
A FAMILY OF FINITE GELFAND PAIRS
ASSOCIATED WITH WREATH PRODUCTS

CHAL BENSON AND GAIL RATCLIFF

Abstract. Consider the wreath product Gn = Γn o Sn of a finite group Γ

with the symmetric group Sn. Letting ∆n denote the diagonal in Γn the direct
product Kn = ∆n×Sn forms a subgroup. In case Γ is abelian (Gn,Kn) forms

a Gelfand pair with relevance to the study of parking functions. For Γ non-

abelian it was suggested by Kürşat Aker and Mahir Bilen Can that (Gn,Kn)
must fail to be a Gelfand pair for n sufficiently large. We prove here that this

is indeed the case: for Γ non-abelian there is some integer 2 < N(Γ) ≤ |Γ| for

which (Kn, Gn) is a Gelfand pair for all n < N(Γ) but (Kn, Gn) fails to be
a Gelfand pair for all n ≥ N(Γ). For dihedral groups Γ = Dp with p an odd

prime we prove that N(Γ) = 6.

1. Introduction

Gelfand pairs are fundamental to the study of harmonic analysis on topological
groups. In the context of finite groups the definition is as follows. We denote by
L(G) the space of complex-valued functions on a finite group G. This is an algebra
under the convolution product

f ? g(x) =
∑
y∈G

f(xy−1)g(y).

Given a subgroup K ⊂ G, the set

L(K\G/K) = {f ∈ L(G) : f(k1xk2) = f(x) ∀k1, k2 ∈ K}
of K-bi-invariant functions on G forms a subalgebra of L(G). One calls (G,K)
a Gelfand pair when L(K\G/K) is commutative. This condition is equivalent to
each of the following.

• The left quasi-regular representation indGK(1K) of G in L(G/K) is multi-
plicity free.
• For each irreducible representation (π, V ) of G the space V K of K-fixed

vectors in V has dimension dim(V K) ≤ 1.
Irreducible representations of G which occur in L(G/K) are called K-spherical.
These are precisely those admitting non-zero K-fixed vectors. We refer the reader
to [CSST08], [Mac95, Chapter VII] or [Ter99] for proofs of these equivalences as
well as general background concerning Gelfand pairs and their applications in the
finite groups setting.

Given a finite group Γ the symmetric group Sn acts by automorphisms on the
cartesian product Γn of n copies of Γ via

σ · (x1, . . . , xn) = (xσ(1), . . . , xσ(n)).
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2 C. BENSON AND G. RATCLIFF

The resulting semi-direct product

Gn := Γn o Sn

is the wreath product of Γ with Sn, sometimes written as Γ oSn. The representation
theory of such wreath products is discussed in [Mac95, Chapter I Appendix B] and,
in greater generality, in [CSST06, CSST14].

Let
L(Γn)Sn = {f ∈ L(Γn) : f(σ · x) = f(x) ∀σ ∈ Sn,x ∈ Γn}

denote the space of complex valued functions on Γn invariant under the action of
Sn. This is a convolution subalgebra of L(Γn) and routine calculations show that
the map

(1.1) Φ : L(Sn\Gn/Sn)→ L(Γn)Sn , Φ(f)(x) = n!f(x, e) (e ∈ Sn the identity)

is an isomorphism of convolution algebras. In particular (Gn, Sn) is a Gelfand pair
if and only if L(Γn)Sn is commutative. This is certainly the case whenever Γ is
abelian. On the other hand for Γ non-abelian choose points x, y ∈ Γ with xy 6= yx
and let x,y ∈ Γn be the points x = (x, . . . , x), y = (y, . . . , y). The characteristic
functions δx, δy for these points belong to L(Γn)Sn and we have

δx ? δy = δxy 6= δyx = δy ? δx.

Thus (Gn, Sn) is a Gelfand pair if and only if Γ is abelian.
The diagonal subgroup in Γn,

∆n := {(x, . . . , x) : x ∈ Γ},
played a role in the preceding discussion. The Sn-action preserves ∆n ⊂ Γn and is
trivial on ∆n. Thus the direct product(

Kn := ∆n × Sn
) ∼= Γ× Sn

is a subgroup of Gn = Γn o Sn and we consider the pair (Gn,Kn).
Restricting the map Φ given in (1.1) to L(Kn\Gn/Kn) ⊂ L(Sn\Gn/Sn) produces

an algebra isomorphism onto

(1.2) An(Γ) := L(∆n\Γn/∆n) ∩ L(Γn)Sn ,

the algebra of functions Γn → C which are both ∆n-bi-invariant and Sn-invariant.
Thus if either (Gn, Sn) or (Γn,∆n) is a Gelfand pair then so is (Gn,Kn). It follows
in particular that

• (Gn,Kn) is a Gelfand pair for Γ abelian and
• (Gn,Kn) is a Gelfand pair for n = 2.

The latter point follows from the well-known fact that (Γ×Γ,∆2) is a Gelfand pair
[Mac95, §VII-1, Example 9].

For cyclic groups Γ the resulting Gelfand pairs (Gn,Kn) arise in combinatorics
in connection with parking functions [AC12]. This fact motivates interest in pairs
(Gn,Kn) for other finite groups Γ. It is suggested in [AC12] that for Γ non-abelian
(Gn,Kn) will fail to be a Gelfand pair for n sufficiently large. The following theo-
rems show that this is indeed the case. These are our main results.

Theorem 1.1. If (Gn+1,Kn+1) is a Gelfand pair then so is (Gn,Kn).

Theorem 1.2. If Γ is non-abelian then (G|Γ|,K|Γ|) fails to be a Gelfand pair.

Thus for Γ non-abelian there is some integer 2 < N(Γ) ≤ |Γ| for which
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• (Kn, Gn) is a Gelfand pair for all n < N(Γ) but
• (Kn, Gn) fails to be a Gelfand pair for all n ≥ N(Γ).

Examples 1.3. The authors of [AC12] used the GAP computer algebra system to
verify that N(S3) = 6, N(A4) = 4, N(GL(2,F3)) = 3 and N(SL(3,F2)) = 3.

We remark that we do not know whether or not N(Γ) can be arbitrarily large.

Proofs for Theorems 1.1 and 1.2 are given below in Sections 2 and 4. Section
3 concerns decomposition of the spaces L(Γn/∆n) and L(Gn/Kn) under the left
actions of Γn and Gn. Section 5 concerns examples. We show that for primes
p ≥ 3 the dihedral groups Dp have N(Dp) = 6. As D3

∼= S3 this is consistent with
[AC12]. In [AM03] the reader will find a different family of Gelfand pairs involving
wreath products with dihedral groups.

2. Proof of Theorem 1.1

For f ∈ L(Γn+1) let f◦ ∈ L(Γn) be defined as

f◦(x1, . . . , xn) =
∑
γ∈Γ

f(x1, . . . , xn, γ)

and consider the map

Ψ : L(Γn+1)→ L(Γn), Ψ(f) = f◦.

This is an algebra map. That is,

Lemma 2.1. (f ? g)◦ = f◦ ? g◦ for f, g ∈ L(Γn+1).

Proof. In fact

(f ? g)◦(x1, . . . , xn) =
∑
γ∈Γ

f ? g(x1, . . . , xn, γ)

=
∑
γ∈Γ

∑
y1,...,yn+1∈Γ

f(x1y
−1
1 , . . . , xny

−1
n , γy−1

n+1)g(y1, . . . , yn+1)

=
∑

y1,...,yn

∑
yn+1

∑
γ

f(x1y
−1
1 , . . . , xny

−1
n , γy−1

n+1)g(y1, . . . , yn+1)

=
∑

y1,...,yn

∑
yn+1

∑
γ′

f(x1y
−1
1 , . . . , xny

−1
n , γ′)g(y1, . . . , yn+1)

=
∑

y1,...,yn

∑
yn+1

f◦(x1y
−1
1 , . . . , xny

−1
n )g(y1, . . . , yn+1)

=
∑

y1,...,yn

f◦(x1y
−1
1 , . . . , xny

−1
n )g◦(y1, . . . , yn)

= f◦ ? g◦(x1, . . . , xn). �

Lemma 2.2. Ψ
(
L(Γn+1)Sn+1

)
⊂ L(Γn)Sn .

Proof. Say f ∈ L(Γn+1)Sn+1 and σ ∈ Sn. Then

f◦(xσ(1), . . . , xσ(n)) =
∑
γ∈Γ

f(xσ(1), . . . , xσ(n), γ) =
∑
γ∈Γ

f(x1, . . . , xn, γ)

= f◦(x1, . . . , xn)

since (xσ(1), . . . , xσ(n), γ) is a permutation of (x1, . . . , xn, γ). �
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For each m the group Γ× Γ acts on the set Γm via

(γ1, γ2) · (x1, . . . , xm) = (γ1x1γ
−1
2 , . . . , γ1xnγ

−1
2 )

and on L(Γm) via
(γ1, γ2) · f(x) = f

(
(γ−1

1 , γ−1
2 ) · x

)
.

Lemma 2.3. Ψ is (Γ × Γ)-equivariant. That is,
(
(γ1, γ2) · f)◦ = (γ1, γ2) · f◦ for

f ∈ L(Γn+1), γ1, γ2 ∈ Γ.

Proof. Indeed(
(γ1, γ2) · f)◦(x1, . . . , xn) =

∑
γ∈Γ

f(γ−1
1 x1γ2, . . . , γ

−1
1 xnγ2, γ

−1
1 γγ2)

=
∑
γ′∈Γ

f(γ−1
1 x1γ2, . . . , γ

−1
1 xnγ2, γ

′)

= f◦(γ−1
1 x1γ2, . . . , γ

−1
1 xnγ2)

= (γ1, γ2) · f◦(x1, . . . , xn). �

Corollary 2.4. Ψ
(
L(∆n+1\Γn+1/∆n+1

)
⊂ L(∆n\Γn/∆n).

Proof. As L(∆m\Γm/∆m) = L(Γm)Γ×Γ for all m this follows from Lemma 2.3. �

Recalling that Am(Γ) = L(∆m\Γm/∆m) ∩ L(Γm)Sm (see Equation 1.2) Corol-
lary 2.4 together with Lemma 2.2 give the following.

Corollary 2.5. Ψ
(
An+1(Γ)

)
⊂ An(Γ).

We wish to show that in fact

Lemma 2.6. Ψ
(
An+1(Γ)

)
= An(Γ). That is, Ψ : An+1(Γ)→ An(Γ) is surjective.

Working towards a proof for this we introduce, for each m, the projection map

Pm : L(Γm)Sm → Am(Γ), Pm(f) =
∑

γ1,γ2∈Γ

(γ1, γ2) · f.

As Ψ is (Γ× Γ)-equivariant (Lemma 2.3) the diagram

L(Γn+1)Sn+1
Ψ−−−−→ L(Γ)SnyPn+1

yPn
An+1(Γ) Ψ−−−−→ An(Γ)

commutes. As Pn is surjective we see that to prove Lemma 2.6 it suffices to show
that Ψ : L(Γn+1)Sn+1 → L(Γn)Sn is surjective. For this we require Lemma 2.7
below.

List the elements of Γ as
Γ = {γ1, . . . , γr}

say where r = |Γ|. For x ∈ Γm we let

[x] := Sm · x
denote the Sm-orbit though x. This contains a unique point in which any γ1’s
appear first followed by any γ2’s etcetera in order. So

[x] = 〈k1, k2, . . . , kr〉 :=
[
γ1, . . . , γ1︸ ︷︷ ︸

k1

, γ2, . . . , γ2︸ ︷︷ ︸
k2

, . . . , γr, . . . , γr︸ ︷︷ ︸
kr

]
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for some non-negative integers k1, . . . , kr with k1 + · · ·+kr = m. The characteristic
functions

δ〈k1,k2,...,kr〉(x) =
{

1 if x ∈ 〈k1, k2, . . . , kr〉
0 otherwise

give a basis for L(Γm)Sm .

Lemma 2.7. For integers k1, . . . , kr ≥ 0 with k1 + · · ·+ kr = n+ 1 we have

δ◦〈k1,k2,...,kr〉 =
∑

1≤j≤r
kj 6=0

δ〈k1,...,kj−1,...,kr〉.

Proof. For x = (x1, . . . , xn) ∈ Γn we have

δ◦〈k1,k2,...,kr〉(x) =
r∑
j=1

δ〈k1,k2,...,kr〉(x1, . . . , xn, γj).

Here δ〈k1,k2,...,kr〉(x1, . . . , xn, γj) = 1 if and only if kj > 0 and x is a permutation of(
γ1, . . . , γ1︸ ︷︷ ︸

k1

, . . . , γj , . . . , γj︸ ︷︷ ︸
kj−1

, . . . , γr, . . . , γr︸ ︷︷ ︸
kr

)
.

Thus δ〈k1,k2,...,kr〉(x1, . . . , xr, γj) = 1 if and only if kj > 0 and δ〈k1,...,kj−1,...,kr〉(x) =
1. This completes the proof. �

Proof of Lemma 2.6. As explained above it suffices to show that Ψ : L(Γn+1)Sn+1 →
L(Γn)Sn is surjective. For this we will verify that δ〈k1,...,kr〉 ∈ Ψ

(
L(Γn+1)Sn+1

)
for

all k1, . . . , kr ≥ 0 with k1 + · · · + kr = n. We do this by reverse induction on
k1 ∈ {0, . . . , n}.

First suppose that k1 = n so that 〈k1, . . . , kr〉 = 〈n, 0, . . . , 0〉. As δ◦〈n+1,0,...,0〉 =
δ〈n,0,...,0〉 this shows that δ〈k1,...,kr〉 ∈ Ψ

(
L(Γn+1)Sn+1

)
when k1 = n.

Next suppose that 0 ≤ k1 ≤ n − 1 and assume inductively that δ〈k′1,...,k′r〉 ∈
Ψ
(
L(Γn+1)Sn+1

)
for all k′1, . . . , k

′
r ≥ 0 with k′1 + · · · + k′r = n and k′1 = k1 + 1.

Lemma 2.7 shows that

δ◦〈k1+1,k2,...,kr〉 = δ〈k1,k2,...,kr〉 +
∑

2≤j≤r
kj 6=0

δ〈k1+1,...,kj−1,...,kr〉.

By inductive hypothesis all terms in the sum belong to Ψ
(
L(Γn+1)Sn+1

)
and hence

so does δ〈k1,k2,...,kr〉 as desired. �

Proof of Theorem 1.1. Suppose that (Gn+1,Kn+1) is a Gelfand pair. Equivalently
the algebra An+1(Γ) commutes under convolution. Given f, g ∈ An(Γ) Lemma 2.6
ensure that there exist functions F,G ∈ An+1(Γ) with F ◦ = f and G◦ = g.
Applying Lemma 2.1 now yields

f ? g = F ◦ ? G◦ = (F ? G)◦ = (G ? F )◦ = G◦ ? F ◦ = g ? f.

Thus An(Γ) is commutative and hence (Gn,Kn) is a Gelfand pair. �
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3. Decomposition of L(Γn/∆n) and L(Gn/Kn)

3.1. Decomposition of L(Γn/∆n). One checks easily that the map

Γn/∆n → Γn−1, (x1, . . . , xn)∆n 7→ (x1x
−1
n , . . . , xn−1x

−1
n )

is a well-defined bijection. Using this to identify Γn/∆n with Γn−1 the left quasi-
regular representation of Γn on L(Γn/∆n) is realized on L(Γn−1) as ρn : Γn →
GL
(
L(Γn−1)

)
where

(3.1) ρn(γ1, . . . , γn−1, γ
′)f(y1, . . . , yn−1) = f(γ−1

1 y1γ
′, . . . , γ−1

n−1yn−1γ
′).

This is the restriction of the left-right regular representation of Γn−1 × Γn−1 to
Γn−1 × ∆n−1 upon identification of the diagonal subgroup ∆n−1 ⊂ Γn−1 with Γ.
The Peter-Weyl Theorem shows that L(Γn−1) decomposes under Γn−1 × Γn−1 as

L(Γn−1) '
∑

π∈Γ̂n−1

π⊗̂π∗.

Here Γ̂n−1 denotes the set of irreducible representations of Γn−1 modulo equiv-
alence, π∗ is the dual (or contragredient) representation for π and π⊗̂π∗ is an
exterior tensor product representation for the product group Γn−1 × Γn−1. The
irreducible representations for the product group Γn−1 are themselves exterior ten-
sor products π1⊗̂ · · · ⊗̂πn−1 of irreducible representations πj ∈ Γ̂. The restric-
tion of π1⊗̂ · · · ⊗̂πn−1 to ∆n−1

∼= Γ is the interior tensor product representation
π1 ⊗ · · · ⊗ πn−1. For πn ∈ Γ̂ let m(π1, . . . , πn−1|πn) denote the multiplicity of πn
in π1 ⊗ · · · ⊗ πn−1 so that

π1 ⊗ · · · ⊗ πn−1 '
∑
πn∈bΓ

m(π1, . . . , πn−1|πn)πn.

Now (3.1) yields the decomposition

(3.2) L(Γn/∆n) '
∑

π1,...,πn−1

∑
πn

m(π1, . . . , πn−1|πn)π1⊗̂ · · · ⊗̂πn−1⊗̂π∗n

for L(Γn/∆n) as a Γn-module. As (Γn,∆n) is a Gelfand pair if and only if L(Γn/∆n)
is multiplicity free this proves the following.

Proposition 3.1. (Γn,∆n) is a Gelfand pair if and only if the interior tensor
product representation π1 ⊗ · · · ⊗ πn−1 is multiplicity free for all irreducible repre-
sentations π1, . . . , πn−1 ∈ Γ̂.

In particular, taking n = 2 we recover the well-known fact that (Γ× Γ,∆2) is a
Gelfand pair.

3.2. Decomposition of L(Gn/Kn). The irreducible representations for the wreath
product Gn = Γn o Sn are constructed via the Mackey machine as follows. Let π
be an irreducible representation of Γn. We have say π = π1⊗̂ · · · ⊗̂πn, the exterior
tensor product of irreducible representations (πj , Vj) ∈ Γ̂. The stabilizer of π in
Sn, namely

Sπ = {σ ∈ Sn : πσ(j) = πj for j = 1, . . . , n},
acts on V1 ⊗ · · · ⊗ Vn via the intertwining representation

ω : Sπ → GL(V1 ⊗ · · · ⊗ Vn), ω(σ)(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n).
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Given any ρ ∈ Ŝπ the induced representation

Rπ,ρ = indGnΓnoSπ
(
(π ◦ ω)⊗̂ρ

)
is irreducible and every irreducible representation of Gn is of this form.

Example 3.2. Suppose we have n = 3, π = π1⊗̂π1⊗̂π2. The stabilizer of π in S3

is Sπ ∼= S2 × S1. Letting ρ◦ denote the trivial representation of Sπ the induced
representation Rπ,ρ◦ is

Rπ,ρ◦ = (π1⊗̂π1⊗̂π2)⊕ (π1⊗̂π2⊗̂π1)⊕ (π2⊗̂π1⊗̂π1)

as a representation of Γ3 with S3 permuting the factors.

Recall that (Gn = Γn o Sn,Kn = ∆n × Sn) is a Gelfand pair if and only if
the space RKn of Kn-fixed vectors in R has dim(RKn) ≤ 1 for every irreducible
representation R ∈ Ĝn. Abusing terminology we call dim(RKn) the “number of
Kn-fixed vectors in R.” Letting Kπ = ∆n × Sπ for given π ∈ Γ̂n one has

Rπ,ρ|Kn = indKnKπ
(
(π ◦ ω)⊗̂ρ

)
.

An application of Frobenius reciprocity now yields the following.

Lemma 3.3. The number of Kn-fixed vectors in Rπ,ρ is equal to the number of
Kπ-fixed vectors in (π ◦ ω)⊗̂ρ.

Thus in order for Rπ,ρ to be Kn-spherical there must be Kπ-fixed vectors in
(π ◦ ω)⊗̂ρ and hence ∆n-fixed vectors in π = π1⊗̂ · · · ⊗̂πn. Now (3.2) yields the
following necessary condition for Rπ,ρ to be spherical.

Lemma 3.4. If Rπ,ρ is Kn-spherical then π∗n occurs in the (internal) tensor product
π1 ⊗ . . .⊗ πn−1.

We will make use of this criterion in connection with examples in Section 5.

4. Proof of Theorem 1.2

Among the irreducible representations for Gn = ΓnoSn discussed above are the
following. Given an irreducible representation (π, V ) of Γ one obtains an irreducible
representation π̃ of Gn in the n’th tensor power W = ⊗nV via

π̃(x, σ)(v1 ⊗ v2 ⊗ · · · ⊗ vn) = π(x1)vσ−1(1) ⊗ π(x2)vσ−1(2) · · · ⊗ π(xn)vσ−1(n)

on decomposable tensors.1 Observe that the space of π̃(Sn)-invariant vectors in
W is WSn = Sn(V ), the n’th symmetric power of V . The action of the diagonal
subgroup ∆n on W via π̃ preserves WSn as ∆n and Sn commute in Gn. Moreover
the representation (π̃|∆n

,WSn = Sn(V )) of ∆n coincides with (Sn(π), Sn(V )), the
n’th symmetric power of the representation (π, V ), under the obvious isomorphism
∆n
∼= Γ. It follows that the space WKn of (Kn = ∆n × Sn)-invariant vectors in W

is precisely
WKn = Sn(V )Γ,

the space of Γ-invariant vectors in the n’th symmetric power of (π, V ).

1Here eπ = Rπb⊗···b⊗π,1Sn in the notation from the previous section.
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Proof of Theorem 1.2. Let Γ be a finite non-abelian group of order r = |Γ| and
(π, V ) an irreducible representation of Γ with d = dim(V ) > 1. Such a representa-
tion exists as Γ is non-abelian. A fundamental result in Invariant Theory asserts
that the algebra S(V )Γ of Γ-invariants in S(V ) contains d algebraically indepen-
dent homogeneous elements. In fact Proposition 3.4 in [Sta79] shows that one can
construct d such elements with degrees all dividing r. Suitable powers of these
yield d linearly independent vectors in Sr(V )Γ. Letting (π̃,W ) be the irreducible
representation of Gr = Γr o Sr described above we now have that the space WKr

of (Kr = ∆r×Sr)-fixed vectors in W has dimension at least d. Thus (Gr,Kr) fails
to be a Gelfand pair as was to be shown. �

Remark 4.1. The result that S(V )Γ contains d algebraically independent homoge-
neous elements does not require that (π, V ) be irreducible. Most of the literature on
Invariant Theory, including [Sta79], concerns invariants in polynomial rings C[V ]
rather than symmetric algebras S(V ). To pass to this context one can replace
(π, V ) above by its dual representation (π∗, V ∗) and note that S(V ∗) is canonically
isomorphic to C[V ] as a Γ-module.

5. Wreath products with dihedral groups

In this section we take Γ = Dp, where p is any odd prime. We show that
(Γn o Sn,∆n × Sn) is a Gelfand pair for n ≤ 5 and not a Gelfand pair for n ≥ 6.
The strategy is to first identify representations of Γn which occur in L(Γn/∆n) by
finding the tensor product representations which have ∆n-fixed vectors.

5.1. The case n = 3. We begin by reviewing the representation theory of Dp. The
conjugacy classes are the identity element {I}, pairs of rotations {R,R−1}, and the
set S of all reflections. There are two one-dimensional irreducible representations,
the trivial representation θ1 and the determinant θ2. In addition, there are m =
(p − 1)/2 two-dimensional representations πj with characters χj . In each of these
representations, any rotation has eigenvalues λ and λ−1, where λ is a pth root of
unity.

The character table is:

(1) (2) (2) . . . (m)
I R1 R2 . . . S

θ1 1 1 1 . . . 1
θ2 1 1 1 . . . −1
χj 2 µj µ2j . . . 0

The second row of this table lists the conjugacy classes, while the row above in-
dicates the number of elements in each conjugacy class. In the last row, πj is a
two-dimension representation, with µj = λj + λ−j for j = 1, . . . ,m = (p− 1)/2.

Since all of the characters are real-valued, by Lemma 3.4 we consider represen-
tations πi ⊗ πj ⊗ πk, where πk occurs in πi ⊗ πj . Equivalently, we want πi⊗̂πj⊗̂πk
to contain a ∆3-fixed vector. Let us consider some examples.

The representations π1 ⊗ π1 and π1 ⊗ π2 have characters

I R1 R2 . . . S
χ2

1 4 µ2
1 µ2

2 . . . 0
χ1χ2 4 µ1µ2 µ2µ4 . . . 0
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A calculation shows that

µiµj = µi+j + µi−j ,

where we understand that the subscripts are taken mod p, that µ−k = µk, and that
µ0 = 2. Thus in our examples, we get the characters

I R1 R2 . . . S
χ2

1 4 µ2 + 2 µ4 + 2 . . . 0
χ1χ2 4 µ1 + µ3 µ2 + µ6 . . . 0

and hence π1 ⊗ π1 ' π2 ⊕ θ1 ⊕ θ2 and π1 ⊗ π2 ' π1 ⊕ π3. This tells us that
the triples π1⊗̂π1⊗̂π2, π1⊗̂π1⊗̂θ1, π1⊗̂π1⊗̂θ2 and π1⊗̂π2⊗̂π3 are all ∆3-spherical
representations of Γ3. In each case, there is a single ∆3-fixed vector, and hence
each representation occurs in L(Γ3/∆3) with multiplicity one.

The spherical representations of Γ3 are:

• πi⊗̂πj⊗̂πi+j for i 6= j,
• πi⊗̂πi⊗̂π2i

• πi⊗̂πi⊗̂θ1

• πi⊗̂πi⊗̂θ2

• θ1⊗̂θ1⊗̂θ1

• θ1⊗̂θ2⊗̂θ2

and all permutations of the tensor product factors. Each of these representations
has a single ∆3-fixed vector, hence it occurs in L(Γ3/∆3) with multiplicity one.
Note that for small values of p, not all cases may occur. Now we have:

Proposition 5.1. For Γ = Dp, (Γ3,∆3) and (Γ3 oS3,∆3×S3) are Gelfand pairs.

5.2. The case n = 4. We use identities of the following type to find the spherical
representations:

χiχjχk =
∑

χi±j±k;

χ3
j = χj(χ2j + θ1 + θ2) = χj + χ3j + 2χj = 3χj + χ3j ;

χ2
jχk = (χ2j + θ1 + θ2)χk = χ2j−k + χ2j+k + 2χk.

Representations of Γ4 which occur in L(Γ4/∆4):

• πi⊗̂πj⊗̂πk⊗̂πi±j±k for i, j, k distinct.
• π(4)

j with multiplicity three. (Here π(k) denotes π⊗̂ · · · ⊗̂π.)

• π(3)
j ⊗̂π3j ,

• π(2)
j ⊗̂πk⊗̂π2j±k

• π(2)
j ⊗̂π

(2)
k with multiplicity two.

• θi⊗̂π(2)
j ⊗̂π2j .

• θi⊗̂θj⊗̂π(2)
k for all choices of i, j, k.

• θi⊗̂πj⊗̂πk⊗̂πj±k for j 6= k.
• θ(4)

i .
• θ(2)

1 ⊗̂θ
(2)
2 .

Since there are two cases of multiplicity, (Γ4,∆4) is not a Gelfand pair for Γ = Dp.



10 C. BENSON AND G. RATCLIFF

5.3. Characters for Γ4 o S4. Let π = πi⊗̂πj⊗̂πk⊗̂πl be a representation of Γ4,
Sπ the stabilizer of π in S4, and ω the intertwining representation of Sπ. Let χπ
be the character for π ◦ ω. The technique for computing χπ is illustrated by the
following example:
Suppose that π = π

(4)
1 , so that Sπ = S4. Then

χπ(δ, (1234)) = χ1(δ4),

χπ(δ, (123)) = χπ(δ3)χπ(δ),
χπ(δ, (12)) = χπ(δ2)χπ(δ)2,

χπ(δ, (12)(34)) = χπ(δ2)χπ(δ2).
where we identify δ ∈ Γ with an element of ∆4. The two cases of multiplicity
are π(4)

j and π
(2)
j ⊗̂π

(2)
k , with stabilizers S4 and S2 × S2 respectively. Since π1 is

determined by an arbitrary p th root of unity, we can take j = 1 in both cases.
We need to find the spherical representations of the form Rπ,ρ for ρ ∈ Ŝπ. That

is, in view of Lemma 3.3, we seek representations which contain (Kπ = ∆4 × Sπ)-
fixed vectors. The number of such vectors is:

(5.1)
1

|∆4 × Sπ|
∑
δ,σ

χπ(δ, σ)χρ(σ) =
1
|Sπ|

∑
σ

(
1
|∆4|

∑
δ

χπ(δ, σ)

)
χρ(σ)

For each fixed σ ∈ Sπ, define the function

mπ,σ(δ) = χπ(δ, σ).

This is a class function on ∆ = ∆4, which can be expressed as a linear combination
of irreducible characters. So the sum

Mπ(σ) =
1
|∆|

∑
δ

χπ(δ, σ) = 〈mπ,σ, 1〉∆

is the coefficient of the trivial character θ1 in mπ,σ. Moreover, the function Mπ is
a class function on Sπ, so the sum (5.1) is the coefficient of χρ = χρ in Mπ.

For π = π
(4)
1 , a straightforward calculation shows that:

χπ(δ, e) = χ1(δ)4 = (χ4 + 4χ2 + 3θ1 + 3θ2)(δ),

χπ(δ, (12)) = χ1(δ2)χ1(δ)2 = (χ4 + 2χ2 + θ1 + θ2)(δ)
χπ(δ, (123)) = χ1(δ3)χ1(δ) = (χ4 + χ2)(δ)
χπ(δ, (1234)) = χ1(δ4) = (χ2 + θ1 − θ2)(δ)

χπ(δ, (12)(34)) = χ1(δ2)χ1(δ2) = (χ4 + 3θ1 − 2θ2)(δ)
We take the coefficient of θ1 to obtain:

Mπ(e) = 3, Mπ((12)) = 1, Mπ((123)) = 0, Mπ((1234)) = 1, Mπ((12)(34)) = 3.

Consulting the character table of S4, we find that Mπ is the sum of the trivial
character and a two-dimensional character, with corresponding representations ρ◦
and ρ2.

This tells us that (π(4)
1 ◦ ω)⊗̂ρ◦ and (π(4)

1 ◦ ω)⊗̂ρ2 are Kπ-spherical representa-
tions, each occurring with multiplicity one. Together, these spaces account for the
occurrence of π(4)

1 with multiplicity three.
For π = π

(2)
1 ⊗̂π

(2)
k and Sπ ∼= S2 × S2, we obtain

Mπ(e) = 2, Mπ((12)) = 0, Mπ((34)) = 0, Mπ((12)(34)) = 2.
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Thus Mπ is the sum of the trivial character ρ◦ and the sign character ρs. This tells
us that (π(2)

1 ⊗̂π
(2)
k ◦ω)⊗̂ρ◦ and (π(2)

1 ⊗̂π
(2)
k ◦ω)⊗̂ρs are spherical representations, each

occurring with multiplicity one. Together, these spaces account for the occurrence
of π(2)

1 ⊗̂π
(2)
k with multiplicity two. Thus we see that (Γ4 oS4,∆×S4) is a Gelfand

pair.

5.4. The case n = 5. Using similar techniques to those above, we can find the
spherical representations of Γ5. We list just those with multiplicity:

• π(4)
j ⊗̂ θi with multiplicity 3.

• π(2)
j ⊗̂π

(2)
k ⊗̂ θi with multiplicity 2.

• π(4)
j ⊗̂π2j with multiplicity 4.

• π(3)
j ⊗̂πk⊗̂πj±k with multiplicity 3.

• π(2)
j ⊗̂π

(2)
k ⊗̂π2k with multiplicity 2.

• π(2)
j ⊗̂πk⊗̂πl⊗̂πk±l with multiplicity 2.

Since χ4
j θi = χ4

j and χ2
jχ

2
k θi = χ2

jχ
2
k, the first two cases are handled in the previous

section. For the other cases, we take j = 1.
For π = π

(4)
1 ⊗̂π2 and Sπ ∼= S4 × S1, we obtain

Mπ(e) = 4, Mπ((12)) = 2, Mπ((123)) = 1, Mπ((12)(34)) = 0, Mπ((1234)) = 0.

Thus Mπ is the character of the standard 4-dimensional representation of S4, which
is the sum of the trivial representation ρ◦ and a 3-dimensional irreducible represen-
tation ρ3. This tells us that (π(4)

1 ⊗̂π2 ◦ ω)⊗̂ρ◦ and (π(4)
1 ⊗̂π2 ◦ ω)⊗̂ρ3 are spherical

representations, each occurring with multiplicity one. Together, these spaces ac-
count for the occurrence of π(4)

1 ⊗̂π2 with multiplicity four.
For π = π

(3)
1 ⊗̂πk⊗̂πk+1 and Sπ ∼= S3, we obtain

Mπ(e) = 3, Mπ((12)) = 1, Mπ((123)) = 0.

Thus Mπ is the character of the standard 3-dimensional representation of S3, which
is the sum of the trivial representation ρ◦ and a 2-dimensional irreducible represen-
tation ρ2. This tells us that (π(3)

1 ⊗̂πk⊗̂πk+1 ◦ ω)⊗̂ρ◦ and (π(4)
1 ⊗̂πk⊗̂πk+1 ◦ ω)⊗̂ρ2

are spherical representations, each occurring with multiplicity one. Together, these
spaces account for the occurrence of π(4)

1 ⊗̂πk⊗̂πk+1 with multiplicity three.
For π = π

(2)
1 ⊗̂π

(2)
k ⊗̂π2 and Sπ ∼= S2 × S2, we obtain

Mπ(e) = 2, Mπ((12)) = 2, Mπ((34)) = 0,Mπ((12)(34)) = 0.

Thus Mπ is the sum of two 1-dimensional irreducible representations of S2 × S2,
one of which is the trivial representation.

For π = π
(2)
1 ⊗̂πk⊗̂πl⊗̂πk±l and Sπ ∼= S2, we obtain

Mπ(e) = 2, Mπ((12)) = 0.

Thus Mπ is the sum of the two 1-dimensional irreducible representations of S2. We
conclude that (Γ5 o S5,∆5 × S5) is a Gelfand pair.
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5.5. The Case n = 6. In this case, (D6
p o S6,∆6 × S6) fails to be a Gelfand pair.

This is consistent with the GAP-generated result for p = 3 in [AC12].
Let π = π

(4)
1 ⊗̂π

(2)
2 , with Sπ ∼= S4 × S2. Then we obtain

Mπ(e) = 7, Mπ((12)) = 3, Mπ((123)) = 1, Mπ((1234)) = 1, Mπ((12)(34)) = 3,

Mπ((56)) = 1, Mπ((12)(56)) = 1, Mπ((123)(56)) = 1, Mπ((1234)(56)) = 3,
Mπ((12)(34)(56)) = 5.

One can see that 〈Mπ, ρ◦〉 = 2, and hence that Rπ,ρ◦ = IndG6
Γ6oSπ

(
(π ◦ ω)⊗̂ρ◦

)
has

multiplicity 2 in L(G6/K6). For p = 3, we have π1 = π2, and the result holds for
π = π

(6)
1 .
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[AC12] Kürşat Aker and Mahir Bilen Can. From parking functions to Gelfand pairs. Proc.
Amer. Math. Soc., 140(4):1113–1124, 2012.

[AM03] Hiroki Akazawa and Hiroshi Mizukawa. Orthogonal polynomials arising from the wreath

products of a dihedral group with a symmetric group. J. Combin. Theory Ser. A,
104(2):371–380, 2003.

[CSST06] Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli. Trees, wreath prod-
ucts and finite Gelfand pairs. Adv. Math., 206(2):503–537, 2006.

[CSST08] Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli. Harmonic analysis on

finite groups, volume 108 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge, 2008. Representation theory, Gelfand pairs and Markov

chains.

[CSST14] Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli. Representation the-
ory and harmonic analysis of wreath products of finite groups, volume 410 of London

Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,

2014.
[Mac95] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical

Monographs. The Clarendon Press Oxford University Press, New York, second edition,

1995.
[Sta79] Richard P. Stanley. Invariants of finite groups and their applications to combinatorics.

Bull. Amer. Math. Soc. (N.S.), 1(3):475–511, 1979.
[Ter99] Audrey Terras. Fourier analysis on finite groups and applications, volume 43 of London

Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1999.

Dept of Mathematics, East Carolina University, Greenville, NC 27858

E-mail address: bensonf@ecu.edu, ratcliffg@ecu.edu


