Sex and Salary: Example of Analysis with Independent Samples t Test

One of my graduate students found, online, an SPSS data set with, among other variables, data on employees' sex and salaries. No description of the source of the data is available online.

As is the usual case with researchers in Psychology, as soon as I got my hands on the data I jumped into an analysis without first checking the assumptions of the analysis. I conducted a t test comparing the salaries of women with those of men. Here are selected parts of the output, with comments.

T-TEST GROUPS=Sex(10)
/MISSING=ANALYSIS
/VARIABLES=salary
/CRITERIA=CI(.95)

Group Statistics

	Sex				Std. Error Mean
salary	Female	216	26031.92	Std. Deviation	7558.021
	Male	258	41441.78	19499.214	1214.258

The ratio of the two variances here is 6.66 , so we shall use the separate variances test.

		Independent Samples Test						
		t	df	Sig. (2-tailed)	quality of Mea			
		Mean Difference			95\% Confidence Interval of the Difference			
		Lower			Upper			
salary	Equal variances assumed		10.945	472	. 000	15409.862	12643.322	18176.401
	Equal variances not assumed	11.688	344.262	. 000	15409.862	12816.728	18002.996	

Holy moly, the men were making, on average, $\$ 15,410$ more per year than were the women. With a 95% confidence interval running from $\$ 12,817$ to $\$ 18,003$. From the means here, we can tell these data are dated, from a time where a dollar was worth more than what it is now. The unit of measure here is intrinsically meaningful for those who know the value of a dollar, but I estimated Cohen's δ nevertheless: $d=1.10,95 \% \mathrm{Cl}[.82,1.20]$. That is a large effect.

The data set includes data on seniority - month on the job. Maybe the men got the higher salaries because they had greater seniority. I'll add seniority to the model as a covariate.

```
UNIANOVA salary BY Sex WITH jobtime
    /METHOD=SSTYPE(3)
    /INTERCEPT=INCLUDE
    /EMMEANS=TABLES(Sex) WITH(jobtime=MEAN)
    /CRITERIA=ALPHA(.05)
```

Between-Subjects Factors

		Value Label	N
Sex	.00	Female	216
	1.00	Male	258

Tests of Between-Subjects Effects
Dependent Variable: salary

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$28325290000.000^{\mathrm{a}}$	2	14162645000.000	60.868	.000
Intercept	4923876057.000	1	4923876057.000	21.162	.000
jobtime	406756970.900	1	406756970.900	1.748	.187
Sex	27350012210.000	1	27350012210.000	117.545	.000
Error	109591205400.000	471	232677718.500		
Total	699467436900.000	474			
Corrected Total	137916495400.000	473			

a. R Squared $=.205$ (Adjusted R Squared $=.202$)

The Analysis of Covariance shows that even if men and women had equal levels of seniority, the men would have significantly higher salaries. How much higher?

Estimated Marginal Means

		Sex		
Depend	ariable:			
			95\% Confide	nce Interval
Sex	Mean	Std. Error	Lower Bound	Upper Bound
Female	$26099.363^{\text {a }}$	1039.141	24057.437	28141.288
Male	$41385.320^{\text {a }}$	950.618	39517.342	43253.298

a. Covariates appearing in the model are evaluated at the following values: jobtime $=81.11$.

The estimated marginal means (aka least squares means or adjusted means) are estimates of what the group salaries would be if the groups did not differ on the covariate (seniority). The difference here is $\$ 15,286$, only a minor reduction from what it was when we ignored seniority.

I Need a Spanking

Good statisticians know that they should evaluate the assumption of the procedure they intend to use prior to using it. I did evaluate the homogeneity of variance assumption, but not the normality assumption. Shame on me. In my experience, heterogeneity of variance is often accompanied by skewed distributions, so l'd best look at the within-group distributions of salary. I split the file by sex and got some basic descriptive stats and plots.

	Statistics $^{\text {a }}$	
salary		
N	Valid	216
	Missing	0
Skewness		1.863
Kurtosis		4.641

a. Sex = Female

Yikes, the salaries are quite skewed among the women (I become concerned when the absolute value of skewness is one or higher). The high kurtosis indicates the presence of outlier in the data. The plot below shows that the scores have a distinct positive skewness with a cluster of outliers on the right side. The smoothed curve is normal curve with the same mean and variance as our sample.

Sex = Male

Statistics $^{\text {a }}$		
salary		
N	Valid	258
	Missing	0
Skewness		1.639
Kurtosis		2.780

a. Sex = Male

Same problem with the men's salaries. Fortunately the skewness among the men's salaries is not much different from that among the women's salaries, so a transformation that normalizes the
scores in the one group will likely do the same in the other group.

With positively skewed data, a square root or a log transformation often normalizes the data. I used a log transformation and rechecked the distributions.

COMPUTE Log_Salary=LG10(salary).
EXECUTE.

Sex = Female

Statistics $^{\text {a }}$		
Log_Salary		
N	Valid	216
	Missing	0
Skewness		.858
Kurtosis		1.201

a. Sex $=$ Female

Paranormal Distribution

Sex = Male

Statistics ${ }^{\text {a }}$

Log_Salary		
N	Valid	258
	Missing	0
Skewness		.845
Kurtosis		-.174

a. Sex = Male

That looks much better. Now l'll conduct a t test on the transformed data.

Group Statistics

					Std. Error Mean
Log_Salary	Female	N	Mean	Std. Deviation	Mea
	Male	216	4.4005	.11033	.00751

The transformation also reduced the heterogeneity of variance. Now the variance in the men's salaries on only 2.4 times that in the women's salaries.

Independent Samples Test

		t	df	-test for Equality of Means			
		Sig. (2-tailed)		95\% Confidence Interval of the Difference			
		Lower		Upper			
Log_Salary	Equal variances assumed		13.127	472	. 000	. 15220	. 20579
	Equal variances not assumed	13.629	442.401	. 000	. 15318	. 20481	

The difference remains significant. It would confuse readers were I report the group means in log dollars, so l'll report the original means.

As shown in Table 1, the distribution of salaries was considerably skewed in both women and men, but a base ten log transformation normalized the distributions. The mean salary in men was significantly higher in men than in women, $t(442.4)=13.629, p<.001, d=1.21,95 \% \mathrm{Cl}[1.01,1.41]$.

Table 1
Sex Differences in Salaries at the Rountree Widget Factory

	Annual Salary (\$)			
Group	M	$S D$	n	$s k$
Women	26,032	7,558	216	1.86
Men	41,442	19,499	258	1.64

