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Nonparametric Effect Size Estimators 

 
 As you know, the American Psychological Association now emphasizes the reporting of effect 
size estimates.  Since the unit of measure for most criterion variables used in psychological research 

is arbitrary, standardized effect size estimates, such as Cohen’s d, η2, and 2 are popular.  What is 
one to use when the analysis has been done with nonparametric methods?  This query is addressed 
in the document “A Call for Greater Use of Nonparametric Statistics,” pages 13-15.  The authors 
(Leech & Onwuegbuzie) note that researchers who employ nonparametric analysis generally either 
do not report effect size estimates or report parametric effect size estimates such as estimated 
Cohen’s d.  It is, however, known that these effect size estimates are adversely affected by 
departures from normality and heterogeneity of variances, so they may not be well advised for use 
with the sort of data which generally motivates a researcher to employ nonparametric analysis. 

 There are a few nonparametric effect size estimates (see Leech & Onwuegbuzie), but they are 
not well-known and they are not available in the typical statistical software package. 

Remember that nonparametric procedures do not test the same null hypothesis that a 
parametric t test or ANOVA tests.  The nonparametric null hypothesis is that the populations be 
compared are identical in all aspects -- not just in location.  If you are willing to assume that the 
populations do not differ in dispersion or shape, then you can interpret a significant difference as a 
difference in locations.  I shall assume that you are making such assumptions. 

With respect to the two independent samples design (comparing means), the following might 
make sense, but I never seen them done: 

• A d like estimator calculated by taking the difference in group mean ranks and dividing by the 
standard deviation of the ranks. 

• Another d like estimator calculated by taking the difference between the group median scores 
and dividing by the standard deviation of the scores. 

• An eta-squared like estimator calculated as the squared point-biserial correlation between 
groups and the ranks. 

Two Independent Samples 

 Rank Biserial Correlation.  Mike Palij (2015) pointed me to an article by Gene Glass (1966) 
on the rank biserial correlation.  Glass provided these computational formulas for estimating the 
underlying Spearman rho between two rank variables when one of them has been measured 
dichotomously.  Palij also provided the links to several other resources cited here.  Grissom (2015) 
noted that this statistic is also known as "Cliff's dominance measure (DM)", “delta,” and “Cliff's delta.”  
See pages 166-167 in Grissom and Kim (2012) for more details. 
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 I entered these data into SPSS and computed the U. 

 

 
 



 Gray and Kinnear (2012) provided this formula for computing the Glass rank biserial 

correlation coefficient:  
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yields 2(7.5 – 4.17) / 10 = .666, the same value Glass reported. 

 Kerby (2014) provided this formula:  
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same value Glass reported. 

 Normal Approximation z to r.  Pallant (2007) and Field (2013) suggest computing an r 
statistic by taking the z that is used for a normal approximation test and dividing it by the square root 
of the total sample size.  Field attributes this to Rosenthal's 1991 version of "Meta-analysis 
Procedures for Social Research", p 19 (Palij, 2015). 

 This r, using Glass’ data, is 1.706/sqrt(10) = .539, which is pretty far from the value of the rank 
biserial correlation, .666.  When I compute the point-biserial correlation here, I found it to be .569, 
close to the value of the Field/Pallant/Rosenthal coefficient.  When I computed the biserial correlation 
(which assumes normality), I found it to be .722. 

 Another Data Set.  Might the discrepancy between the rank-biserial r and the Rosenthal r be 
due to the fact that Glass’ data set was very small?  I conducted the U test on a sample of 719 
students comparing men with women on the height, in inches, of their ideal mates. 

Ranks 

 Gender N Mean Rank Sum of Ranks 

Ideal 

Female 539 424.97 229056.50 

Male 180 165.46 29783.50 

Total 719   

 

Test Statisticsa 

 Ideal 

Mann-Whitney U 13493.500 

Wilcoxon W 29783.500 

Z -14.638 

Asymp. Sig. (2-

tailed) 
.000 

a. Grouping Variable: Gender 
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 Field and Pallant 14.683/sqrt(719) = .548.  Nope, sample size does not explain the 
discrepancy between the Field and Pallant effect size r and the Glass rank biserial correlation 
coefficient. 

 Common Language Effect Size Statistic.  This statistic is the probability that a case 
randomly selected from one group will have a higher score than a case randomly selected from the 
other group.  It has also been called “the probability of superior outcome,” “the probabilistic index,” 

“probability of concordance,” “measure of stochastic superiority,” ̂ , and AUC, “the Area under ROC 

curve (Grissom & Kim, 2012; Kraemer, 2006; Newcombe, 2006a, 2006b).  When X is dichotomous 
and Y consists of ranks, an easy way to obtain this statistic is to compute U and then calculate 
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1 - .139 = .861.  The expected value of this statistic is, under the null that there is no difference 
between the groups, .5.  The interpretation of the value .87 is that were you randomly to select pairs 
of scores, one from the male students and one from the female students, 87% of the time the height 
of the woman’s ideal mate would exceed the height of the man’s ideal mate. 

 Kraemer (2006) notes that the AUC can be converted to a correlation coefficient this way”  CC 
= 2AUC-1.  For the height of ideal mate data, that is 2(.861)-1 = .722 = the value of the rank biserial 

correlation.  For Glass’ data, 1667.
)4(6
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1 = .666 = the rank biserial correlation. 

Grissom and Kim (2012) cover quite a variety of effect-size estimators for quite a variety of 
statistical procedures.  I highly recommend their book.  They also note that if your stats package 
does not compute U, but rather computes the Wilcoxon Rank Sum Statistic, you can get 
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one half the number of ties.  Newcombe (2006a, 2006b) gives an overview of and evaluation of 
methods by which one can put a confidence interval on this estimator.  You can find, at 
http://medicine.cf.ac.uk/primary-care-public-health/resources/ , an Excel spreadsheet, 

GENERALISEDMW.xls , which will calculate for you the value of ̂ , a confidence interval for ̂ , 

and the corresponding value of estimated Cohen’s d (delta) with its confidence interval.  The user 
only need enter the sample sizes and the value of the Mann-Whitney U statistic. 

Are there any benchmarks for what values of this effect size statistic are small, medium, or 
large?  Well, if there is equality of variances and within-group normality, then .56 is a small effect, 
.64 a medium effect, and .71 a large effect.  This is based on converting Cohen’s d to the common 
language effect size statistic (Ruscio, 2008). 

Correlated Samples 

 Matched-Pairs Rank-Biserial r.  Kerby (2014) presents a simple method for obtaining the 
matched-pairs rank-biserial correlation.  First, conduct the Wilcoxon signed ranks test.  The output will 
include the sum of negative ranks and the sum of positive ranks.  Add these two sums to get the total 
sum of ranks.  Then divide each of these by the total sum of ranks to get a proportion.  The difference 
between these proportions is the matched-pairs rank-biserial correlation.  Here I shall use the data 
used by Kerby to illustrate the procedure 

http://medicine.cf.ac.uk/primary-care-public-health/resources/
http://medicine.cf.ac.uk/media/filer/2012/11/01/generalisedmw.xls


  

 Total sum of ranks = 9 + 27 = 36. 

 Proportion for positive ranks = 27/36 = .75. 

 Proportion for negative ranks = 9/36 = .25. 

 Matched-pairs rank-biserial correlation = .75 - .25 = .5. 

 Normal Approximation z to r.  Pallant (2007) recommended taking the z score normal 
approximation statistic and dividing it by the square root of N, where N is the total number of scores 
(twice the number of cases).  For Kerby’s data, that is 1.26 / sqrt(16) = .315. 

 For the exact test, the test statistic, T, is the smaller of the two sums of ranks.  For these data, 
T = 9, and the .05 lower-tailed critical value for nondirectional hypotheses is 4.  Since the obtained T 
is not lower than the critical value, the null is retained.  Note that SPSS provides the exact p, .25. 

 Common Language Effect Size Statistic.  The common language effect size statistic for data 
like these is quite simply the proportion of cases (matched pairs) for which the score in the one 
condition is greater than the score in the other condition.  If there are ties, one can simply discard the 
ties (reducing n) or add to the numerator one half the number of ties.  For the data above, The CL 
statistic has value 5/8 = .625.  If you were randomly to select one case, the probability that the after 
score would exceed the before score is 62.5%. 

 You can find SAS code for computing two nonparametric effect size estimates in the document 
“Robust Effect Size Estimates and Meta-Analytic Tests of Homogeneity” (Hogarty & Kromrey, SAS 
Users Group International Conference, Indianapolis, April, 2000). 

 

I posted a query about nonparametric effect size estimators on EDSTAT-L and got a few 
responses, which I provide here. 

Leech (2002) suggested to report nonparametric effect size indices, such as Vargha & 
Delaney's A or Cliff's d. (Leech (2002). A Call for Greater Use of Nonparametric Statistics. Paper 
presented at the Annual Meeting of the Mid-South Educational Research Association, Chattanooga, 
TN, November 6-8.) 
 
John Mark, Regions University. 
---------------------------------------------------- 

See the chapter titled "Effect sizes for ordinal categorical variables" in Grissom and Kim 
(2005).  Effect sizes for research.  Lawrence Erlbaum. 
 

http://www2.sas.com/proceedings/sugi25/25/po/25p217.pdf
http://www.eric.ed.gov/ERICWebPortal/custom/portlets/recordDetails/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=ED471346&ERICExtSearch_SearchType_0=no&accno=ED471346


dale 

 

If you find any good Internet resources on this topic, please do pass them on to me so I can 
include them here.  Thanks. 
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• CL: The Common Language Effect Size Statistic 

• Return to Dr. Wuensch's Statistics Lessons Page 
 
Karl L. Wuensch, 19-July-2020 
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