
Tests of Equivalence and Confidence Intervals for 
Effect Sizes 

 

 Point or sharp null hypotheses specify that a parameter has a particular value -- 

for example,  (or   Such null hypotheses are highly unlikely ever to 

be absolutely true.  They may, however, be close to true, and it may be more useful to 
test range or loose null hypotheses that state that the value of the parameter of interest 
is close to a hypothetical value.  For example, one might test the null hypothesis that the 
difference between the effect of drug G and that of drug A is so small that the drugs are 
essentially equivalent.  Biostatisticians do exactly this, and they call it bioequivalence 
testing. 

 Steiger (2004) presents a simple example of bioequivalence testing.  Suppose 
that we wish to determine whether or not generic drug G is bioequivalent to brand name 
drug B.  Suppose that the FDA defines bioequivalence as bioavailability within 20% of 

that of the brand name drug.  Let 1 represent the lower limit (bioavailability 20% less 

than that of the brand name drug), 2 the upper limit (bioavailability 20% greater than 

that of the brand name drug), and G the bioavailability of the generic drug.  A test of 
bioequivalence amounts to pitting the following two hypotheses against one another: 

HNE:  G 1 or   G  2 -- the drugs are not equivalent

HE:1 G 2 -- the drugs are equivalent -- note that this a range hypothesis 

 In practice, this amounts to testing two pairs of directional hypotheses: 

H0: G 1 versus H1:  G >1 and   H0:  G 2 versus H1: G 2. 

 If both of these null hypotheses are rejected, then we conclude that the drugs are 

equivalent.  Alternatively, we can simply construct a confidence interval for G -- if the 

confidence interval falls entirely within 1 to 2 , then bioequivalence is established. 

 Steiger (2004) opines that tests of equivalence (also described as tests of close 
fit) have a place in psychology too, especially when we are interested in demonstrating 
that an effect is trivial in magnitude.  Steiger recommends the use of confidence 
intervals, dispensing with the traditional NHST procedures (computation of test statistic, 
p value, decision). 

 Suppose, for example, that we are interested in determining whether or not two 
different therapies for anorexia are equivalent.  Our criterion variable will be the average 
amount of weight gained during a two month period of therapy.  By how much would the 
groups need differ before we would say they differ by a nontrivial amount?  Suppose we 
decide that a difference of less than three pounds is trivial.  The hypothesis that the 



difference (D) is trivial in magnitude can be evaluated with two simultaneous one-sided 
tests: 

H0:  D -3 versus H1:  D > 3,  and  H0:  D 3 versus H1:  D < 3 

 After obtaining our data, we simply construct a confidence interval for the 
difference in the two means.  If that confidence interval is entirely enclosed within the 
"range of triviality," -3 to +3, then we retain the loose null hypothesis that the two 
therapies are equivalent.  What if the entire confidence interval is outside the range of 
triviality?  We would then conclude that there is a nontrivial difference between the 
therapies.  If part of the confidence interval is within the range of triviality and part 
outside the range, then we suspend judgment and wish we had obtained more data 
and/or less error variance.  Of course, if the confidence interval extended into the range 
of triviality but not all the way to the point of no difference then we would probably want 
to conclude that there is a difference but confess that it might be trivial.  See “Study 6” in 
Blume et al (2018). 

 Psychologists often use instruments which produce measurements in units that 
are not as meaningful as pounds and inches.  For example, suppose that we are 
interested in studying the relationship between political affiliation and misanthropy.  We 
treat political affiliation as dichotomous (Democrat or Republican) and obtain a measure 
of misanthropy on a 100 point scale.  The point null is that mean misanthropy in 
Democrats is exactly the same as that in Republicans.  While this hypothesis is highly 
unlikely to be true, it could be very close to true.  Can we construct a loose null 
hypothesis, like we did for the anorexia therapies?  What is the smallest difference 
between means on the misanthropy scale that we would consider to be nontrivial?  Is a 
5 point difference small, medium, or large?  Faced with questions like this, we often 
resort to using standardized measures of effect sizes.  In this case, we could use 
Cohen's d, the standardized difference between means.  Suppose that we decide that 
the smallest difference that would be nontrivial is d = .1.  All we need to do is get our 
data and then construct a confidence interval for d.  If that interval is totally enclosed 
within the range -.1 to .1, then we conclude that affiliates of the two parties are 
equivalent in misanthropy, and if the entire confidence interval is outside the range, then 
we conclude that there is a nontrivial difference between the parties. 

 So, how do we get a confidence interval for d?  Regretfully, it is not as simple as 
finding the confidence interval in the raw unit of measure and then dividing the upper 
and lower limits by the pooled standard deviation.  Because we are estimating both 
means and standard deviations, we will be dealing with noncentral distributions (see 
Cumming & Finch, 2001; Fidler & Thompson, 2001; Smithson, 2001).  Iterative 
computations that cannot reasonably be done by hand will be required.  There are, out 
there on the Internet, statistical programs designed to construct confidence intervals for 
standardized effect size estimates, but I think it unlikely that such confidence intervals 
will be commonly used unless and until they are incorporated in major statistical 
packages such as SAS, SPSS, BMDP, Minitab, and so on.  I have, on my SAS Program 

https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188299&type=printable
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Page and my SPSS Program Page, programs for constructing confidence intervals for 
Cohen's d. 

 Steiger (2004) argues that when testing for close fit, the appropriate confidence 
interval for testing range hypotheses is a 100(1 - 2α) confidence interval.  For example, 
with the traditional .05 criterion, use a 90% confidence interval, not a 95% confidence 
interval.  His argument is that the estimated effect cannot be small in both directions, so 
the confidence coefficient is relaxed to provide the same amount of power that would be 
obtained with a one-sided test.  I am not entirely comfortable with this argument, 
especially after reading the Monte Carlo work by Serlin & Zumbo (2001). 

Example from a Correspondent 

Correspondent 
 We performed a 2 x 2 mixed ANOVA with the within subject factor Stimuli (S1 vs. 
S2) and the between-subject factor Group (Fibromyalgia patients (n = 52) vs. healthy 
controls (n = 55).  Our interest is to know if there is difference between FM patients and 
controls in the modulation of brain activity to the second stimuli of a pair of identical 
stimuli.  We obtained the following results: 
 
Main Effect of Stimuli F(1, 105) = 66.419; p <. 001 
Interaction Stimuli x Group F(1, 105) = 1.672; p = .199 
Effect of Group F(1, 105) = 0.009; p = .925 
 
 This is the comment of the referee: "It is always difficult to show that there is no 
difference between groups.  One may always come up with a statistical power 
argument.  This argument is not easily dismissed. I suggest that the authors calculate 
effect sizes, preferentially Cohen's d for independent samples, and report the 
associated 95% confidence intervals for the relevant terms.  That way, readers have 
more information about whether there was "no evidence for a difference", or there was 
"evidence for no difference".  The difference between both is critical here. This should 
also be addressed in the general discussion.” 

 
Karl 

 What you really want to do here is show that the difference between the two 
groups is so small that it might as well be zero.  This is exactly what is done when a 
generic drug manufacturer wants to demonstrate that its generic drug is “biologically 
equivalent” to the brand name drug.  Statistical tests of such bioequivalence have been 
around for a good while, but are not well known by psychologists. See my document 
Tests of Equivalence and Confidence Intervals for Effect Sizes. 

 From the ANOVA stats you provided above, the main effect of Group is clearly 
the effect for which it can most convincingly be argued that the population effect is close 
to zero.  SAS code for constructing confidence intervals for the standardized difference 
between two independent means can be found at my SAS Programs Page, under 
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“Confidence Interval for d, Two or More Independent Samples.”  If you are an SPSS 
user, see CI-d-SPSS.zip -- Construct Confidence Interval for Cohen's d. 

 You probably will not be able to make as strong a case for the population 
interaction being very close to zero.  It would be possible to use contrast coefficients to 
code this interaction and then standardize that contrast and put a confidence interval 
about it.  There is, however, a more straightforward method.  First you should know that 
the F test of the interaction term in a 2 x 2 Mixed ANOVA is mathematically identical to 
an independent samples t test comparing the two groups on difference scores 
comparing post with pre (or, in your case, Stimulus 2 with Stimulus 1.  This is 
demonstrated in my document The Pretest-Posttest x Groups Design:  How to Analyze 
the Data. 

 Given this background, is it now easy to construct d with a confidence interval for 
the interaction term.  First, compute the difference score for every case.  Second, 
conduct a pooled-variances independent samples t test comparing the groups on those 
difference scores.  You don’t even need to actually conduct that t test.  Simply take the 
square root of the interaction F from the ANOVA, and use the ANOVA error df as the df 
for the t.  From the value of the t, you can use one of my programs to get estimated d 
and the confidence interval. 
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