LEARNING CURVES

LEARNING CURVES IN SERVICE
MANUFACTURING
APPLYING THE LEARNING CURVE
Arithmetic Approach
Logarithmic Approach
Learning-Curve Coefficient Approach
STRATEGIC IMPLICATIONS OF LEARNING CURVES
LIMITATIONS OF LEARNING CURVES
SUMMARY
KEY TERMS
USING EXCEL OM FOR LEARNING CURVES

USING POM FOR WINDOW FOR LEARNING CURVES
SOLVED PROBLEMS
INTERNET EXERCISES FOR LEARNING CURVES
DISCUSSION QUESTIONS
PROBLEMS
CASE STUDY: SMT'S NEGOTIATION WITH IBM
BIBLIOGRAPHY

LEARNING OBJECTIVES

When you complete this module you should be able to

Identify or Define:
What a learning curve is
Example of learning curves
The doubling concept

Describe or Explain:
How to compute learning curve effects
Why learning curves are important
The strategic implications of learning curves
Medical procedures such as heart surgery follow a learning curve. Research indicates that the death rate from heart transplants drops at a 79% learning curve, a learning rate not unlikely that in many industrial settings. It appears that doctors and medical teams improve, as do your odds as a patient, with experience. If the death rate is halved every three operations, practice may indeed make perfect.

Most organizations learn and improve over time. As firms and employees perform a task over and over, they learn how to perform more efficiently. This means that task times and costs decrease.

Learning curves are based on the premise that people and organizations become better at their tasks as the tasks are repeated. A learning curve graph (illustrated in Figure E.1) displays labor-hours per unit versus the number of units produced. From it we see that the time needed to produce a unit decreases, usually following a negative exponential curve, as the person or company produces more units. In other words, it takes less time to complete each additional unit a firm produces. However, we also see in Figure E.1 that the time savings in completing each subsequent unit decreases. These are the major attributes of the learning curve.

Learning curves were first applied to industry in a report by T. P. Wright of Curtiss-Wright Corp. in 1936. Wright described how direct labor costs of making a particular airplane decreased with learning, a theory since confirmed by other aircraft manufacturers. Regardless of the time needed to produce the first plane, learning curves are found to apply to various categories of air frames (e.g., jet fighters versus passenger planes versus bombers). Learning curves have since been applied not only to labor but also to a wide variety of other costs, including material and purchased components. The power of the learning curve is so significant that it plays a major role in many strategic decisions related to employment levels, costs, capacity, and pricing.

The learning curve is based on a doubling of productivity: That is, when production doubles, the decrease in time per unit affects the rate of the learning curve. So, if the learning curve is an 80% rate, the second unit takes 80% of the time of the first unit, the...
LEARNING CURVES IN SERVICES AND MANUFACTURING

FIGURE E.1 The Learning-Curve Effect States That Time per Repetition Decreases as the Number of Repetitions Increases

fourth unit takes 80% of the time of the second unit, the eighth unit takes 80% of the time of the fourth unit, and so forth. This principle is shown as

\[T \times L^n = \text{Time required for the } n^{\text{th}} \text{ unit} \]

(E.1)

where
\begin{align*}
T & = \text{unit cost or unit time of the first unit} \\
L & = \text{learning curve rate} \\
n & = \text{number of times } T \text{ is doubled}
\end{align*}

If the first unit of a particular product took 10 labor-hours, and if a 70% learning curve is present, the hours the fourth unit will take require doubling twice—from 1 to 2 to 4. Therefore, the formula is

Hours required for unit 4 = 10 \times (.7)^2 = 4.9 hours

LEARNING CURVES IN SERVICES AND MANUFACTURING

Different organizations—indeed, different products—have different learning curves. The rate of learning varies depending upon the quality of management and the potential of the process and product. Any change in process, product, or personnel disrupts the learning curve. Therefore, caution should be exercised in assuming that a learning curve is continuing and permanent.

As you can see in Table E.1, industry learning curves vary widely. The lower the number (say 70% compared to 90%), the steeper the slope and the faster the drop in costs. By tradition, learning curves are defined in terms of the complements of their improvement rates. For example, a 70% learning curve implies a 30% decrease in time each time the number of repetitions is doubled. A 90% curve means there is a corresponding 10% rate of improvement.

Try testing the learning-curve effect on some activity you may be performing. For example, if you need to assemble four bookshelves, time your work on each and note the rate of improvement.
Stable, standardized products and processes tend to have costs that decline more steeply than others. Between 1920 and 1955, for instance, the steel industry was able to reduce labor-hours per unit to 79% each time cumulative production doubled.

Learning curves have application in services as well as industry. As was noted in the caption for the opening photograph, 1-year death rates of heart transplant patients at Temple University Hospital follow a 79% learning curve. The results of that hospital's 3-year study of 62 patients receiving transplants found that every three operations resulted in a halving of the 1-year death rate. As more hospitals face pressure from both insurance companies and the government to enter fixed-price negotiations for their services, their ability to learn from experience becomes increasingly critical. In addition to having applications in both services and industry, learning curves are useful for a variety of purposes. These include:

1. Internal labor forecasting, scheduling, establishing costs and budgets.
2. External purchasing and subcontracting (see the SMT case study at the end of this module).
3. Strategic evaluation of company and industry performance, including costs and pricing.

APPLYING THE LEARNING CURVE

A mathematical relationship enables us to express the time it takes to produce a certain unit. This relationship is a function of how many units have been produced before the unit in question and how long it took to produce them. Although this procedure determines how long it takes to produce a given unit, the consequences of this analysis are more far-reaching. Costs drop and efficiency goes up for individual firms and the industry. Therefore, severe problems in scheduling occur if operations are not adjusted for implications of the learning curve. For instance, if learning-curve improvement is not considered...
when scheduling, the result may be labor and productive facilities being idle a portion of the time. Furthermore, firms may refuse additional work because they do not consider the improvement in their own efficiency that results from learning. From a purchasing perspective, our interest is in negotiating what our suppliers' costs should be for further production of units based on the size of our order. The foregoing are only a few of the ramifications of the effect of learning curves.

With this in mind, let us look at three approaches to learning curves: arithmetic analysis, logarithmic analysis, and learning-curve coefficients.

Arithmetic Approach

The arithmetic approach is the simplest approach to learning-curve problems. As we noted at the beginning of this module, each time that production doubles, labor per unit declines by a constant factor, known as the learning rate. So, if we know that the learning rate is 80% and that the first unit produced took 100 hours, the hours required to produce the second, fourth, eighth, and sixteenth units are as follows:

<table>
<thead>
<tr>
<th>Nth Unit Produced</th>
<th>Hours for Nth Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>80.0 = (.8 × 100)</td>
</tr>
<tr>
<td>4</td>
<td>64.0 = (.8 × 80)</td>
</tr>
<tr>
<td>8</td>
<td>51.2 = (.8 × 64)</td>
</tr>
<tr>
<td>16</td>
<td>41.0 = (.8 × 51.2)</td>
</tr>
</tbody>
</table>

As long as we wish to find the hours required to produce N units and N is one of the doubled values, then this approach works. Arithmetic analysis does not tell us how many hours will be needed to produce other units. For this flexibility, we must turn to the logarithmic approach.

Logarithmic Approach

The logarithmic approach allows us to determine labor for any unit, T_N, by the formula

$$T_N = T_1(N^b)$$ \hspace{1cm} (E.2)

where $T_N =$ time for the Nth unit

$T_1 =$ hours to produce the first unit

$b =$ (log of the learning rate)/(log 2) = slope of the learning curve

Some of the values for b are presented in Table E.2. Example E1 shows how this formula works.

<table>
<thead>
<tr>
<th>Learning Rate (%)</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>-.515</td>
</tr>
<tr>
<td>75</td>
<td>-.415</td>
</tr>
<tr>
<td>80</td>
<td>-.322</td>
</tr>
<tr>
<td>85</td>
<td>-.234</td>
</tr>
<tr>
<td>90</td>
<td>-.152</td>
</tr>
</tbody>
</table>

The learning rate for a particular operation is 80%, and the first unit of production took 100 hours. The hours required to produce the third unit may be computed as follows:

$$T_N = T_1(N^b)$$

$$T_3 = (100 \text{ hours}) \times (3^b)$$

$$= (100)(3^{\log_{3} 80/\log_{2} 80})$$

$$= (100)(3^{-0.322}) = 70.2 \text{ labor-hours}$$
The logarithmic approach allows us to determine the hours required for any unit produced, but there is a simpler method.

Learning-Curve Coefficient Approach

The learning-curve coefficient technique is embodied in Table E.3 and the following equation:

$$T_N = T_1C$$

where

- T_N = number of labor-hours required to produce the Nth unit
- T_1 = number of labor-hours required to produce the first unit
- C = learning-curve coefficient found in Table E.3

The learning-curve coefficient, C, depends on both the learning rate (70%, 75%, 80%, and so on) and the unit of interest.

Example E2 uses the preceding equation and Table E.3 to calculate learning-curve effects.

Table E.3: Learning-Curve Coefficients, where $C = N^{\log \text{learning rate}/\log 2}$

<table>
<thead>
<tr>
<th>Unit Number (N)</th>
<th>70%</th>
<th>75%</th>
<th>80%</th>
<th>85%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
<td>Time</td>
</tr>
<tr>
<td>1</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>.700</td>
<td>1.700</td>
<td>.750</td>
<td>1.750</td>
<td>.800</td>
</tr>
<tr>
<td>7</td>
<td>.367</td>
<td>3.960</td>
<td>.446</td>
<td>4.380</td>
<td>.534</td>
</tr>
<tr>
<td>8</td>
<td>.343</td>
<td>4.303</td>
<td>.422</td>
<td>4.802</td>
<td>.512</td>
</tr>
<tr>
<td>9</td>
<td>.323</td>
<td>4.626</td>
<td>.402</td>
<td>5.204</td>
<td>.493</td>
</tr>
<tr>
<td>11</td>
<td>.291</td>
<td>5.223</td>
<td>.370</td>
<td>5.958</td>
<td>.462</td>
</tr>
</tbody>
</table>
It took a Korean shipyard 125,000 labor-hours to produce the first of several tugboats that you expect to purchase for your shipping company, Great Lakes, Inc. Boats 2 and 3 have been produced by the Koreans with a learning factor of 85%. At $40 per hour, what should you, as purchasing agent, expect to pay for the fourth unit?

First, search Table E.3 for the fourth unit and a learning factor of 85%. The learning-curve coefficient, C, is .723. To produce the fourth unit, then, takes

\[T_4 = (125,000 \text{ hours})(.723) = 90,375 \text{ hours} \]

To find the cost, multiply by $40:

\[90,375 \text{ hours} \times 40 \text{ per hour} = 3,615,000 \]

Table E.3 also shows cumulative values. These allow us to compute the total number of hours needed to complete a specified number of units. Again, the computation is straightforward. Just multiply the table value times the time required for the first unit. Example E3 illustrates this concept.

Example E2 computed the time to complete the fourth tugboat that Great Lakes plans to buy. How long will all four boats require?

Looking this time at the “total time” column in Table E.3, we find that the cumulative coefficient is 3.345. Thus, the time required is

\[T_N = T_1C \]

\[T_4 = (125,000)(3.345) = 418,125 \text{ hours in total for all 4 boats} \]

For an illustration of how Excel OM can be used to solve Examples E2 and E3, see Program E.1 at the end of this module.

Using Table E.3 requires that we know how long it takes to complete the first unit. Yet, what happens if our most recent or most reliable information available pertains to some other unit? The answer is that we must use these data to find a revised estimate for the first unit and then apply the table to that number. Example E4 illustrates this concept.

Great Lakes, Inc., believes that unusual circumstances in producing the first boat (see Example E2) imply that the time estimate of 125,000 hours is not as valid a base as the time required to produce the third boat. Boat number 3 was completed in 100,000 hours.

To solve for the revised estimate for boat number 1, we return to Table E.3, with a unit value of \(N = 3\) and a learning-curve coefficient of \(C = .773\) in the 85% column. To find the revised estimate, we divide the actual time for boat number 3, 100,000 hours, by \(C = .773\)

\[\frac{100,000}{.773} = 129,366 \text{ hours} \]
Applications of the learning curve:
1. Internal → determine labor standards and rates of material supply required.
2. External → determine purchase costs.
3. Strategic → determine volume-cost changes.

STRATEGIC IMPLICATIONS OF LEARNING CURVES

So far, we have shown how operations managers can forecast labor-hour requirements for a product. We have also shown how purchasing agents can determine a supplier's cost, knowledge that can help in price negotiations. Another important application of learning curves concerns strategic planning.

An example of a company cost line and industry price line are so labeled in Figure E.2. These learning curves are straight because both scales are log scales. When the rate of change is constant, a log-log graph yields a straight line. If an organization believes its cost line to be the "company cost" line and the industry price is indicated by the dashed horizontal line, then the company must have costs at the points below the dotted line (for example, point a or b) or else operate at a loss (point c).

Lower costs are not automatic; they must be managed down. When a firm's strategy is to pursue a curve steeper than the industry average (the company cost line in Figure E.2), it does this by

1. Following an aggressive pricing policy.
2. Focusing on continuing cost reduction and productivity improvement.
3. Building on shared experience.

Costs may drop as a firm pursues the learning curve, but volume must increase for the learning curve to exist. In recent years, much of the computer industry, for instance, has operated at a 25% cost reduction per year, with steep learning curves. Texas Instruments (TI), however, discovered that developing a competitive strategy via the learning curve is
not for everyone. TI allowed other PC producers to lead in cost reductions and price-cutting. It paid the price for its mistake when sales of its PC line dropped.

Managers must understand competitors before embarking on a learning-curve strategy. Weak competitors are undercapitalized, stuck with high costs, or do not understand the logic of learning curves. However, strong and dangerous competitors control their costs, have solid financial positions for the large investments needed, and have a track record of using an aggressive learning-curve strategy. Taking on such a competitor in a price war may help only the consumer.

LIMITATIONS OF LEARNING CURVES

Before using learning curves, some cautions are in order:

- Because learning curves differ from company to company, as well as industry to industry, estimates for each organization should be developed rather than applying someone else's.
- Learning curves are often based on the time necessary to complete the early units; therefore, those times must be accurate. As current information becomes available, reevaluation is appropriate.
- Any changes in personnel, design, or procedure can be expected to alter the learning curve. And the curve may spike up for a short time even if it is going to drop in the long run.
- While workers and process may improve, the same learning curves do not always apply to indirect labor and material.
- The culture of the workplace, as well as resource availability and changes in the process, may alter the learning curve. For instance, as a project nears its end, worker interest and effort may drop, curtailing progress down the curve.

The learning curve is a powerful tool for the operations manager. This tool can assist operations managers in determining future cost standards for items produced as well as purchased. In addition, the learning curve can provide understanding about company and industry performance. We saw three approaches to learning curves: arithmetic analysis, logarithmic analysis, and learning-curve coefficients found in tables. Software can also help analyze learning curves.

Learning curves (p. 834)

Learning Curves

Using Excel OM for Learning Curves

Program E.1 shows how Excel OM develops a spreadsheet for learning-curve calculations. The input data come from Examples E2 and E3. In cell B7, we enter the unit number for the base unit (which does not have to be 1), and in B8 we enter the time for this unit.

Solved Problems

Solved Problem E.1
Digicom produces a new telephone system with built-in TV screens. Its learning rate is 80%.

a) If the first one took 56 hours, how long will it take Digicom to make the eleventh system?

b) How long will the first 11 systems take in total?

c) As a purchasing agent, you expect to buy units 12 through 15 of the new phone system. What would be your expected cost for the units if Digicom charges $30 for each labor-hour?
DISCUSSION QUESTIONS

Solution

a) $T_N = T_{jC}$

$T_{11} = (56 \text{ hours})(.462) = 25.9 \text{ hours}$

b) Total time for the first 11 units = $(56 \text{ hours})(6.777) = 379.5 \text{ hours}$

c) To find the time for units 12 through 15, we take the total cumulative time for units 1 to 15 and subtract the total time for units 1 to 11, which was computed in part (b). Total time for the first 15 units = $(56 \text{ hours})(8.511) = 476.6 \text{ hours}$. So, the time for units 12 through 15 is $476.6 - 379.5 = 97.1 \text{ hours}$. (This figure could also be confirmed by computing the times for units 12, 13, 14, and 15 separately using the unit-time column and then adding them.)

Expected cost for units 12 through 15 = $(97.1 \text{ hours})(30 \text{ per hour}) = $2,913.

Solved Problem E.2

If the first time you perform a job takes 60 minutes, how long will the eighth job take if you are on an 80% learning curve?

Solution

Three doublings from 1 to 2 to 4 to 8 implies .83. Therefore, we have

$60 \times (.8)^3 = 60 \times .512 = 30.72 \text{ minutes}$

or, using Table E.3, we have $C = .512$. Therefore:

$60 \times .512 = 30.72 \text{ minutes}$

INTERNET EXERCISES FOR LEARNING CURVES

Visit our homepage at www.prenhall.com/heizer for these additional features:

- Self-test for this module
- Practice problems
- Internet exercises
- Current articles and research

DISCUSSION QUESTIONS

1. What are some of the limitations to the use of learning curves?
2. What techniques can a firm use to move to a steeper learning curve?
3. What are the approaches to solving learning-curve problems?
4. Refer to Example E2: What are the implications for Great Lakes, Inc., if the engineering department
Module E Learning Curves

wants to change the engine in the third and subsequent tugboats that the firm purchases?
Why isn't the learning-curve concept as applicable in a high-volume assembly line as it is in most other human activities?

6. What can cause a learning curve to vary from smooth downward slope?
7. Explain the concept of the “doubling” effect in learning curves.

PROBLEMS*

\(P \) E.1 An IRS auditor took 45 minutes to process her first tax return. The IRS uses an 85% learning curve. How long will the
a) second return take?
b) fourth return take?
c) eighth return take?

\(P \) E.2 Seton Hall Trucking Co. just hired a new person to verify daily invoices and accounts payable. She took 9 hours and 23 minutes to complete her task on the first day. Prior employees in this job have tended to follow a 90% learning curve. How long will the task take at the end of
a) the second day?
b) the fourth day?
c) the eighth day?
d) the sixteenth day?

\(P \) E.3 If it took 563 minutes to complete a hospital’s first cornea transplant, and the hospital uses a 90% learning rate, how long should
a) the third transplant take?
b) the sixth transplant take?
c) the eighth transplant take?
d) the sixteenth transplant take?

\(P \) E.4 Refer to Problem E.3: Compute the cumulative time to complete
a) the first 3 transplants.
b) the first 6 transplants.
c) the first 8 transplants.
d) the first 16 transplants.

\(P \) E.5 Beth Zion Hospital has received initial certification from the state of California to become a center for liver transplants. The hospital, however, must complete its first 18 transplants under great scrutiny and at no cost to the patients. The very first transplant, just completed, required 30 hours. On the basis of research at the hospital, Beth Zion estimates that it will have an 80% learning curve. Estimate the time it will take to complete
a) the fifth liver transplant.
b) all of the first 5 transplants.
c) the eighteenth transplant.
d) all 18 transplants.

\(P \) E.6 Refer to Problem E.5. Beth Zion Hospital has just been informed that only the first 10 transplants must be performed at the hospital’s expense. The cost per hour of surgery is estimated to be $5,000. Again, the learning rate is 80% and the first surgery took 30 hours.
a) How long will the tenth surgery take?
b) How much will the tenth surgery cost?
c) How much will all 10 cost the hospital?

*Note: \(P \) means the problem may be solved with POM for Windows; \(\checkmark \) means the problem may be solved with Excel OM; and \(P \checkmark \) means the problem may be solved with POM for Windows and/or Excel OM.
E.7 If the fourth oil change and lube job at Trendo-Lube took 18 minutes and the second took 20 minutes, estimate how long:
a) the first job took.
b) the third job took.
c) the eighth job will take.
d) the actual learning rate is.

E.8 A student at San Diego State University bought six bookcases for her dorm room. Each required unpacking of parts and assembly, which included some nailing and bolting. She completed the first bookcase in 5 hours and the second in 4 hours:
a) What is her learning rate?
b) Assuming the same rate continues, how long will the third bookcase take?
c) The fourth, fifth, and sixth cases?
d) All six cases?

E.9 Cleaning a toxic landfill took one EPA contractor 300 labor-days. If the contractor follows an 85% learning rate, how long will it take, in total, to clean the next five (that is, landfills two through six)?

E.10 The first vending machine that Smith, Inc., assembled took 80 labor-hours. Estimate how long the fourth machine will require for each of the following learning rates:
a) 95%
b) 87%
c) 72%

E.11 Refer to Problem E.10, in which the time for the fourth unit was estimated. How long will the sixteenth vending machine take to assemble under the same three learning rates—namely:
a) 95%
b) 87%
c) 72%

E.12 Baltimore Assessment Center screens and trains employees for a computer assembly firm in Towson, Maryland. The progress of all trainees is tracked and those not showing the proper progress are moved to less demanding programs. By the tenth repetition trainees must be able to complete the assembly task in 1 hour or less. Tom Chou has just spent 5 hours on the fourth unit and 4 hours completing his seventh unit, while another trainee, Betty Stevenson, took 4 hours on the sixth and 3 hours on the ninth unit. Should you encourage either or both of the trainees to continue? Why?

E.13 The better students at Baltimore Assessment Center (see Problem E.12) have an 80% learning curve and can do a task in 20 minutes after just six times. You would like to weed out the weak students sooner and decide to evaluate them after the third unit. How long should the third unit take?

E.14 As the purchasing agent for Northeast Airlines, you are interested in determining what you can expect to pay for airplane number 4 if the third plane took 20,000 hours to produce. What would you expect to pay for plane number 5? Number 6? Use an 85% learning curve and a $40-per-hour labor charge.

E.15 Using the data from Problem E.14, how long will it take to complete the twelfth plane? The fifteenth plane? How long will it take to complete planes 12 through 15 inclusive? At $40 per hour, what can you, as purchasing agent, expect to pay for all 4 planes?

E.16 Dynamic RAM Corp. produces semiconductors and has a learning curve of .7. The price per bit is 100 millicents when the volume is \(.7 \times 10^{12}\) bits. What is the expected price at \(1.4 \times 10^{12}\) bits? What is the expected price at \(89.6 \times 10^{12}\) bits?

E.17 It takes 80,000 hours to produce the first jet engine at T.R.'s aerospace division and the learning factor is 90%. How long does it take to produce the eighth engine?

E.18 It takes 28,718 hours to produce the eighth locomotive at a large French manufacturing firm. If the learning factor is 80%, how long does it take to produce the tenth locomotive?
If the first unit of a production run takes 1 hour and the firm is on an 80% learning curve, how long will unit 100 take? (Hint: Apply the coefficient in Table E.3 on p. 838, twice.)

As the estimator for Umble Enterprises, your job is to prepare an estimate for a potential customer service contract. The contract is for the service of diesel locomotive cylinder heads. The shop has done some of these in the past on a sporadic basis. The time required to service each cylinder head has been exactly 4 hours, and similar work has been accomplished at an 85% learning curve. The customer wants you to quote in batches of 12 and 20.

a) Prepare the quote.

b) After preparing the quote, you find a labor ticket for this customer for five locomotive cylinder heads. From the sundry notations on the labor ticket, you conclude that the fifth unit took 2.5 hours. What do you conclude about the learning curve and your quote?

Using the log-log graph below, answer the following questions.

a) What are the implications for management if it has forecast its cost on the optimum line?

b) What could be causing the fluctuations above the optimum line?

c) If management forecast the tenth unit on the optimum line, what was that forecast in hours?

d) If management built the tenth unit as indicated by the actual line, how many hours did it take?

Case Study

SMT's Negotiation with IBM

SMT and one other, much larger company were asked by IBM to bid on 80 more units of a particular computer product. The RFQ (request for quote) asked that the overall bid be broken down to show the hourly rate, the parts and materials component in the price, and any charges for subcontracted services. SMT quoted $1.62
At this point, SMT representatives expressed great concern about the possibility of inflation in materials costs. The IBM negotiators volunteered to include a form of price escalation in the contract, as previously agreed among themselves. IBM representatives suggested that if overall materials costs changed by more than 10%, the price could be adjusted accordingly. However, if one party took the initiative to have the price revised, the other could require an analysis of all parts and materials invoices in arriving at the new price.

Another concern of the SMT representatives was that a large amount of overtime and subcontracting would be required to meet IBM's specified delivery schedule. IBM negotiators thought that a relaxation in the delivery schedule might be possible if a price concession could be obtained. In response, the SMT team offered a 5% discount, and this was accepted. As a result of these negotiations, the SMT price was reduced almost 20% below its original bid price.

In a subsequent meeting called to negotiate the prices of certain pipes to be used in the system, it became apparent to an IBM cost estimator that SMT representatives had seriously underestimated their costs. He pointed out this apparent error because he could not understand why SMT had quoted such a low figure. He wanted to be sure that SMT was using the correct manufacturing process. In any case, if SMT estimators had made a mistake, it should be noted. It was IBM's policy to seek a fair price both for itself and for its suppliers. IBM procurement managers believed that if a vendor was losing money on a job, there would be a tendency to cut corners. In addition, the IBM negotiator felt that by pointing out the error, he generated some goodwill that would help in future sessions.

Discussion Questions

1. What are the advantages and disadvantages to IBM and SMT from this approach?
2. How does SMT's proposed learning rate compare with that of other companies?
3. What are the limitations of the learning curve in this case?

