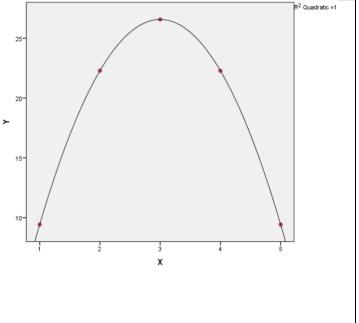

Linear *r* = 0. What Does That Mean?

Consider this small set of data:

눰 *Untitled1 [DataSet0] 🗖 🗖 💌				
<u>E E Vi D</u>	<u>F E Vi D</u> Trar Ana Direct Gra Uti Adc Wir H			
🔁 🗄 🖨 🛄 🗠 🛥 🦉				
Visible: 3 of 3 Variables				
	Х	Y		
1	1	9.428		
2	2	22.284		
3	3	26.568	3	
4	4	22.280		
5	5	9.420		
6	4			
Data View Variable View				
IBM SPSS Statistics Processor i				

Let's see how well they are correlated, using a linear model.


Model Summary				
Model	R	R Square	Adjusted R	Std. Error of
			Square	the Estimate
1	.000 ^a	.000	333	9.259

OK, I am going to try a quadratic model. In a quadratic model one predicts Y from both X and X^2 . Here are the results of such an analysis,

Model Summary				
Model	R	R Square	Adjusted R	Std. Error of
			Square	the Estimate
1	1.000 ^a	1.000	1.000	.000

Holy moly, the quadratic R = 1, a perfect
correlation, absolutely no error in prediction.25-The prediction equation is $\hat{Y} = -12 + 25.714X - 4.286X^2$. The *F* statistic20-testing the null that the population quadratic R = 0>has a value that is infinitely larger, leading to a p15-that is infinitely small.15-Take home message:Getting a value of rthat is very small (close to zero) does not10-necessarily mean that the variables are not related10-

Here is another example.

very highly related, just not in a linear fashion.

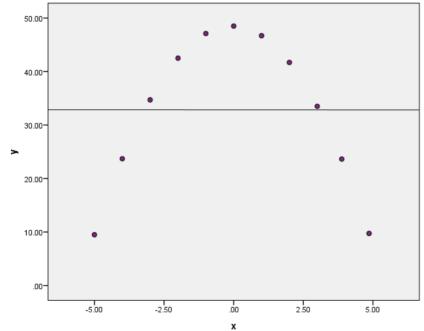
An *r* of zero indicates that there is no <u>linear</u> relationship between the two variables. There may, however, be a strong nonlinear relationship between the two variables. Consider <u>these data</u>:

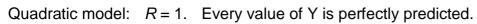
🦆 Quadratic.sav [DataSet1] - IBM SPSS Statistics 💻 💷 💌				
<u>Fil</u> <u>E</u> d <u>V</u> ie	<u>Dat Transfi A</u> na	aly Direct <u>M</u> ar (<u>G</u> rap <u>U</u> tiliti Add- <u>c</u>	<u>W</u> ind <u>H</u> el
			🖺 🕌 🗐	h
			Visible: 3 of 3	Variables
	Х	у	x2	vai
1	-5.00	9.50	25.00	
2	-4.00	23.70	16.00	
3	-3.00	34.70	9.00	
4	-2.00	42.50	4.00	
5	-1.00	47.10	1.00	
6	.00	48.50	.00	
7	1.00	46.70	1.00	
8	2.00	41.70	4.00	
9	3.00	33.50	9.00	
10	3.88	23.64	15.05	
11	4.86	9.74	23.62	
12	4			T
Data View Variable View				
IBM SPSS Statistics Processor is ready				

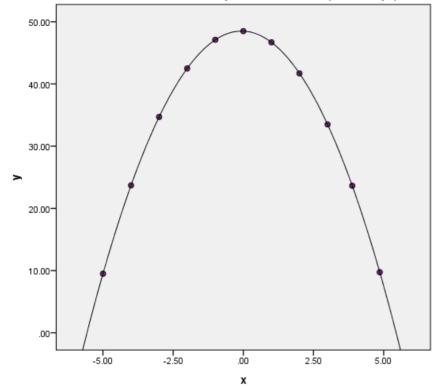
Model 1 is a linear model -Y = a + bX.

Model 2 is a nonlinear model - $Y = a + b_1 X + b_2 X^2$ -- a quadratic model.

Model


Summary		
Model R Square		
1	.000	
2	1.000	


Coefficients^a


Model		Unstandardized Coefficients	
		В	
1	(Constant)	32.843	
	х	003	
	(Constant)	48.500	
2	х	200	
	x2	-1.600	

a. Dependent Variable: y

Linear model: r = 0, for every value of X, predicted Y = the mean on Y

Karl L. Wuensch, 11-June-2014.