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An Introduction to Research Design© 
 

 

Bivariate Experimental Research 

 Let me start by sketching a simple picture of a basic bivariate (focus on two variables) 
research paradigm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 “IV” stands for “independent variable” (also called the “treatment”), “DV” for “dependent 
variable,” and “EV” for “extraneous variable.”  In experimental research we manipulate the IV and 
observe any resulting change in the DV.  Because we are manipulating it experimentally, the IV will 
probably assume only a very few values, maybe as few as two.  The DV may be categorical or may 
be continuous.  The EVs are variables other than the IV which may affect the DV.  To be able to 
detect the effect of the IV upon the DV, we must be able to control the EVs. 

 Consider the following experiment.  I go to each of 100 classrooms on campus.  At each, I flip 
a coin to determine whether I will assign the classroom to Group 1 (level 1 of the IV) or to Group 2.  
The classrooms are my “experimental units” or “subjects.”  In psychology, when our subjects are 
humans, we prefer to refer to them as “participants,” or “respondents,” but in statistics, the use of the 
word “subjects” is quite common, and I shall use it as a generic term for “experimental units.”  For 
subjects assigned to Group 1, I turn the room’s light switch off.  For Group 2 I turn it on.  My DV is the 
brightness of the room, as measured by a photographic light meter. EVs would include factors such 
as time of day, season of the year, weather outside, condition of the light bulbs in the room, etc. 

 Think of the effect of the IV on the DV as a signal you wish to detect.  EVs can make it difficult 
to detect the effect of the IV by contributing “noise” to the DV – that is, by producing variation in the 
DV that is not due to the IV.  Consider the following experiment.  A junior high school science student 
is conducting research on the effect of the size of a coin (dime versus silver dollar) on the height of 
the wave produced when the coin is tossed into a pool of water.  She goes to a public pool, installs a 
wave measuring device, and starts tossing coins.  In the pool at the time are a dozen rowdy 
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 2 
youngsters, jumping in and out and splashing, etc.  These youngsters’ activities are EVs, and the 
noise they produce would make it pretty hard to detect the effect of the size of the coin. 

 Sometimes an EV is “confounded” with the IV.  That is, it is entangled with the IV in such a 
way that you cannot separate the effect of the IV from that of the DV.  Consider the pool example 
again.  Suppose that the youngsters notice what the student is doing and conspire to confound her 
research.  Every time she throws the silver dollar in, they stay still.  But when she throws the dime in, 
they all cannonball in at the same time.  The student reports back remarkable results:  Dimes produce 
waves much higher than silver dollars. 

 Here is another example of a confound.  When I was a graduate student at ECU, one of my 
professors was conducting research on a new method of instruction.  He assigned one of his learning 
classes to be taught with method A.  This class met at 0800.  His other class was taught with method 
B.  This class met at 1000.  On examinations, the class taught with method B was superior.  Does 
that mean that method B is better than method A?  Perhaps not.  Perhaps the difference between the 
two classes was due to the time the class was taught rather than the method of instruction.  Maybe 
most students just learn better at 10 than at 8 – they certainly attend better at 8 than at 10.  Maybe 
the two groups of students were not equivalent prior to being taught differently.  Most students tend to 
avoid classes at 8.  Upperclassmen get to register before underclassmen.  Some people who hate 
classes at 8 are bright enough to learn how to avoid them, others not.  Campbell and Stanley (1963) 
wrote about the importance of “achieving pre-experimental equation of groups through 
randomization.”  Note that the students in the research described here were not randomly assigned to 
the treatments, and thus any post-treatment differences might have been contaminated by pre-
treatment differences. 

 

Nonexperimental Research 

 Much research in the behavioral sciences is not experimental (no variable is manipulated), but 
rather “observational”.  Some use the term “correlational” to describe such a design, but that 
nomenclature leads to confusion, so I suggest you avoid it.  Consider the following research.  I recruit 
participants in downtown Greenville one evening.  Each participant is asked whether or not e has 
been drinking alcohol that evening.  I test each participant on a reaction time task.  I find that those 
who report that they have been drinking have longer (slower) reaction times than those who were not 
drinking.  I may refer to the drinking status variable as my IV, but note that it was not manipulated.  In 
observational research like this, the variable that we think of as being a cause rather than an effect, 
especially if it is a grouping variable (has few values, as is generally case with the IV in experimental 
research), is often referred to as the IV.  Also, a variable that is measured earlier in time is more likely 
to be called an IV than one measured later in time, since causes precede effects. 

 It is important, however, that you recognize that this design is observational, not experimental.  
With observational research like this, the results may suggest a causal relationship, but there are 
always alternative explanations.  For example, there may be a “third variable” involved here.  Maybe 
some people are, for whatever reason, mentally dull, while other people are bright.  Maybe mental 
dullness tends to cause people to consume alcohol, and, independently of such consumption, to have 
slow reaction times.  If that were the case, the observed relationship between drinking status and 
reaction time would be explained by the relationship between the third variable and the other 
variables, without any direct casual relationship between drinking alcohol and reaction time. 

 For my drinking research, I could do the statistical analysis with a method often thought of as 
being associated with experimental research, like a t test or an ANOVA, or with a method thought of 
as being associated with observational research, a correlation analysis.  With the former analysis, I 
would compute t or F, test the null hypothesis that the two populations (drinkers and nondrinkers) 
have identical mean reaction times, and obtain a p, which, if low enough, would cause me to 
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conclude that those two populations have different reaction times.  With the latter analysis I would 
compute Pearson r (which is called a point biserial r when computed between a dichotomous variable 
and a continuous variable).  To test the null hypothesis that there is, in the population, zero 
correlation between drinking status and reaction time, I would convert that r to a t and then to a p.  If 
the p were sufficiently low, I would conclude that there is an association between drinking and 
reaction time.  The value of t and of p would be exactly the same for these two analyses, because t 
tests and ANOVA are, quite simply, just special cases of correlation or multiple correlation analysis.  
Whether you can make a causal attribution or not depends not on the type of analysis done, but on 
how the data were collected (experimentally with adequate EV control or not).  Some psychologists 
mistakenly think that one can never make firm causal inferences on the basis of a correlation analysis 
but that one always can on the basis of a t test or an ANOVA.  These researchers have confused the 
“correlational” (better called “observational”) research design with the correlation analysis.  This is 
why I discourage the use of the term “correlational” when referring to a research design. 

 Do note that the drinking research could have been done experimentally.  We could randomly 
assign participants to drink or not, administer the treatments, and then test their reaction time.  Again, 
I could do the analysis via a t test or a Pearson r, and again the resulting p value would be identical 
regardless of statistical method.  In this case, if I get a significant correlation between drinking and 
reaction time, I can conclude that drinking causes altered reaction time.  In a nutshell, the 
demonstration of a correlation between variables X and Y is necessary, but not sufficient, to establish 
a causal relationship between X and Y.  To establish the causal relationship, you have to rule out 
alternative explanations for the observed correlation. 

 Let me give you another example of a third variable problem.  Observational research has 
demonstrated an association between smoking tobacco and developing a variety of health problems.  
One might argue that this association is due to a third variable rather than any causal relationship 
between smoking and ill health.  Suppose that there is a constellation of third variables, think of them 
as genetic or personality variables, that cause some people to smoke, and, whether or not they 
smoke, also cause them to develop health problems.  These two effects of the third variable could 
cause the observed associated between smoking and ill health in the absence of any direct causal 
relationship between smoking and ill health. 

 
 
 
 
 
 

  ----------------------  
 
 
 

 How can one rule out such an explanation?  It is not feasible to conduct the required 
experimental research on humans (randomly assigning newborns to be raised as smokers or 
nonsmokers), but such research has been done on rats.  Rats exposed to tobacco smoke develop 
the same sort of health problems that are associated with smoking in humans.  So the tobacco 
institute has promised not to market tobacco products to rats.  By the way, there has been reported 
an interesting problem with the rats used in such research.  When confined to a chamber into which 
tobacco smoke is pumped, some of them take their fecal boluses and stuff them into the vent from 
which the smoke is coming. 
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 Side note.  Researchers investigating the effects of cigarette smoke on rodents have 
encountered a problem – many of the subject respond “by placing feces in the smoke delivery tubing, 
repeatedly and in quantity.  See Silverman’s report on this phenomenon. 

 Another example of a third variable problem concerns the air traffic controllers strike that took 
place when Reagan was president.  The controllers contended that the high stress of working in an 
air traffic control tower caused a variety of health problems known to be associated with stress.  It is 
true that those working in that profession had higher incidences of such problems than did those in 
most other professions.  The strikers wanted improved health benefits and working conditions to help 
with these stress related problems -- but the government alleged that it was not the job that caused 
the health problems, it was a constellation of third variables (personality/genetic) that on the one hand 
caused persons of a certain disposition (Type A folks, perfectionists) to be attracted to the air traffic 
controllers profession, and that same constellation of third variables caused persons with such a 
disposition to have these health problems, whether or not they worked in an air traffic control tower.  
One FAA official went so far as to say that working in an air traffic control tower is no more stressful 
than driving the beltway around DC.  Personally, I find such driving very stressful.  The government 
won, the union was busted.  I suppose they could solve the problem by hiring as air traffic controllers 
only folks with a different disposition (Type B, lay back, what me worry, so what if those two little blips 
on the screen on headed towards one another). 

 

Internal Validity 

 Donald T. Campbell and Julian C. Stanley used the term “internal validity” to refer to the 
degree to which the research design allows one to determine whether or not the experimental 
treatments, as applied in a particular piece of research, with a particular group of subjects, affected 
the dependent variable, as measured in that research.  They listed a dozen types of threats to internal 
validity.  Here I give you a definition and an example for each type of threat. 

 History.  The problem presents itself when events other than the experimental treatment occur 
between pretest and posttest.  Without a control group, these other events will be confounded with 
the experimental treatment.  Suppose that you are using a one-group pretest-posttest design:  You 
make an observation at time 1, administer a treatment, and then make an observation at time 2.  
Extraneous events between time 1 and time 2 may confound your comparison.  Suppose that your 
treatment is an educational campaign directed at the residents of some community.  It is designed to 
teach the residents the importance of conserving energy and how to do so.  The treatment period 
lasts three months.  You measure your subjects’ energy consumption for a one month period before 
the treatment and a one month period after the treatment.  Although their energy consumption goes 
way down after the treatment, you are confounded, because international events that took place 
shortly after the pre-testing caused the price of energy to go up 50%.  Is the reduction in energy 
consumption due to your treatment or to the increased price of energy? 

 Maturation.  This threat involves processes that cause your subjects to change across time, 
independent of the existence of any special events (including your experimental treatment).  In the 
one-group pretest-posttest design, these changes may be mistaken for the effect of the treatment.  
For example, suppose that you wish to evaluate the effect of a new program on employees’ morale.  
You measure the morale of a group of newly hired employees, administer the treatment across a six 
month period, and then measure their morale again.  To your dismay, you find that their morale has 
gone down.  Was your treatment a failure, or did the drop in morale just reflect a common change that 
takes place across the first several months in a new job – you know, at first you think this is going to 
be a great job, and then after a while you find that it just as boring as all those other jobs you have 
had. 

http://core.ecu.edu/psyc/wuenschk/docs30/Rodent-Defence.htm
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 Testing.  The problem here is that pretesting subjects can change them.  Suppose you are 
still trying to get people to conserve energy and other resources.  You give them a pretest which asks 
them whether or not they practice a number of conservation behaviors (things like using low flow 
toilets, lowering the thermostat in the water heater, recycling, etc.).  The treatment is completion of a 
two week course module in environmental biology.  The module includes information on how our 
planet is being adversely affected by our modern lifestyle.  After the treatment, subjects are asked 
again about their conservation behaviors.  You find that the frequency of conservation behaviors has 
increased.  Did it increase because of your treatment, or just because of the pretest?  Perhaps the 
pretest functioned to inform the subjects of several things they could do to conserve, and, so 
informed, they would have started doing those things whether or not they were exposed to the 
treatment. 

Instrumentation.  During the course of an experiment, the instrument used to measure the DV 
may change, and these changes may be mistaken for a treatment effect.  Suppose we are going 
fishing, and want to see if we get bigger fish in the morning or the afternoon.  On the way we stop to 
get bait, beer, and a scale to weigh the fish.  If we buy the expensive scale, we can’t afford the beer, 
so we get the $1.99 cheapo scale – it has a poorly made spring with a hook on it, and the heavier the 
fish, the more the spring stretches, pointing to a higher measurement.  Each time you stretch this 
cheap spring, it stretches a bit further, and that makes the apparent weight of the fish we catch in the 
afternoon larger than those we caught in the morning, due to instrumentation error.  Often the 
“instrument” is a human observer.  For example, you have trained computer lab assistants to find and 
count the number of unauthorized installations of software on lab computers, and then remove them.  
You establish a treatment that is intended to stop users of the lab from installing unauthorized 
software.  Your dependent variable is the number of unauthorized installations found and the amount 
of time it takes to repair the damage done by such installations.  Both the number and the time go 
down, but is that due to the treatment, or are your assistants just getting bored with the task and 
missing many unauthorized installations, or getting better at repairing them and thus taking less time? 

 Statistical regression.  If you have scores which contain a “random” error component, and 
you retest subjects who had very high or very low scores, you expect them to score closer to the 
mean upon retesting.  Such regression towards the mean might be mistaken for a treatment effect if 
only subjects with very high (or very low) scores on a pretest were given the treatment.  Consider this 
demonstration.  You have a class of 50 students.  You tell them you are giving an ESP test.  You 
have a ten item True-False quiz in the right hand drawer of your desk, but you are not going to pass it 
out.  Instead, they must try to use special powers to read that quiz.  You give them two minutes to 
record their answers.  Then you give them an answer key and they score their quizzes.  Clearly this 
measurement has a high (100%) random error component.  In a class of 50, a couple of students will, 
by chance, have pretty high scores.  Identify them and congratulate them on their fantastic ESP.  
Almost certainly a couple will have very low scores too.  Identify them and tell them that you can help 
them get some ESP power, if only the two high scorers will cooperate.  Say that you have the ability 
to transfer ESP power from one person to another.  Put your hands on the heads of the high scorers, 
quiver a bit and mumble something mysterious, and then do the same on the heads of the low 
scorers.  Now you are ready to give the posttest, but only to those given this special treatment.  In all 
probability, those who had the very high scores will score lower on the posttest (see, you did take 
some of their ESP ability) while those who had very low scores will show some gain. 

 Years ago, while in the bookstore at Miami University, I overhead a professor of education 
explaining to a student how intelligence is not a stable characteristic.  He explained how he had 
chosen a group of students who had tested low on IQ, given them a special educational treatment, 
and then retested them.  They got smarter, as evidenced by increased posttest scores.  I bit my 
tongue.  Then he went on to explain that such educational interventions must be tailored to the 
audience.  He said that he had tried the same educational intervention on a group of students who 
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had scored very high on the IQ pretest, and, surprise of surprises, they got less intelligent, as 
indicated by their lower scores on the posttest.  I could not help myself.  The phrase “regression to 
the mean” leaped out of my mouth, to the great displeasure of the professor. 

 Selection.  The problem here is that comparison groups are selected, or subjects are selected 
into comparison groups, in such a way that they might have been different on the criterion variable 
prior to the one group having received some special treatment that the other group did not receive.  
Campbell and Stanley discussed this threat with respect to what they called the static-group 
comparison design, in which the researcher finds two existing groups, one which has experienced 
some special treatment and another which has not.  The two existing groups are then measured on 
some characteristic and if they are found to differ on that characteristic then it is inferred that the 
special treatment in the one group caused the observed difference in the measured characteristic.  
Since no pretest is given, we have no way of knowing whether or not the two groups were equivalent 
prior to the one group having experienced the special treatment. 

 This problem may exist with any design where subjects are selected into the comparison 
groups in such a way that they are already different before the treatment is applied to the 
experimental group -- in which case any difference between the groups after the treatment may be 
due to that initial difference between the groups rather than due to the treatment.  For example, you 
wish to evaluate the effectiveness of a tutorial program.  You announce that it is available on the 
computers in the lab and that it covers the material on which the students will be tested on the next 
exam.  You note who uses the tutorial and who does not.  After the next exam, you compare these 
two groups’ performance on that exam.  If the tutorial group does not do as well as the control group, 
does that mean the tutorial is just a failure, or might it be that students who were having difficulty 
selected themselves into the tutorial program, and did do better than they would have otherwise, but 
still not as well as those who had no need to do the tutorial and skipped it.  If the tutorial group does 
better than the controls, does that mean the tutorial was effective, or might it be that only the highly 
motivated students bothered with the tutorial, and they would have done better than the unmotivated 
students tutorial or no tutorial. 

 Differential mortality.  This involves the loss of subjects in a way that results in the subjects 
remaining in the one group being different than the subjects remaining in the other group  Sometimes 
the apparent effect of an experimental treatment is simply due to its effectiveness in causing attrition 
of some types of subjects and not others.  For example, suppose you are comparing two programs 
designed to produce weight loss.  Program A subjects come in to a group meeting once a week and 
stand on a scale.  If the subject has not lost at least two pounds since the last week, she is forced to 
do 50 pushups, while the rest of the class shouts derogatory comments at her.  Program B also has a 
weekly weigh in, but in that program, subjects who are not loosing weight are given more positive 
encouragement to keep at it.  Both programs start out with 50 participants.  After two months, 10 
participants remain in Program A, and their mean weight loss is 21 pounds, while in Program B, 40 
participants remain, but mean weight loss is 5 pounds.  Is A the more effective program, or was it just 
more effective at chasing off those who were unable or unwilling to loose weight? 

 Selection x (Maturation, History, Instrumentation) interaction.  Here the effect of 
maturation, history, or instrumentation is not the same in the one comparison group as in the other.  
Suppose that you are comparing the effectiveness of one educational program with another.  The 
experimental program is being used at Suburban High, the traditional program at Central High.  The 
DV is scores on an achievement test. 



 7 

 
It is clear that the pre to post gain at Suburban is greater than at Central, but is that because of the 
special program at Suburban, or might it be due to a Selection x Maturation interaction.  That is, 
might the students at Suburban be maturing (intellectually) at a rate faster than those at Central, in 
which case they would have made greater gains at Suburban than at Central regardless of any 
special treatment?  Alternatively, our results might be due to a Selection x History interaction, 
where the effect of events occurring between pretest and posttest is different for the one group than 
for the other group.  For example, there might have been a teacher’s strike and a student riot at 
Central, while Suburban had a quiet year. 
 
 Suppose the results came out differently, as plotted below: 

 
Here it appears that the students at Central made greater gains than those at Suburban --  but this 
apparent result might be due to a Selection x Instrumentation interaction, in which the 
characteristics of the instrument are different for the one group than for the other group.  In this case, 
it appears that the achievement test is not adequate for testing the students at Suburban.  These 
students are already making close to the maximum score on the test at the beginning of the school 
year.  On that test, there is no room for improvement.  They may well have learned a lot during the 
school year, but the test did not detect it.  This is called a ceiling effect. 
 

External Validity 

 Campbell and Stanley used the term “external validity” when referring to the extent to which 
the results generalize beyond the specifics of the experimental situation.  Would you get the same 
results if you used different subjects, if you manipulated the IV in a different way, if you measured the 
DV in a different way, if the setting were different, etc.?  Campbell and Stanley discussed four threats 
to external validity. 

 Testing x Treatment interaction.  This is a problem in the pretest-posttest control group 
design.  This design simply adds to the one group pretest-posttest design a control group which does 
not receive the experimental treatment between pretest and posttest.  Ideally, subjects are randomly 
assigned to the two comparison groups so that we do not have to worry about selection.  Adding the 
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Central

Suburban

Central
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control group eliminates all threats to internal validity, but we are left wondering whether or not the 
effect of the treatment would be the same in subjects who were not pretested.  If this is of concern to 
you, you could use the Solomon four group design (to be discussed later), or you could just get rid of 
the pretest and do a posttest only control group design (which might reduce your statistical power, 
that is, the probability that you will be able to detect an effect of the experimental treatment). 

 Selection x Treatment interaction.  Does the effect of your treatment interact with 
characteristics of the experimental units?  That is, do your results generalize from the type of subjects 
you used in your research to other types of subjects?  Very often subjects are college students.  For 
some treatments and some DVs, it is probably reasonable to assume generalization to most humans, 
but for others it may well not be safe to assume such generalization. 

 Reactive effects of experimental arrangements.  It is difficult if not impossible to observe 
with affecting that which is observed.  Can you generalize the results found with observed subjects to 
subjects who are not being observed? 

 Multiple treatment interference.  In some types of research, subjects are used in many 
different experiments.  For example, monkeys used in medical research are not just discarded after 
completing one experiment, they are used for additional experiments later.  Also, in the psychology 
lab, if the human subject has to undergo extensive training before serving as a subject in the type of 
research done in that lab, there are economic benefits to recruiting that subject to serve in additional 
studies for which that same training would be needed.  The question is, do the results found with 
subjects who have been used in all these different experiments generalize to individuals that do not 
have such multiple treatment experience. 

 

Common Research Designs 

 I shall sketch out common research designs using notation similar, but not identical, to that 
employed by Campbell and Stanley.  Oi will stand for the observation of the criterion (dependent) 
variable at time i.  X will stand for the presence of the experimental treatment.  If we have two groups, 
the symbols representing the chain of events for the experimental group will be on a line above that 
for the control group (the group that does not receive the experimental treatment -- of course, you 
should recognize that our two groups may not include a “control” group but might rather be two 
groups that have received different experimental treatments -- also, we could have more than two 
comparison groups).  If the lines are separated by + signs, then subjects were assigned to the two 
comparisons groups randomly (or in another fashion that should result in them being equivalent prior 
to any special treatment).  If the lines are separated by ? marks, then subjects were assigned to 
comparison groups in a way that could have resulted in the groups being nonequivalent even in the 
absence of the X treatment.  

 One-Shot Case Study.  Campbell and Stanley classified this design as “pre-
experimental.”  No variable is manipulated.  The researchers simply find some group 
of subjects who have experienced event X and then measure them on some criterion variable.  The 
researcher then tries to related X to O.  My kids were in the public schools here when a terrible 
tornado ripped through the county just south of our house.  After the tornado left, psycho-researchers 
descended on the schools, conducting research to determine the effects of the tornado on the 
children’s mental health.  Of course, they had no pretest data on these children.  Without a 
comparison group, observations like this are of little value.  One might suppose that there is an 
implicit comparison group, such as that provided by “norms” on the measuring instrument, but how do 
we know whether or not our subjects already differed from the “norms” prior to experiencing the X? 

 One Group Pretest-Posttest Design.  Campbell and Stanley called 
this a “pre-experimental” design, but I consider it to be experimental (since 
the X is experimentally manipulated), but with potentially serious problems 

 X   O

  

 O1   X   O2 
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which we have already discussed:  History, maturation, testing, instrumentation, and possibly 
regression.  If we have contrived ways to control these threats (which might be possible under if our 
subjects are inanimate objects whose environments we control completely, as we might imagine 
things are in the physics or chemistry laboratory), then this design could be OK.  Statistically, the 
comparison between means on O1 and O2 could be made with correlated samples t or a 
nonparametric equivalent. 

 Static Group Comparison.  We discussed this design earlier.  As noted by 
Campbell and Stanley, it is “pre-experimental” in that the researcher does not 
manipulate the X, but rather simply finds one group which has already 
experienced the X and compares that group to another group that has not 
experienced the X.   Independent samples t or a nonparametric equivalent could 
be employed to compare the two groups’ means.  

 

 Pretest-Posttest Control Group Design.   Here we have added a 
control group to the one-group pretest-posttest design.  If we can assume that 
both groups experienced the same history between observations (that is, 
there is no selection by history interaction), then history is controlled in the 
sense that it should affect the O1 to O2 difference identically in the two groups. Likewise, maturation, 
testing, instrumentation, and regression are controlled  in the sense of having the same effects in 
both groups.  Selection and selection by maturation interaction are controlled by assigning subjects to 
the two groups in a way (such as random assignment) that makes us confident that they were 
equivalent prior to experimental treatment (and will mature at equivalent rates).  Unless we are foolish 
enough to employ different measuring instruments for the two groups, selection by instrumentation 
interaction should not be a problem.  Of course, testing by treatment interaction is a threat to the 
external validity of this design. 

 Statistically, one can compare the two groups’ pretest means (independent t or nonparametric 
equivalent) to reassure oneself (hopefully) that the assignment technique did produce equivalent 
groups -- sometimes one gets an unpleasant surprise here.  For example, when I took experimental 
psychology at Elmira College, our professor divided us (randomly, he thought) by the first letter of our 
last name, putting those with letters in the first half of the alphabet into one group, the others in the 
other group.  Each subject was given a pretest of knowledge of ANOVA.  Then all were given a 
lesson on ANOVA.  Those in the one group were taught with one method, those in the other group by 
a different method.  Then we were tested again on ANOVA.  The professor was showing us how to 
analyze these data with a factorial ANOVA when I, to his great dismay, demonstrated to him that the 
two groups differed significantly on the pretest scores.  Why?  We can only speculate, but during 
class discussion we discovered that most of those in the one group had taken statistics more recently 
than those in the other group -- apparently at Elmira course registration requests were processed in 
alphabetical order, so those with names in the first half of the alphabet got to take the stats course 
earlier, while those who have suffered alphabetical discrimination all of their lives were closed out of it 
and had to wait until the next semester to take the stats course -- but having just finished it prior to 
starting the experimental class (which was taught only once a year), ANOVA was fresh in the minds 
of those of us at the end of the alphabet. 

 One can analyze data from this design with a factorial ANOVA (time being a within-subjects 
factor, group being a between-subjects factor), like my experimental professor did, in which case the 
primary interest is in the statistical interaction -- did the difference in groups change across time (after 
the treatment), or, from another perspective, was the change across time different in the two groups.  
The interaction analysis is absolutely equivalent to the analysis that would be obtained were one 
simply to compute a difference score for each subject (posttest score minus pretest score) and then 
use an independent samples t to compare the two groups’ means on those difference scores.   An 

  X   O1 

  ???????

      O1 

  O1  X  O2 

  ++++++++ 

  O1     O2 
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alternative analysis is a one-way Analysis of Covariance, employing the pretest scores as a 
covariate and the posttest scores as the criterion variable -- that is, do the groups differ on the 
posttest scores after we have removed from them any effect of the pretest scores.  All three of these 
analyses (factorial ANOVA, t on difference scores, ANCOV) should be more powerful than simply 
comparing the posttest means with t. 

 One interesting modification of the Pretest-Posttest Control Group Design is the Wait-List 
Control Group Design.  This is especially useful when the experimental treatment should be of 
value to all subjects. 

 Kate Cutitta proposed research evaluating the effectiveness of a intervention designed to 
reduce anxiety and depression and increase physical activity in children who have received 
implantable cardioverter defibrillators.  Her basic research design is a modification of the basic 
Pretest-Posttest Control Group Design. 
 

Intervention (X) Pre (no X) Post (X) Followup (X) Followup 2 Followup 3 

Waitlist Control 
Time 1 (no 

X) 
Time 2 (no X) Time 3 (no X) Post X Followup 

 
 All subjects get the treatment, but a randomly selected half (the wait-list control group) get it 
after the other group.  This provides good control for the major threats to the internal validity of the 
one-group pretest-posttest design:  History, maturation, testing, and instrumentation.  Campbell and 
Stanley considered the one-group pretest-posttest to be of such little value that they classified it as 
“pre-experimental.” 
 After her proposal had been tied up in the IRB approval process for seven months, Kate 
received an email from “<Alfred E. Neuman>, MPH, IRB Administrator.  In this letter Mr. <Neuman> 
expressed reservations about the use of the wait-list control group, which he suggested was a not 
necessary part of the research design – “I feel like the Committee will ask what the purpose is of 
randomizing and delaying the intervention for half of the participants.  It is not necessarily a research 
ethics question, more of a study design one.” 
 Apparently getting a master’s degree in public health does not involve any instruction in basic 
research methods. 
 Donald T. Campbell and Julian C. Stanley are turning over in their graves. 

 

 Posttest Only Control Group Design.  Here we simply assign subjects to 
groups in a way that should assure pretreatment equivalence, don’t bother with a 
pretest, administer the treatment to the one group, and then measure the criterion 
variable.  With respect to controlling the previously discussed threats to internal and 
external validity, this design is the strongest of all I have presented so far.  However, 
this design usually is less powerful than designs that include a pretest-posttest comparison.  That is, 
compared to designs that employ within-subjects comparisons, this design has a higher probability of 
a Type II error, failing to detect the effect of the treatment variable (failing to reject the null hypothesis 
of no effect) when that variable really does have an effect.  Accordingly, it is appropriate to refer to 
this threat to internal validity as statistical conclusion validity.  One can increase the statistical 
power of this design by converting extraneous variables to covariates or additional factors in a 
factorial ANOVA, as briefly discussed later in this document (and not-so-briefly discussed later in this 
course).  While it is theoretically possible to make another type of error that would threaten statistical 
conclusion validity, the Type I error, in which one concludes that the treatment has an effect when in 
fact it does not (a Type I error), it is my opinion that the Type II error is the error about which we 

  X  O 

  ++++ 

     O 

 

 

http://moodle.technion.ac.il/pluginfile.php/367640/mod_resource/content/1/Donald_T._%28Donald_T._Campbell%29_Campbell,_Julian_Stanley-Experimental_and_Quasi-Experimental_Designs_for_Research-Wadsworth_Publishing%281963%29%20%281%29.pdf
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should be more concerned, since it is much more likely to occur than a Type I error, given current 
conventions associated with conducting statistical analysis. 

 

 Solomon Four Group Design.  This design is a combination of the 
pretest-posttest control group design and the posttest only control group 
design.  It is as good at controlling threats to internal and external validity 
as the posttest only control group design, but superior to that design with 
respect to statistical conclusion validity.  However, it gains that advantage 
at the cost of considerably greater expense and effort in the collection and 
analysis of the data.   

 To test the hypothesis of no testing by treatment interaction, one 
could arrange all four groups’ posttest scores into a 2 x 2 factorial ANOVA design, (pretested or not) 
X (given the experimental treatment or not).  A significant interaction would indicate that the simple 
main effect of the treatment among those that were pretested was not the same as the simple main 
effect of the treatment among those that were not pretested.  The main effect of pretesting and the 
main effect of the treatment could also be assessed with such an ANOVA.  If there existed a 
significant testing by treatment interaction, one could test the simple main effect of the treatment for 
the pretested subjects and for the not pretested subjects.  One might also want to analyze the data 
from the pretest-posttest control group part of the design with those techniques which are appropriate 
for such a design (such as ANCOV on the posttest scores using pretest scores as a covariate). 

 

Treatment effect but no testing or Testing x Treatment interaction 

 

 

(Pretest Means in Parentheses) 

 

 Look at the marginal means for Treatment, 10 and 30.  This shows a main effect of 20 points 
for the treatment.  Now look at the marginal means for Pre-testing, 20 and 20.  Since these marginal 
means are identical, the overall effect of pretesting is nil.  Now look at the cell means.  In the subjects 
not pretested the treated subjects scored 20 points higher than the control subjects.  That is, the 
simple main effect (aka conditional main effect) of the treatment is 20 points for subjects not 
pretested.  Now look at the cell means for those who were pretested.  The treatment group scored 20 
points higher than did the control group.  Since the effect of the treatment is identical for the two 
pretesting groups, there is no Testing x Treatment interaction. 

  

  O1   X   O2 

  +++++++++++ 

  O1       O2 

  +++++++++++ 

       X   O2 

  +++++++++++ 

           O2 
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Treatment and testing effects but no Testing x Treatment interaction. 

 

 Treatment   

Pre-tested none X  marginal 

no 10 30  20 

yes 20 (10) 40 (10)  30 

marginal 15 35  25 

 
 

 Look at the marginal means for Treatment, 15 and 35.  This shows a main effect of 20 points 
for the treatment.  Now look at the marginal means for Pre-testing, 20 and3 0.  This shows a main 
effect of Pretesting.  Subjects who were pretested scored 10 points higher than those who did not.  
Now look at the cell means.  In the subjects not pretested the treated subjects scored 20 points 
higher than the control subjects.  That is, the simple main effect (aka conditional main effect) of the 
treatment is 20 points for subjects not pretested.  Now look at the cell means for those who were 
pretested.  The treatment group scored 20 points higher than did the control group.  Since the effect 
of the treatment is identical for the two pretesting groups, there is no Testing x Treatment interaction. 

 

Treatment and testing effects and a Testing x Treatment interaction. 

 

 Treatment   

Pre-tested none X  marginal 

no 10 30  20 

yes 20 (10) 60 (10)  40 

marginal 15 45  30 

 
 

 The marginal means show a 30 point treatment effect and a 20 polnt testing effect.  Look at the 
cell means.  For subjects not pretested the treatment group scored 20 points higher than the control 
group.  For subjects that were pretested the treatment group scored 40 points higher than the control 
group.  When the effect on Y of variable A on Y differs across levels of variable B. we say that A and 
B interact (or, that variable B moderates the effect of variable A).  There is a Treatment x Pretesting 
interaction here.  The effect of the treatment is not the same for pretested subjects as it is for those 
not pretested. 

 

Independent Samples and Correlated Samples Designs 

 

 With the independent samples design cases are assigned to groups in a way that should not 
create any correlation between the scores in any one group and the scores in any other group.  Such 
designs are also called between subjects designs. 
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 With the correlated samples design cases are assigned to groups in a way that should 
produce a positive correlation between the scores in any one group and the scores in any other 
group. 

 

 One example of a correlated samples design is the randomized blocks design.  Suppose 
that you have three experimental treatments to evaluate.  You also have one or more blocking 
variables.  A blocking variable is a variable that you have good reason to believe is positively 
correlated with the dependent variable.  You match the subjects up in blocks of three, such that within 
each block the subjects are nearly identical on the blocking variable(s).  Then you randomly assign, 
within each block, one case to Treatment 1, another to Treatment 2, and another to Treatment 3.  If 
there were only two treatments, then there would be only two cases in each block, and the design 
could be described as matched pairs. 

 

 A special case of the randomized blocks design is when you match the subjects up on 
themselves.  That is, each subject serves in each experimental condition.  This design is called the 
repeated measures or within subjects design.  With this design it is important to counterbalance 
the order in which the treatments are presented to control for order effects. 

 

 You may also run across the term “completely randomized design.”  This refers to a design 
where you have randomly selected cases from the population of interest and then randomly assigned 
them to experimental treatments. 

 

 If the matching variable(s) are well correlated with the 
dependent variable, the correlated sample design will have 
more power than an independent sample design with the 
same number of scores.  Suppose that I have three 
experimental treatments, A, B, and C.  I randomly assign six 
cases to each experimental treatment.  The one-way 
independent samples ANOVA would be an appropriate 
analysis, given normality and homogeneity of variance.  Here 
are the contrived data: 

 

 

 

 Here are the results of a one-way independent samples ANOVA on these data: 
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Descriptives 

Score   

 N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 

1 6 4.00 1.414 .577 2.52 5.48 2 6 

2 6 5.00 1.414 .577 3.52 6.48 3 7 

3 6 5.17 1.472 .601 3.62 6.71 3 7 

Total 18 4.72 1.447 .341 4.00 5.44 2 7 
 

ANOVA 

Score   

 

Sum of 

Squares df Mean Square F Sig. 

Between Groups 4.778 2 2.389 1.162 .339 

Within Groups 30.833 15 2.056   

Total 35.611 17    

 

 Oh crap, not significant.  
Suppose we had conducted a 
randomized blocks design with 
good correlations between the 
scores in any one group and those 
in any other group.  Here I have 
reordered the scores within each 
condition to produce such 
correlations. 

 

 

 

 Here is the analysis with a correlated samples ANOVA: 
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Correlations 

 A B C 

A Pearson 

Correlation 

1 .900* .673 

B Pearson 

Correlation 

.900* 1 .769 

C Pearson 

Correlation 

.673 .769 1 

 

 Notice the good correlation between scores in any one group and any other group. 

 

Descriptive Statistics 

 N Minimum Maximum Mean 

Std. 

Deviation 

A 6 2 6 4.00 1.414 

B 6 3 7 5.00 1.414 

C 6 3 7 5.17 1.472 

 

 Same means and standard deviations as before. 

 

Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Treatment 4.778 2 2.389 5.244 .028 

Error(Treatment) 4.556 10 .456   

 

 Hot dog, the conditions now differ significantly. 

 

Extraneous Variable Control 

 Controlling extraneous variables is important in terms of eliminating confounds and reducing 
noise.  Here I identify five methods of controlling extraneous variables. 

 Constancy.  Here you hold the value of an extraneous variable constant across all subjects.  If 
the EV is not variable, it cannot contribute to the variance in the DV.  For example, you could choose 
to use only female subjects in your research, eliminating any variance in the DV that could be 
attributable to gender.  Do keep in mind that while such noise reduction will increase the statistical 
“power” of your analysis (the ability to detect an effect of the IV, even if that effect is not large), it 
comes at a potential cost of external validity.  If your subjects are all female, you remain uncertain 
whether or not your results generalize to male individuals. 

 Balancing.  Here you assign subjects to treatment groups in such a way that the distribution of 
the EV is the same in each group.  For example, if 60% of the subjects in the experimental group are 
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female, then you make sure that 60% of the subjects in the control group are female.  While this will 
not reduce noise and enhance power, it will prevent the EV from being confounded with the IV. 

 Randomization.  If you randomly assign subjects to treatment groups, they should be 
balanced on subject characteristics (those EVs that subjects bring to the experiment with 
themselves). 

 Matching.  Here we are talking about the research design commonly know as the 
randomized blocks design.  On one or more EVs, thought to be well correlated with the DV, we 
match subjects up in blocks of k, where k is the number of treatment groups.  Within each block, the 
subjects are identical or nearly identical on the matching variable(s).  Within each block, one subject 
is (randomly) assigned to each treatment group.  This will, of course, balance the distribution of the 
EV across groups, but it will also allow a statistical analysis which removes from the DV the effect of 
the matching variable, reducing noise and increasing power. 

 Statistical control.  Suppose you were going to evaluate the effectiveness of three different 
methods of teaching young children the alphabet.  To enhance power, you wish to use a randomized 
blocks design.  You administer to every potential subject a test of readiness to learn the alphabet, 
and then you match (block) subjects on that variable.  Next you randomly assign them (within each 
block) to groups.  In your statistical analysis, the effect of the matching/blocking variable is taken 
out of what would otherwise be “error variance” in your statistical model.  Such error variance is 
generally the denominator of the ratio that you use as the test statistic for a test of statistical 
significance, and the numerator of that ratio is generally a measure of the apparent magnitude of the 
treatment effect.  Lets look at that ratio. 

noise

effect  treatment
statistic  Test = , for example, 

difference  of  error  standard

means  between  difference
=t , or 

variance error

variance  groups  among
=F . 

 

 Look at this pie chart, in which I have partitioned the total variance in the DV into variance due 
to the treatment, due to the blocking variable, and due to everything else (error).  If we had just 
ignored the blocking variable, rather than controlling it by using the randomized blocks design, the 
variance identified as due to blocks would be included in the error variance.  Look back at the test 
statistic ratio.  Since error variance is in the denominator, removing some of it makes the absolute 
value of the test statistic greater, giving you more power (a greater probability of obtaining a 
significant result). 

 Another statistical way to reduce noise and increase power is to have available for every 
subject data on one or more covariate.  Each covariate should be an extraneous variable which is 
well correlated with the dependent variable.  We can then use an ANCOV (analysis of covariance) 
to remove from the error term that variance due to the covariate (just like the randomized blocks 

, Error, 30, 
30%

, 
Treatment, 

40, 40%

, Blocks, 
30, 30%

Error

Treatment

Blocks
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analysis does), but we don’t need to do the blocking and random assignment within blocks.  This 
analysis is most straightforward when we are using it along with random assignment of subjects to 
groups, rather than trying to use ANCOV to “unconfound”  a static-group design (more on this later in 
the semester). 

 If the EV you wish to control is a categorical variable, one method to remove its effect from the 
error variance is just to designate the EV as being an IV in a factorial ANOVA.  More on this later in 
the semester. 

 Some of you have already studied “repeated measures” or “within subjects” designs, where 
each subject is tested under each treatment condition.  This is really just a special case of the 
randomized blocks design, where subjects are blocked up on all subject variables. 
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