy. Prior to
germination, the spores were heat activated in water for
30 min at 70°C �B. subtilis�, 20 min at 65°C �B. cereus�, or
15 min at 60°C �B. megaterium�, and then put on ice for
�15 min. The germination conditions used were as follows:
B. subtilis, 37°C with various concentration of L-alanine in
25-mM Tris-HCl buffer �pH 8.3�; B. cereus, 30°C with
100-�M L-alanine in 25-mM Tris-HCl buffer �pH 8.3�; and
B. megaterium, 30°C with 1-mM D-glucose in 25-mM
KPO4 buffer �pH 7.4�.

2.2 Laser Tweezers and Raman Spectroscopy
The LTRS system used in this work was as described.10 As
shown in Fig. 1�a�, a diode laser at 780 nm was introduced
into an inverted microscope �TE2000-S, Nikon Instruments,
Lewisville, Texas� and formed a trap by the objective with
high numerical aperture �100�, NA1.3, Nikon, Lewisville,
Texas�. Single spores were trapped at the focus of the objec-
tive, and the Raman scattering light from the trapped spore
that was excited by the trapping laser was collected by the
same objective. The collected backward Raman scattering
light was recorded by a spectrometer �LS-785, Princeton In-
struments, Trenton, New Jersey� equipped with a charge-
coupled device �CCD� detector �PIXIS 400, Princeton Instru-
ments, Trenton, New Jersey�. The Raman spectra were
recorded in the range from 600 to 1800 cm−1, with a reso-
lution of about 6 cm−1. A background spectrum was also ac-
quired under the same conditions without a spore in the trap
and subtracted from the spectra of spores.

2.3 Differential Interference Contrast Imaging and
Phase Reconstruction

As shown in Fig. 1�a�, the DIC images of spores produced by
the illumination of the halogen lamp source and the differen-
tial interference of transmitted light through the DIC module
mounted on the microscope were captured with a 16-bit digi-
tal imaging CCD camera �QSI 520, Quantum Scientific Im-
September/October 2010 � Vol. 15�5�2
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ging, Poplarville, Mississippi�, or a 12-bit digital CCD cam-
ra �CCE-B013-U, Mightex Systems, Toronto, Canada�. A
ackground image was taken under the same conditions with-
ut a spore in the view field and subtracted from the DIC
mages of spores. The DIC module was set such that the axes
f the polarizer and analyzer were crossed, and thus the bias
hase 2� between the two orthogonally polarized beams was
,13 2�=�. Under this configuration, the 2-D DIC image in-

ensity produced was given by13,15

I�x,y� = I1�x,y� + I2�x + �x,y�

− 2�I1�x,y�I2�x + �x,y��1/2 cos����x,y�� , �1�

here I1 and I2 are the intensities of the two polarization
omponents separated by a shear distance of �x set by the
omarski prism, �� is the phase difference between the two
olarization components that is induced by the spore, and the
axis is assigned along the direction of the shear, which is

etermined by the Nomarski prisms in the DIC microscope.
he optical phase � is proportional to the index of refraction
�x ,y� of the spore and the traveling-path difference
l�x ,y� of the illumination beams in the spore, ��x ,y�
�2� /��n�x ,y��l�x ,y�, where � is the wavelength of the

llumination lights. Assuming that the intensity of illumination
ight is uniform over the whole spore area, the intensities of
wo polarization components are the same, and the absorption
f the spore is negligible, then Eq. �1� is simplified as

ig. 1 Combination of Raman tweezers and DIC microscopy for the m
pectrum of a typical dormant Bacillus spore trapped by laser tweezer
ersus the CaDPA levels of trapped dormant spores as determined by R
. megaterium were analyzed. The solid curve is a fitting line.
ournal of Biomedical Optics 056010-
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I�x,y� = I0�1 − cos����x,y��� , �2�

where I0=2I1=2I2. The phase gradient at the spore’s center is
nearly zero, so a single spore appears as two bright parts with
a dark line in the center, as suggested by Eq. �2� and as shown
in Fig. 1. For a small shear distance �x that is less or com-
parable to the diffraction limit of microscope resolution, the
phase gradient along the shear direction is generally not ex-
treme, i.e., ����x ,y��	�, and Eq. �2� is approximated as

I�x,y� = I0���x,y�2. �3�

We then can obtain the phase gradient along the x direction,

���x,y� = 	 
I�x,y�/I0, �� � 0

− 
I�x,y�/I0, �� 
 0
� . �4�

It is generally difficult to determine the sign of �� for objects
with complicated phase gradient distributions. However, for a
single spore, the dark line that crosses the spore’s center and
perpendicular to the shear direction is the position with zero
phase gradient, as shown in Fig. 1, in which the shear direc-
tion is along the x direction in the image in the insert. There-
fore, the phase gradients on the left and right sides of the dark
line should have opposite signs. Generally, the shear distance
is much smaller than the size of the spore, so the spore’s
phase distribution ��x ,y� then can be obtained by integrating
the phase gradient along the x direction,

ent of Bacillus spores. �a� Schematic diagram of the setup. �b� Raman
IC image of the trapped dormant spore. �d� Intensities of DIC images

spectroscopy. 50 randomly chosen spores of B. cereus, B. subtilis, and
easurem
s. �c� D
aman
September/October 2010 � Vol. 15�5�3
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��x,y� =� ���x,y�
�x

dx . �5�

.4 Motorized Stage and Synchronized Image
Acquisition

o monitor up to thousands of individual spores in a germi-
ation experiment, we needed to expand the field of view of
he DIC imaging, which was about 120�90 �m in our sys-
em. To do this, we used a precision motorized x-y stage
MAX203B-NIK, ThorLab, Newton, New Jersey� and devel-
ped a control software to synchronously move the stage and
cquire the DIC images. The control system allows moving
he microscope stage to the first field of view of the spore
ample �120�90 �m� with a precision of 1 �m, recording a
IC image, and then moving to a second field of view while

ecording its DIC image, and so on. In a run, six different
elds of view were recorded within 18 sec. Then the stage
as moved back to the first field of view to record the next set
f DIC images, and this rotation was repeated. In this way, the
ermination of 2000 to 3000 individual spores can be re-
orded with a resolution time of �18 sec, and for up to
2 h. The resolution time in our system was limited by the

peed of storing large image data files onto a computer hard
isk after each run of image acquisition. A fast camera data
torage system would significantly reduce the resolution time
f the whole system.

Experimental Results
igure 1�b� shows a typical Raman spectrum from a trapped
ormant B. subtilis spore. The bands at 658, 824, 1017, 1395,
nd 1572 cm−1 are from CaDPA,24,31 and the intensity of the
redominant band at 1017 cm−1 has been used to determine
he CaDPA level of individual Bacillus spores.24 The high
efractive index in the spore’s core due to the large depot of
aDPA and the core’s low water content was then converted

nto an amplitude image under a DIC microscope and was
ecorded by a CCD camera. Figure 1�c� shows the DIC image
f the spore analyzed in Fig. 1�b�. This image appears as two
eparate bright parts with a narrow dark gap between them
ue to the small phase gradient near the spore’s center. Intu-
tively, the spores with brighter DIC images have higher DPA
evels. To confirm the relationship between the brightness of
he DIC image and spore’s DPA level, 50 randomly chosen
ormant spores each of B. subtilis, B. cereus, and B. megate-
ium were trapped, and their DIC images and Raman spectra
ere recorded. The laser power used for the measurement was
mW, and the integration times for DIC imaging and spec-

rum acquisition were 0.5 and 30 s, respectively. The CaDPA
evel in individual spores was determined from the Raman
cattering intensity of the band at 1017 cm−1 �averaged over
ve adjacent data points�, as described previously.24 The mean

ntensity of the DIC image was calculated by averaging the
ounts of pixels over a region of 40�40 pixels �correspond-
ng to 3�3 �m in the microscope specimen� that covered the
hole spore �size of 1 to 2 �m�, and was plotted as a func-

ion of its DPA level determined by the height of the
017-cm−1 Raman band, as shown in Fig. 1�d�. As indicated
y the fitting line, the intensity of the spore’s DIC image is
roportional to its CaDPA level, both for the spores from the
ournal of Biomedical Optics 056010-
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same species and for spores from different species.
It would be useful to monitor the germination of a single

spore using DIC microscopy and Raman spectroscopy simul-
taneously, and to examine the relationship between the inten-
sity of the spore’s DIC image and its CaDPA level during
germination, since CaDPA release is a marker for spore ger-
mination and results in a decrease in the refractive index of a
spore’s core. Although previous work addressed the changes
in the appearance of DIC images of B. subtilis spores after the
completion of germination,11 quantitative and dynamic infor-
mation has never been obtained previously from DIC micros-
copy. To measure germination kinetics of single spores ad-
hered on a microscope coverslip, 20 �l of a heat-activated
spore suspension ��7�106 spores /ml� was placed on the
surface of a coverslip. After 1 h at 4°C to allow the spores to
adhere, the spore suspension was removed by a pipette, leav-
ing a thin film of spores on the surface of the coverslip. After
this film of spores was dried in a refrigerator, the coverslip
was mounted onto a chamber on the microscope stage. The
sample chamber was kept at 37°C �B. subtilis� or 30°C �B.
cereus and B. megaterium�, and was sealed with a cover glass
after adding the germinant solution preheated at the appropri-
ate germination temperature. The microscope was adjusted to
the center, the laser was focused on a randomly chosen spore,
and then the Raman spectra and DIC images of that spore
were recorded with exposure times of 5 and 0.5 s, respec-
tively. Only a 40�40 pixels area of the CCD camera �full
resolution of 1600�1200 pixels� was used to record the DIC
image of a single spore. To synchronize the acquisition of
Raman spectra and DIC images, a visual basic program was
developed to trigger the spectrographic CCD for Raman spec-
troscopy and the imaging CCD camera for DIC images at
time intervals of 5 and 1 s, respectively. In addition, for each
coordinate y of the DIC image, the position of minimum in-
tensity of the original DIC image along the x direction was
located, the phase gradients in the left and right sides of this
position were assigned opposite signs, and then the phase im-
age of the spore was reconstructed through integration along
the x direction. Figure 2�a� shows the Raman spectra, original
DIC images, and reconstructed phase images of a typical B.
cereus spore adhered on a cover slip at several stages during
its germination with 100-�M L-alanine in 25-mM Tris-HCl
buffer �pH 8.3�. As indicated, after 13 min of incubation, the
spore contained the same amount of CaDPA and gave the
same DIC images and phase images as when the measurement
began. However, 0.5 min later, all CaDPA-related Raman
bands had disappeared, and the intensities of the DIC and
phase images were also greatly decreased. No obvious
changes in the Raman spectra and only minor decreases in the
DIC and phase images were observed over the next 3.5 min.
To quantitatively describe these changes, the averaged pixel
intensities of the DIC and phase images as well as the CaDPA
level of that spore were plotted as a function of incubation
time in Fig. 2�b�, where all of the intensities were normalized
to their values at the time when the measurement began. The
CaDPA level and the mean intensities of the DIC image and
phase image were nearly unchanged until a time defined as
Tlag, when all of these dropped rapidly in �0.5 min. During
this rapid CaDPA release, the level of CaDPA decreased to
zero at a time defined as T . However, the intensities of
release
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he DIC image and phase image were deceased only 55 and
5%, respectively, at Trelease followed by slow decreases to
table nonzero values. The slow decreases in the intensities of
he DIC image and phase image after Trelease are due primarily
o a decrease in the refractive index of the spore core because
f the degradation of the spore’s peptidoglycan cortex and the
ttendant swelling of the core due to significant water
ptake.8,10 As indicated in Fig. 2, the kinetic parameters of

lag and Trelease during the spore’s germination can be ob-
ained from DIC microscopy as precisely as from Raman
pectroscopy. Essentially identical results were obtained with
ther B. cereus spores and with spores of B. subtilis and B.
egaterium �data not shown�.

With this correspondence between the DIC image and the
aman spectrum in hand, it was then straightforward to si-
ultaneously monitor the germination of large numbers of

pores on a microscope coverslip, thus allowing use of DIC
icroscopy to study the heterogeneity in the germination of

arge numbers of individual spores in populations. To collect
he kinetic parameters of hundreds or thousands of spores, a
hin film of spores was prepared on the surface of a micro-
cope coverslip and then mounted in a microscope sample
hamber, as described before. After preheated germinant so-

ig. 2 Monitoring of a single B. cereus spore adhered on a micro-
cope coverslip during germination with 100-�M L-alanine using Ra-
an spectroscopy and quantitative DIC microscopy. �a� Raman spec-

ra, DIC images, and reconstructed phase images of the spore at
everal stages during germination. Curves a through d are for incuba-
ion times of 5, 13, 13.5, and 16.5 min, respectively. The baselines
ere shifted for display. Images to the right are DIC images �left
olum� and phase images �right colum� of that spore taken at the
orresponding times. �b� Intensity of Raman scattering at 1017 cm−1.
he intensities of original DIC images and reconstructed phase images
f the spore analyzed in �a� are expressed as a function of incubation
ime. All of these intensities are normalized to the corresponding val-
es at the time when the measurement began.
ournal of Biomedical Optics 056010-
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lutions were added to the temperature-stabilized chamber, an
appropriate field of view was chosen, brought into focus, and
DIC images were recorded by a 16-bit CCD camera with an
exposure time of 0.5 s and at a frame rate of 15 s. These
images were processed with a program in Matlab �Natick,
Massachusetts� to locate each individual spore and to calcu-
late the averaged pixel intensity of a 40�40 pixels region
�3�3 �m� that was large enough to cover the whole indi-
vidual spore �size of 1 to 2 �m�. The full resolution of the
CCD camera is 1600�1200 pixels, so in an ideal case, one
experiment can follow the germination of �1200 spores. In
practice, each field of view can record 300 to 500 spores,
depending on the concentration of spore suspension as well as
the distribution uniformity of spores on the coverslip. In a few
cases, the cross-correlation coefficients between the first im-
age and successive frames were calculated and used to correct
any position drifts of the chamber along the horizontal direc-
tion. Besides the drift in the horizontal direction, the drift of
the sample chamber in the vertical direction is also a potential
problem for long observation periods. To address this con-
cern, a dormant spore was adhered on a coverslip, and its DIC
images at various vertical positions were recorded by chang-
ing the voltage applied to a microscope-objective piezo ele-
ment �Mipos 100, Piezosystem jena, Hopedale, Massachu-
setts� that was attached to the objective. The averaged pixel
intensity of a 40�40 pixels region was calculated and plot-
ted as a function of the distance from the focus in Fig. 3. The
mean intensity of the DIC image decreased by 
3% when the
spore was moved out of focus within a range from
−1 to 1 �m, a range that is easily controlled manually or by
feedback devices.

Figure 4 shows the DIC images of germinating B. subtilis
spores adhered on a microscope coverslip. The images were
recorded at 0, 5, 10, and 30 min after the addition of mixture
of 10-mM L-alanine and 25-mM Tris-HCl buffer �pH 8.3�.
For illustration, only small portions of 320�320 pixels
clipped from the full resolution DIC images are shown. Indi-

Fig. 3 Mean DIC image intensity of a typical B. subtilis spore adhered
on a microscope coverslip versus the distance of the spore away from
the focus. The intensity of the DIC image was calculated by averaging
the pixel counts over an area of 40�40 pixels �3�3 �m� that cov-
ered the whole spore.
September/October 2010 � Vol. 15�5�5
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vidual spores are labeled with numbers so that their germina-
tion can be tracked. As can be seen, 5 min after the addition
of germinants, spores 4, 6, 14, and 19 had germinated and
their brightness had noticeably decreased. 10 min later, spores
1, 5, 7, 9, 11, 13, 18, and 23 had germinated, and all spores
except 16 had germinated after the next 20 min. This simple
experiment indicates the high heterogeneity exhibited in the
kinetics of germination of individual spores in spore popula-
tions.

The mean DIC intensities of five randomly chosen spores
from the experiment analyzed in Fig. 4 were calculated as
described before and are shown as a function of incubation
time in Fig. 5. For display purposes, the DIC intensity values
after 90 min of incubation were subtracted from the intensi-
ties of DIC images at various times, and then the values were
normalized to the values at the time the germinants were
added. As indicated, the time at which the rapid drop in the
DIC image intensity began corresponded to the time of initia-
tion of CaDPA release, which varied significantly from spore
to spore. However, the time required for release of the major-
ity of a spore’s CaDPA was nearly the same �about 4 min� for
all individual spores. It is important to distinguish effects of
variations in local germination conditions such as tempera-
ture, nutrient concentration, or pH from some inherent spore
property, such as the numbers of nutrient germinant receptors
per spore, that can determine the heterogeneity in the germi-
nation of individual spores in populations. Consequently, the

croscope slide. �a� DIC image intensities of five randomly chosen B.
M L-alanine and 25-mM Tris-HCl buffer �pH 8.3�. �b� DIC intensity of
by less than 6 �m. For purposes of display, the DIC intensity values
at various times, and the values were normalized to the values at the

of Trelease for spores germinated with 10-mM and 50-�M L-alanine,
ig. 4 DIC images of germinating B. subtilis spores adhered on a mi-
roscope coverslip. The images were recorded 0, 5, 10, and 30 min
fter the addition of 10-mM L-alanine in 25-mM Tris-HCl buffer �pH
.3�; arrows mark the germinated spores at each time point. Only
mall portions of 320�320 pixels clipped from the full view of the
IC images are shown. The scale bar is 3 �m, and all images are at

he same scale. All spores are numbered such that their germination
an be tracked.
ig. 5 L-Alanine germination of multiple B. subtilis spores adhered on a mi
ubtilis spores adhered on a microscope slide during germination with 10-m
our adjacent spores from the same experiment as in �a� that were separated
fter 90 min of incubation were subtracted from the intensities of DIC images
ime germinants were added. �c� and �d� are the distribution probabilities
espectively.
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ermination kinetics of four adjacent spores separated by less
han 6 �m from each other in the experiment described in
ig. 4 were studied, and their DIC image intensities are shown

n Fig. 5�b� as a function of incubation time. It is obvious that
lthough these spores almost certainly experienced the same
ocal environment during their germination, they exhibited
ifferent germination kinetics, as revealed by their different

lag and Trelease times. This finding indicates that minor differ-
nces in the local germination conditions were almost cer-
ainly not a major factor causing the heterogeneity in germi-
ation of individual spores in populations.

Both Tlag and Trelease are important kinetic parameters that
an be used to characterize the heterogeneity in spore germi-
ation, since the rapid release of spore’s CaDPA is the first
asily measured event during germination. However, in some
ase, i.e., in spores that lack the cortex lytic enzyme CwlJ in
hich the rate of release of CaDPA during germination is
uch slower than with wild-type spores,5 Trelease is a time

oint that can be more easily defined. To quantify the hetero-
eneity between the germination of individual spores, it is
ecessary to collect the Trelease times for hundreds or thou-
ands of spores. Figure 5�c� shows the distribution probability
f Trelease from 291 B. subtilis spores germinated with 10-mM
-alanine �a saturating germinant concentration� in 25-mM
ris-HCl buffer �pH 8.3�. The Trelease times were distributed
ver a very wide time range with a maximum probability
ocated at around 15 min. When the concentration of
-alanine was decreased to a subsaturating concentration of
0 �M, the time with the maximum germination probability
as shifted to 20 min, and the distribution width of Trelease
as also increased, as shown in Fig. 5�d�, where 509 spores
ere analyzed. We also used a motorized stage with high

ccuracy and high reproducibility �see Sec. 2� to record the
IC images of 2000 to 3000 spores germinating with an even

ower L-alanine concentration, where the very low germina-
ion efficiency �
10%� required high data acquisition effi-
iency �data not shown�.

Discussion
n this work, we set the bias phase 2� of the DIC microscope
t �, such that the DIC images of spores had the maximum
ontrast, although these images did not directly show the ac-
ual sizes and shapes of the spores. With this setting, the in-
ensity of the DIC image was approximately proportional to
he square of the phase gradient of that spore along the direc-
ion of shear. When a simple algorithm was applied, a phase
mage in which the intensity is linearly proportional to the
pore’s optical phase was retrieved from the original DIC im-
ge. Since the change in the optical phase is related to the
pecific molecular events during the dynamic germination
rocess of single spores, quantitative DIC imaging is capable
f determining the important parameters of the spore’s germi-
ation with high temporal resolution and high sensitivity,
hen combined with Raman spectroscopy and laser tweezers.

The results reported in this work demonstrated several ad-
antages of the combination of quantitative DIC imaging and
aman spectroscopy for the observation of individual spores
nd their germination in physiological conditions. The first
dvantage is that the intensity of the original DIC image of an
ndividual dormant spore was proportional to that spore’s
ournal of Biomedical Optics 056010-
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CaDPA level. This conclusion was drawn from trapped spores
that had their long axes perpendicular to the focal plane, and
thus the phase gradients along any radial direction were
nearly the same, assuming that the spore’s CaDPA and other
components were distributed symmetrically along the radical
direction. This conclusion might not be appropriate for spores
adhered on a microscope coverslip on which spores are ori-
ented randomly, with different orientations resulting in differ-
ent DIC intensity. The orientation of a spore affects its optical
phase gradient along the shear axis of polarization and thus
affects the brightness of its DIC image �see Eq. �2��. As
shown in Fig. 4, the vertically orientated spores �e.g., spores
11 and 12� appeared as two parallel bright bars, and the hori-
zontally orientated spores �e.g., spores 7 and 18� appeared as
two bright spots with greater separation and less summed
pixel intensity. However, this does not prevent the application
of DIC microscopy for the observation of germination of in-
dividual spores on a coverslip, since kinetic parameters of
germinantion can still be determined from the relative
changes in the intensity of the DIC image. This is also the
reason why phase reconstruction is necessary to determine the
absolute phase of the spore during germination.

The second advantage of the combined system was to
show the precise correspondence of the rapid drop in the in-
tensities of the DIC images and the phase images to the
CaDPA release of that spore. Apparently, during the germina-
tion of single spores, the changes in the DIC image and the
phase image were highly correlated with changes in Raman
scattering at CaDPA-specific bands. This correspondence
makes it possible to monitor the germination kinetics of hun-
dreds of individual spores by quantitative DIC microscopy
alone, without the need for Raman spectroscopy that gener-
ally can only be used to monitor the germination of a single
spore.

The third advantage was that large numbers of individual
spores can be monitored simultaneously in an experiment.
When a motorized stage is used, the DIC images of thousands
of spores can be recorded rapidly, and these images can be
used to study the germination parameters of spores with very
low germination probability. In general, the number of detect-
able spores and the time resolution of image acquisition in our
system were limited by the speed of storing large image data
files onto a computer hard disk. This limitation could be over-
come by saving the image data onto a RAM disk or using a
high speed computer to calculate the DIC intensities in the
memory while acquiring the images and then discarding the
image data. With these modifications, it would then be pos-
sible to monitor up to �104 germinating spores simulta-
neously with a time resolution of the order of 10 sec by using
DIC microscopy and a motorized stage. In addition, since the
slow decreases in the intensities of the DIC image and the
reconstructed phase image are related to the events following
CaDPA release believed to be associated with the degradation
of the spore’s cortex,8 the kinetic parameters related to these
events also can be obtained from quantitative DIC micros-
copy.

The fourth advantage is that the computed pixel intensity
of a single spore’s DIC image over the whole cell region
�3�3 �m� is not sensitive to the drifts of the microscope
stage or the sample chamber in either the horizontal or verti-
cal direction. The tolerance of + /−1 �m for the drift in the
September/October 2010 � Vol. 15�5�7
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ertical direction lowers the requirement for the focus-locking
ystem and allows observation of spore germination over long
ime periods.

When quantitative DIC in combination with Raman spec-
roscopy was used to measure the dynamics during the germi-
ation of Bacillus spores, several results were observed. The
ermination of individual spores in a population is highly het-
rogeneous, with some spores germinating very rapidly and
ome extreme slowly, although the time required for the re-
ease of the majority of a spore’s CaDPA was nearly constant.
n addition, this heterogeneity is not the result of different
icroscopic physical or chemical environments during the

ermination. The results in this work further indicated that
ermination of spores with lower germinant concentrations
xhibited higher heterogeneity than spores germinating with
igh concentrations. Recent work has indicated that heat ac-
ivation and levels of nutrient germinant receptors also affect

release times, and has suggested that the numbers of func-
ional or activated nutrient germinant receptors per spore are
he major factor causing heterogeneity in spore
ermination.32,33

In summary, we develop a combined system of Raman
weezers and quantitative DIC microscopy. This system al-
ows the recording of time-lapse Raman spectra as well as
IC images of single bacterial spores either in an optical trap
r adhered on a coverslip during nutrient-triggered germina-
ion. The phase image of individual germinating spores can be
etrieved from the recorded DIC images. A motorized stage
nd a synchronized imaging acquisition system allow simul-
aneously monitoring of the germination of 2000 to 3000 in-
ividual spores for �2 h. The temporal resolution for DIC or
aman data acquisition from a single spore is 5 sec, and the

emporal resolution for acquisition of multiple full-field DIC
mages is 18 sec. This quantitative DIC microscopy has al-
eady proven to be a useful tool for the real-time observation
f the germination of hundreds or thousands of individual
pores in a population, and this technique should also be suit-
ble for the measurement of heterogeneity in spore inactiva-
ion by moist heat.26
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