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CL:  The Common Language Effect Size Statistic 

 McGraw and Wong (1992, Psychological Bulletin, 111: 361-365) proposed an effect size 
statistic which for a two group design with a continuous dependent variable is the probability that a 
randomly selected score from the one population will be greater than a randomly sampled 
score from the other population.  As an example they use sexual dimorphism in height among 
young adult humans.  National statistics are mean = 69.7 inches (SD = 2.8 ) for men, mean = 64.3 
inches (SD = 2.6) for women.  If we assume that the distributions are normal, then the probability that 
a randomly selected man will be taller than a randomly selected woman is 92%, thus the CL is 92%.  
They argue that the CL is a statistic more likely to be understood by statistically naive individuals than 
are the other available effect size statistics.  I’ll reserve judgment on that (naive persons have some 
funny ideas about probabilities), but it may help you get a better feel for effect sizes.  I assume they 
use sex differences because most of us already have a pretty good feeling for how much the sexes 
differ on things like height and weight. 

 To calculate the CL with independent samples McGraw and Wong instruct us to compute 
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Z  and P(Z < 1.41) = 92%.  Alternatively, one can compute the 

CL from the more common effect size statistic d.  If we have weighted the two samples variances 

equally when computing d, that is, 
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by 2.  For the height data, 41.1
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Wong computed d with a weighted (by sample sizes) mean variance, that is, 
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21 .  They used this weighted mean variance even though they were 

comparing men with women, where in the population there are about equal numbers in both groups 
(for some of their variables they had much more data from men than from women).  I would have 
weighted the two variances equally. 

 McGraw and Wong gave hypothetical examples of group differences in IQ (SD = 15) and 
computed d, CL, and four other effect size statistics (including the binomial effect size display).  I 
reproduce the table without the other four effect size statistics but with my addition of examples 
corresponding to Cohen’s small (d = .2), medium (d = .5) and large (d = .8) effect sizes. 

 

Mean 1 Mean 2 d CL Odds  Mean 1 Mean 2 d CL Odds 

100 100 0.00 50% 1  90 110 1.33 83% 4.88 

98.5 101.5 0.20 56% 1.27  85 115 2.00 92% 11.5 

96.25 103.75 0.50 64% 1.78  80 120 2.67 97% 32.3 

95 105 0.67 68% 2.12  75 125 3.33 99% 99 

94 106 0.80 72% 2.57       
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 McGraw and Wong also provide d and CL (and the other four effect size statistics) from some 
actual large sample studies of sex differences.  I list some of those statistics here just to give you a 
feel for d and CL. 

Variable Male Mean Female Mean d CL Odds 

Verbal ACT 17.9 18.9 0.19 55% 1.22 

Math ACT 18.6 16.1 0.48 63% 1.70 

Aggressiveness 9.3 6.9 0.62 67% 2.03 

Mental Rotation 23 15 0.91 74% 2.85 

Weight 163 134 1.07 78% 3.55 

Leg Strength 212 94 1.66 91% 10.11 

 

 McGraw and Wong opined that with correlated samples one should use the variance sum law 

to get the denominator of the Z, that is, 
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lead to overestimation of the effect size.  IMHO, one should compute the CL in the same way, 
regardless of whether the design was independent samples or correlated samples.  McGraw and 
Wong also show how to extend the CL statistic to designs with more than two groups and designs 
with a categorical dependent variable, but I don’t think the CL statistic very useful there. 

 Dunlap (1994, Psychological Bulletin, 116: 509-511) has extended the CL statistic to bivariate 
normal correlations.  Assume that we have randomly sampled two individuals’ scores on X and Y.  If 
individual 1 is defined as the individual with the larger score on X, than the CL statistic is the 
probability that individual 1 also has the larger score on Y.  Alternatively the CL statistic here can be 
interpreted as the probability that an individual will be above the mean on Y given that we know e is 

above the mean on X.  Given r, 5.
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CL .  Dunlap uses Karl Pearson’s (1896) data on the 

correlation between fathers’ and sons’ heights (r = .40).  CL = 63%.  That is, if Joe is taller than Sam, 
then there is a 63% probability that Joe’s son is taller than Sam’s son.  Put another way, if Joe is taller 
than average, then there is a 63% probability that Joe’s son is taller than average too.  Here is a little 
table of CL statistics for selected values of r, just to give you a feel for it. 

 

r .00 .10 .20 .30 .40 .50 .60 .70 .80 .90 .95 .99 

CL 50% 53% 56% 60% 63% 67% 70% 75% 80% 86% 90% 96% 

 

 One interesting use of the CL is as a nonparametric effect size statistic for comparing the 
locations of two groups of scores. 
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