
 
*g1g2.sas; 
***********************************************************************************; 
*Illustrates use of PROC STANDARD to standardize a variable, and; 
*The computation of G1, Fisher's skewness, and; 
*The computation of G2, kurtosis; 
***********************************************************************************; 

 

data EDA; infile 'D:\_Stats\StatData\EDA.dat'; input Y; 
proc means mean skewness kurtosis N; var Y; run; 
 

The MEANS Procedure 

Analysis Variable : Y  

Mean Skewness Kurtosis N 

72.5104167 0.5255689 0.0323668 96 

 
 The estimated population skewness, g1, is .53, mildly positively skewed.  The estimated 
population kurtosis, g2, is .03. 
 
PROC STANDARD data=eda mean=0 std=1 out=z_scores; run; 
proc means mean skewness kurtosis N; var Y; run; 
 
 The scores are standardized to mean 0, standard deviation 1, and placed in the data set 
“z_scores.”  Notice that the mean is now 0, but the skewness and kurtosis have not been changed. 
 

The MEANS Procedure 

Analysis Variable : Y  

Mean Skewness Kurtosis N 

-4.09395E-16 0.5255689 0.0323668 96 

 Transforming scores to z scores changes the mean and the standard deviation but has 
absolutely no effect on the shape of the distribution. 
 
data z34; set z_scores; 
Z3=Y**3; Z4=Y**4; 
proc means data=z34 noprint; var Z3 Z4; output out=sumZ34 N=N sum=sumZ3 sumZ4; run; 
 
 This code creates a new data set, “sumZ34” which contains the cubed z scores and the z 
scores to the 4th power. 
 
data skew; set sumz34; G1=N/(n-1)/(n-2)*sumZ3; 
 G2=N*(n+1)/(n-1)/(n-2)/(n-3)*sumZ4 - 3*(n-1)*(n-1)/(n-2)/(n-3); 
proc print; run; 
 
 This code computes g1 and g2 using the formulae presented in Skewness, Kurtosis, and the 
Normal Curve 

Obs _TYPE_ _FREQ_ N sumZ3 sumZ4 G1 G2 

1 0 96 96 48.8889 279.103 0.52557 0.032367 
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*Kurtosis-Uniform.sas; 
************************************************************************************; 
options formdlim='-' pageno=min nodate; 
TITLE 'One Sample of 500,000 Scores From Uniform(0,1) Distribution'; run; 
DATA uniform; DROP N; DO N=1 TO 500000; X=UNIFORM(0); 
OUTPUT; END; 
PROC MEANS mean std skewness kurtosis; VAR X; run; 
 

 X=UNIFORM(0); selects one score from a uniform distribution that ranges from 0 to 1.  

Embedding this random number generator within a “Do Loop” makes SAS sample half a million such 

scores.  Proc Means produced this output: 

 

Analysis Variable : X  

Mean Std Dev Skewness Kurtosis 

0.4996790 0.2885179 -0.000057309 -1.1983384 

 

 If we were to obtain the entire population, the mean would be .5, the standard deviation .2887. 

skewness 0, and kurtosis -1.2/  Sampling error caused us to get a tiny bit away from those values.  

Such sampling error can be reduced by increasing the sample size. 

 

 
*Kurtosis-T.sas; 
************************************************************************************; 
options formdlim='-' pageno=min nodate; 
TITLE 'T ON 9 DF, T COMPUTED ON EACH OF 500,000 SAMPLES'; 
TITLE2 'EACH WITH 10 SCORES FROM A STANDARD NORMAL POPULATION'; run; 
DATA T9; DROP N; DO SAMPLE=1 TO 500000; DO N=1 TO 10; X=NORMAL(0); 
OUTPUT; END; END; 
PROC MEANS NOPRINT; OUTPUT OUT=TS T=T; VAR X; BY SAMPLE; 
PROC MEANS MEAN STD N KURTOSIS; VAR T; run; 
 

 This code creates half a million samples, each with 10 scores drawn from a standardized 

normal distribution.  For each of those samples the value of Student’s t is computed.  The resulting 

distribution of 500,000 values of t is the sampling distribution of Student’s t on N – 1 = 9 degrees of 

freedom.  Then some basic descriptive statistics are computed on the sampling distribution. 

 
The MEANS Procedure 

Analysis Variable : T  

Mean Std Dev N Kurtosis 

-0.0024258 1.1349675 500000 1.2223092 

 

 Student’s t is like the standard normal distribution in that it has a mean of zero, and a 

skewness of zero, but it has a standard deviation greater than 1 and a kurtosis greater than 1.  It has 

more scores in its tails than would be expected in a normal distribution. 

 

 I ran this code a few more times with different sample sizes. 

 



T ON 10 DF, SAMPLING DISTRIBUTION OF 500,000 TS 

 
The MEANS Procedure 

Analysis Variable : T  

Mean Std Dev N Kurtosis 

0.0031798 1.1161173 500000 0.9787776 

 Increasing the degrees of freedom caused the standard deviation and kurtosis to decrease. 

 
T ON 16 DF, SAMPLING DISTRIBUTION OF 500,000 TS 

 
The MEANS Procedure 

Analysis Variable : T  

Mean Std Dev N Kurtosis 

0.000846732 1.0709861 500000 0.5218626 

 Increasing the degrees of freedom caused the standard deviation and kurtosis to decrease. 
 

T ON 28 DF, SAMPLING DISTRIBUTION OF 500,000 TS 

 
The MEANS Procedure 

Analysis Variable : T  

Mean Std Dev N Kurtosis 

-2.414558E-6 1.0385425 500000 0.2372472 

 
 Increasing the degrees of freedom caused the standard deviation and kurtosis to decrease.  If we were to 
continue to increase the degrees of freedom the standard deviation and the kurtosis of Student’s t would keep getting 
closer and closer to those of the standard normal distribution.  This is what is meant by “Student’s t approaches the 
normal curve as degrees of freedom increase.” 

 

 
 Here is Table 1 from the document Skewness, Kurtosis, and the Normal Curve. 

 

Table 1. 

Kurtosis for 7 Simple Distributions Also Differing in Variance 

X freq A freq B freq C freq D freq E freq F freq G 

05 20 20 20 10 05 03 01 

10 00 10 20 20 20 20 20 

15 20 20 20 10 05 03 01 

Kurtosis -2.0 -1.75 -1.5 -1.0 0.0 1.33 8.0 

Variance 25 20 16.6 12.5 8.3 5.77 2.27 

Shoulders 5, 

15 

5.5, 

14.5 

5.9. 

14.1 

6.5, 

13.5 

7.1, 

12.9 

7.6, 

12.4 

8.5, 

11.5 

  Platykurtic       Leptokurtic 

*Kurtosis_Beta2.sas; 
*Illustrates the computation of population kurtosis; 
*Using data from the handout Skewness, Kurtosis, and the Normal Curve; 
***********************************************************************************; 
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options pageno=min nodate formdlim='-' FORMCHAR="|----|+|---+=|-/\<>*"; 
data A; do s=1 to 20; X=5; output; X=15; output; end; 
*SS=1000, SS/N = 25, M = 10; 
data ZA; set A; Z=(X-10)/5; Z4A=Z**4; 
proc means mean; var Z4A; run; 
 

 This code creates a distribution of 40 scores, 20 with value 5 and 20 with value 15.  This is 

distribution A from Table 1.  Each score is standardized and then raised to the 4th power and then the 

mean is found for these transformed scores.  Karl Pearson (1905) defined a distribution’s degree of 

kurtosis as 32 −=  , where 
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= , the expected value of the distribution of Z scores which 

have been raised to the 4th power.  2 is often referred to as “Pearson’s kurtosis,” and 2 - 3 (often 

symbolized with 2 ) as “kurtosis excess” or “Fisher’s kurtosis,” even though it was Pearson who 

defined kurtosis as 2 - 3.  2 is, for distribution A, 

 

 Kurtosis excess (2 ) is 1 – 3 = -2, the lowest possible value of kurtosis excess, and that shown 

in Table 1.  Note that it has a perfect U shape, with half the scores at one value and half at another.  It 

has no scores in its tails because it has no tails.  All of the scores are at its shoulders (one standard 

deviation below the mean and one standard deviation above the mean. 

Distribution A 

 

  

 
The MEANS Procedure 

Analysis Variable 
: Z4A  

Mean 

2 = 1.0000000 

2 = 1 – 3 = -2 

 

 Now, watch what happens as I move scores from the shoulders and into the tails and the 

center: 

 



 

Distribution B 

 

 
 

2 = 1.2500000 

2 = 1.25 – 3 = -1.75 

 

 

Distribution C 

 

 
The middle bar should be centered at 10.  Sometimes Sgplot messes up. 

 

Mean 

2 = 1.5000000 

2 = 1.5 – 3 = -1.5 

 

 



Distribution D 

 

 
 

 

2 = 2.0000000 

2 = 2 – 3 = -1 

 

 

Distribution E 

 

 
 

 

Mean 

2 = 3.0000000 

2 = 3 – 3 = 0 

 

 



Distribution F 

 
 

 

2 = 4.3333333 

2 = 4.33 – 3 = 1.33 

 

 
Distribution G 

 
 

 

2 = 11.0000000 

2 = 11 – 3 = 8 

 

 



 


