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Abstract. Consider a linear multiplicity free action by a compact Lie group K
on a finite dimensional Hermitian vector space V . Letting K act on the Heisenberg
group HV = V × R yields a Gelfand pair. The condition that K : V be “well-
behaved” establishes a relationship between the associated moment mapping and
highest weight vectors occurring in the polynomial ring C[V ]. Under this condition
an application of the Orbit Method produces a topological embedding of the space
of bounded spherical functions for (K,HV ) in the space of K-orbits in the dual of
the Lie algebra for HV . In Part I of this work it was shown that every irreducible
multiplicity free action is well-behaved. Here we extend this result to encompass all
multiplicity free actions. Our proof uses case-by-case analysis of multiplicity free
actions which are indecomposable but not irreducible.

1. Introduction

Let V ∼= Cn be a finite dimensional complex vector space with Hermitian inner
product 〈·, ·〉 and K be a compact Lie group acting on (V, 〈·, ·〉) by some unitary
representation. The group K acts by automorphisms on the associated Heisenberg
group

HV = V × R with product (z, t)(z′, t′) =

(
z + z′, t+ t′ − 1

2
Im 〈z, z′〉

)
via

k · (z, t) = (k · z, t).
(K,HV ) is said to be a Gelfand pair if the convolution algebra L1

K(HV ) of integrable
K-invariant functions on HV is commutative. As is well known, this is the case if
and only if K : V is a linear multiplicity free action [8]. That is, if and only if the
representation of K in the space C[V ] of holomorphic polynomial functions on V ,

(k · p)(z) = p(k−1 · z),

is multiplicity free.
In this context the spectrum, or Gelfand space, for L1

K(HV ) can be identified, via
integration, with the set ∆(K,HV ) of bounded K-spherical functions on HV endowed
with the compact-open topology. An application of the Orbit Method, given in [5],
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produces an injective mapping Ψ : ∆(K,HV )→ h∗V /K from ∆(K,HV ) to the set of
K-orbits in the dual of the Lie algebra for HV . Giving h∗V /K the quotient topology
our main result here is that

Theorem 1.1. Ψ : ∆(K,HV )→ h∗V /K is a homeomorphism onto its image.

Theorem 1.1 was conjectured, in more general form, in [5] and is the focus of [6]
and [2]. This paper is a continuation of these works. We proved in [6] that Ψ is indeed
a homeomorphism whenever K : V is a well-behaved multiplicity free action. (See
Definition 2.3 below.) Thus Theorem 1.1 is a direct consequence of the following.

Theorem 1.2. Every linear multiplicity free action is well-behaved.

If K1 : V1 and K2 : V2 are multiplicity free actions then so is the product action
(K1 ×K2) : (V1 ⊕ V2). Lemma 3.1 below shows, moreover, that if both K1 : V1 and
K2 : V2 are well-behaved then so is (K1×K2) : (V1⊕V2). So to prove Theorem 1.2 it
suffices to verify that every indecomposable multiplicity free action is well-behaved.
These are the multiplicity free actions which do not decompose as product actions.

The papers [13, 3, 15] classify indecomposable multiplicity free actions up to geo-
metric equivalence. Kac’s paper [13] gives all multiplicity free actions K : V in
which K acts irreducibly on V . In [2] we applied this classification to show that each
irreducible multiplicity free action is well-behaved. Here we complete the proof of
Theorem 1.2 by analyzing the reducible but indecomposable actions given in [3, 15].
As explained in [2, Section 3.7] a byproduct of our calculations is that the orbital
model for ∆(K,HV ), provided by Theorem 1.1, becomes relatively explicit in each
case.

2. Preliminaries and background results

Let K : V denote a fixed multiplicity free action. We summarize below some results
from [2], retaining the notational conventions established there. In particular

• k is the Lie algebra for K, T ⊂ K a maximal torus, t ⊂ k its Lie algebra and
h := tC. Choosing a system of positive roots we decompose kC = h⊕ n+ ⊕ n−
and let B := HN = HN+ be the resulting Borel subgroup in KC.
• Λ ⊂ h∗ is the set of B-highest weights for irreducible representations of KC

occurring in C[V ]. For each α ∈ Λ choose a B-highest weight vector hα ∈ C[V ]
with weight α (unique modulo C×) and
• let αk ∈ k∗ be the (real valued) linear functional on k with αk|t = −iα and
αk ≡ 0 on the orthogonal complement to t in k with respect to an Ad(K)-
invariant inner product.
• τ : V → k∗ is the (unnormalized) moment map for K : V , namely τ(v)(A) :=
i 〈A · v, v〉 .
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2.1. Spherical points and well-behaved multiplicity free actions.

Definition 2.1. [6] A point vα ∈ V is said to be a spherical point for the highest
weight α ∈ Λ if τ(vα) = αk.

Results from [1, 9] ensure that a spherical point vα exists for each α ∈ Λ and that
the K-orbit Kα = K · vα is uniquely determined. The following result facilitates the
calculation of spherical points in examples.

Lemma 2.2 ([2, Lemma 3.1]). vα ∈ V is a spherical point for α ∈ Λ if and only if

(2.1)

{
〈X · vα, vα〉 = −α(X) for all X ∈ h and
〈X · vα, vα〉 = 0 for all X ∈ n+ ⊕ n−

}
As (2.1) is linear in X this amounts to a system of dim(k) quadratic equations whose
solutions give all spherical points for α.

Definition 2.3. [6] Given α ∈ Λ we say that a spherical point vα for α is well-adapted
to hα when the following conditions hold.

(i) hα(vα) 6= 0, and
(ii)

(
∂whα

)
(vα) = 〈w, vα〉hα(vα) for all w ∈ V .

The multiplicity free action K : V is said to be well-behaved if for every α ∈ Λ one
can choose a spherical point vα well-adapted to hα.

Lemma 2.4 ([2, Lemma 3.7]). Let K1 : V be a multiplicity free action obtained
by restricting a multiplicity free action K2 : V to a closed Lie subgroup K1 ⊂ K2.
Assume, moreover, that C[V ] shares a common decomposition under the associated
representations of K1 and K2. Then K1 : V is well-behaved if and only if K2 : V is
well-behaved.

2.2. A limiting procedure. Recall that α ∈ Λ is a fundamental highest weight for
K : V when hα is an irreducible polynomial. The fundamental highest weights are
finite in number and freely generate Λ as an additive semigroup [12]. The number
of fundamental highest weights for K : V is its rank. A technical Lemma from [2] is
used to study examples.

Lemma 2.5 ([2, Lemma 3.5]). Let K : V be a rank r multiplicity free action with
fundamental highest weights {α1, . . . , αr} and associated fundamental highest weight
vectors hj = hαj

. Suppose that for all positive real numbers x1, . . . , xr > 0 there is a
point v(x) = v(x1, . . . , xr) in V which satisfies the following four conditions:

(1)

{
〈X · v(x), v(x)〉 = −(x1α1 + · · ·+ xrαr)(X) for all X ∈ h and
〈X · v(x), v(x)〉 = 0 for all X ∈ n+ ⊕ n−

}
.

(2) hi(v(x)) 6= 0 for 1 ≤ i ≤ r.
(3) For each 1 ≤ k < r and indices 1 ≤ j1 < j2 < · · · < jk ≤ r the limit

lim
xjk
→0+
· · · lim

xj1
→0+

v(x1, . . . , xr)

exists in V , and



4 C. BENSON AND G. RATCLIFF

(4) limxjk
→0+ · · · limxj1

→0+ hi
(
v(x1, . . . , xr)

)
6= 0 for each i ∈ {1, . . . , r}\{j1, . . . , jk}.

Then K : V is a well-behaved multiplicity free action.

Definition 2.6. We call a point v(x) = v(x1, . . . , xr) ∈ V satisfying condition (1)
in Lemma 2.5 a generalized spherical point. Moreover v(x) is said to be a generic
generalized spherical point when each parameter xj is non-zero.

As Λ =
{
x1α1 + · · · + xrαr : xj ∈ Z, xj ≥ 0

}
, Lemma 2.2 shows v(x) to be a

spherical point for weight (α = x1α1 + · · · + xrαr) ∈ Λ whenever each xj in a non-
negative integer. If each xj is a positive integer then we call the weight α generic.

3. Product actions

A routine Lemma enables us to reduce the proof of Theorem 1.2 to the study of
indecomposable multiplicity free actions.

Lemma 3.1. Products of well-behaved multiplicity free actions are well-behaved.

Proof. Consider a product action (K1 × K2) : (V1 ⊕ V2) where K1 : V1 and K2 :
V2 are well-behaved multiplicity free actions in Hermitian vector spaces (Vj, 〈·, ·〉j).
Equipping V1 ⊕ V2 with the direct sum Hermitian inner product it follows that the
moment mapping τ : V1 ⊕ V2 → (k1 × k2)

∗ = k∗1 × k∗2 is just τ(v1, v2) =
(
τ1(v1), τ2(v2)

)
where τj : Vj → kj is the moment mapping for Kj : Vj.

Let Λj ⊂ h∗j be the set of Bj-highest weights for representations of Kj occurring in
C[Vj]. The set of (B1×B2)-highest weights for representations of K1×K2 occurring
in C[V1⊕V2] ∼= C[V1]⊗C[V2] is Λ = Λ1×Λ2 ⊂

(
(h1×h2)

∗ = h∗1×h∗2
)
. If hαj

∈ C[Vj] are
highest weight vectors with weights αj ∈ Λj then hα1 ⊗hα2 is a highest weight vector
in C[V1⊕V2] with weight (α1, α2) ∈ Λ. Let vαj

∈ C[Vj] be a spherical point for αj well-
adapted to hαj

. We claim that the spherical point (vα1 , vα2) ∈ V1⊕V2 for (α1, α2) ∈ Λ

is well-adapted to hα1 ⊗ hα2 . Indeed
(
hα1 ⊗ hα2

)
(vα1 , vα2) = hα1(vα1)hα2(vα2) 6= 0

and by linearity it suffices to check Definition 2.3 condition (ii) for derivatives in
directions lying in V1 ∪ V2 ⊂ V1 ⊕ V2. If say w ∈ V1 then one has(

∂(w,0)(hα1 ⊗ hα2)
)
(vα1 , vα2) =

(
∂whα1

)
(vα1)hα2(vα2) = 〈w, vα1〉1 hα1(vα1)hα2(vα2)

= 〈(w, 0), (vα1 , vα2)〉
(
hα1 ⊗ hα2

)
(vα1 , vα2). �

4. Reducible but indecomposable multiplicity free actions

Each multiplicity free action splits as a product of indecomposable multiplicity
free actions. The indecomposable but non-irreducible multiplicity free actions are
classified in [3] and [15]. See also [14]. Scalar actions somewhat complicate the
classification. Lemma 2.4 ensures, however, that a multiplicity free action obtained
by adding or removing a copy of the scalars T from a well-behaved multiplicity
free action remains well-behaved. So for our purposes it suffices to describe the
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multiplicity free actions which are fully saturated. That is, actions K : V which
include a full copy of the scalars acting on each irreducible subspace of V .

Up to geometric equivalence there are twelve saturated indecomposable non-irreducible
multiplicity free actions K : V . In each case V = V1 ⊕ V2 is the direct sum of two
K-irreducible subspaces, K = K ′ × T× T with K ′ compact semisimple and K : V1,
K : V2 are irreducible multiplicity free actions. The possibilities for K ′ : V are listed
in Table 1, which follows notational conventions from [3].1 To complete the proof of

§ Action rank

(5.2) SU(n)⊕SU(n) SU(n) (n ≥ 2) 3
(5.3) SU(n)⊕SU(n) SU(n)∗ (n ≥ 3) 3
(5.4) (SU(n)⊗ SU(2))⊕SU(2) (SU(2)⊗ SU(m)) (n,m ≥ 2) 5
(5.5) (Sp(2n)⊗ SU(2))⊕SU(2) (SU(2)⊗ SU(m)) (n,m ≥ 2) 6
(5.6) (Sp(2n)⊗ SU(2))⊕SU(2) (SU(2)⊗ Sp(2m)) (n,m ≥ 2) 7
(5.7) SU(2)⊕SU(2) (SU(2)⊗ Sp(2n)) (n ≥ 2) 5
(5.8) Sp(2n)⊕Sp(2n) Sp(2n) (n ≥ 2) 4
(5.9) Spin(8)⊕Spin(8) SO(8) 5

(6.1) SU(n)⊕SU(n) (SU(n)⊗ SU(m)) (n,m ≥ 2) min(2n, 2m+ 1)
(6.2) SU(n)∗ ⊕SU(n) (SU(n)⊗ SU(m)) (n ≥ 3,m ≥ 2) min(2n, 2m+ 1)
(6.3) SU(n)⊕SU(n) Λ2(SU(n)) (n ≥ 4) n
(6.4) SU(n)∗ ⊕SU(n) Λ2(SU(n)) (n ≥ 4) n

Table 1

Theorem 1.2 we will verify that each of these actions is well-behaved. Numbers in
the first column of the table refer to subsections treating each example in turn.

5. Case-by-case analysis: Fixed rank examples

In this section we examine the first eight actions in Table 1. Each of these (families
of) examples has a fixed rank and one can use brute force calculation. For each action
K : V we will apply Lemma 2.5 (the limiting procedure) and proceed as follows.

(a) Give explicit fundamental highest weights αj and highest weight vectors hj.
This data can be found in [3, 4, 14, 15].

(b) Use Lemma 2.2 to obtain a system of quadratic equations whose solutions are
generic generalized spherical points.

(c) Produce one such solution, v(x) say.
(d) Obtain formulas for the hj(v(x))’s to verify condition (2) in Lemma 2.5.

1In fact references [3, 14, 15] concern actions of complex algebraic groups. The table lists compact
forms for these.
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(e) Take limits as subsets of the parameters x approach zero in v(x) and in the
formulas for the hj(v(x))’s, verifying conditions (3) and (4) in the lemma.

We made extensive use of a computer algebra system, Maple, to facilitate the
calculations. In most cases, however, Maple was unable to solve the equations from
step (b) on general symbolic inputs. Considerable experimentation with numerical
examples was used to conjecture the expressions given below for a generic generalized
spherical point in each case. It is, however, not difficult to check by hand that these
points do solve the equations from step (b). Steps (d) and (e) are straightforward
in each case. But for a multiplicity free action or rank r there are 2r − 2 non-empty
proper subsets of the parameters and thus 2r − 2 limits to examine in all. We used
Maple to perform step (e) and, except for the rank 3 actions, will omit the details.
The interested reader can find a Maple worksheet concerning the rank 7 example
(5.6) at the first author’s web page [7].

5.1. Notational conventions. The first seven actions K : V from Table 1 will each
be realized in a suitable space of complex matrices, V = Mn,m(C) say, and the usual
Hermitian inner product on Mn,m(C), namely

〈z, w〉 = tr(zw∗),

is K-invariant. For matrices z ∈ V the notations zi,• and z•,j indicate row and column
vectors. The row and column spaces carry their standard inner product and norm.

We fix the following notation concerning highest weight theory for the general
linear and symplectic groups.

• Bn will denote the Borel subgroup of lower triangular matrices in GL(n,C),
hn the Cartan subalgebra of diagonal matrices in gl(n,C) and εj ∈ h∗n the
functional

(5.1) εj
(
diag(d1, . . . , dn)

)
= dj, (1 ≤ j ≤ n).

• The compact symplectic group is Sp(2n) = Sp(2n,C)∩U(2n) where Sp(2n,C)
is the subgroup of GL(2n,C) preserving the symplectic form

(5.2) ω
(
(z1, . . . , z2n), (w1, . . . , w2n)

)
=

n∑
j=1

(zjwn+j − zn+jwj).

The group Sp(2n,C) has Lie algebra

sp(2n,C) =

{[
A B
C −At

]
: A,B,C ∈ gl(n,C), Bt = B, Ct = C

}
.

As Borel subgroup BSp
2n in Sp(2n,C) we choose BSp

2n = exp(bSp2n) where bSp2n is
the subalgebra of sp(2n,C) consisting of matrices as above with B = 0 and
A lower triangular. A Cartan subalgebra in sp(2n,C) is given by

hSp2n =
{
diag(a1, . . . , an,−a1, . . . ,−an) : aj ∈ C

}
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and in this context we let εj ∈ (hSp2n)∗ (1 ≤ j ≤ n) denote the linear functional

(5.3) εj
(
diag(a1, . . . , an,−a1, . . . ,−an)

)
= aj.

5.2. SU(n)⊕SU(n) SU(n) (n ≥ 2). Here K = U(n) × T acts on V = V1 ⊕ V2 =
Cn ⊕ Cn ∼= Mn,2(C) via

(k, c) · z = kz

[
c 0
0 1

]
=
[
ckz•,1

∣∣kz•,2]
for (k, c) ∈ K and z ∈Mn,2(C).

As Borel subgroup in KC = GL(n,C)× C× we take B = Bn × C× and as Cartan
subalgebra h = hn × C. Let T = (0, 1) ∈ h and ε◦ ∈ h∗ be the functional with
ε◦(T ) = 1, ε◦|hn = 0. This is a rank 3 multiplicity free action with fundamental
B-highest weights and associated highest weight vectors α1 = −(ε1 + ε◦) h1(z) = z11

α2 = −ε1 h2(z) = z12

α3 = −(ε1 + ε2 + ε◦) h3(z) = det2(z)

 .

Here det2(z) is the determinant of the 2× 2 matrix formed by the first two rows in z.
For non-negative integer exponents hα = ha1h

b
2h

c
3 is a highest weight vector in C[V ]

with weight

α = aα1 + bα2 + cα3 = −
(
(a+ b+ c)ε1 + cε2 + (a+ c)ε◦

)
.

One has 〈T · z, z〉 = ‖z•,1‖2 and 〈Ei,j · z, z〉 = 〈zj,•, zi,•〉 for elementary matrices
Ei,j ∈ gl(n,C). Thus Lemma 2.2 shows that the matrix entries zij of a spherical
point for α must satisfy

‖z•,1‖2 = a+ c, ‖z1,•‖2 = a+ b+ c, ‖z2,•‖2 = c

and 〈zj,•, zi,•〉 = 0 for i 6= j.
It is easy to verify that the entries of

(5.4) v(a, b, c) :=



√
a(a+b+c)
a+b

√
b(a+b+c)
a+b

−
√

bc
a+b

√
ac
a+b

0 0
...

...
0 0


satisfy the above equations for any given real parameters a, b, c ≥ 0 provided a+b 6= 0.
In particular (5.4) is a generic generalized spherical point if a, b, c > 0. To show that
the action U(n)× T : Mn,2(C) is well-behaved it remains to check conditions (2)-(4)
of Lemma 2.5.
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Evaluating the fundamental highest weight vectors at v = v(a, b, c) yields

(5.5) h1(v) =

√
a(a+ b+ c)

a+ b
, h2(v) =

√
b(a+ b+ c)

a+ b
, h3(v) =

√
c(a+ b+ c).

As these values are non-zero for positive parameters (a, b, c) condition (2) in Lemma
2.5 holds here. As regards condition (3) in the lemma we just need to observe that
for fixed c > 0 the limit

lim
b→0+

lim
a→0+

v(a, b, c) = lim
b→0+


0
√
b+ c

−
√
c 0
0 0
...

...
0 0

 =


0
√
c

−
√
c 0
0 0
...

...
0 0


does exist. Limiting values for hj

(
v(a, b, c)

)
(j = 1, 2, 3) as one or two parameters

approach zero are given by

limit h1

(
v(a, b, c)

)
h2

(
v(a, b, c)

)
h3

(
v(a, b, c)

)
lima→0+ 0

√
b+ c

√
c(b+ c)

limb→0+

√
a+ c 0

√
c(a+ c)

limc→0+

√
a

√
b 0

limb→0+ lima→0+ 0
√
c c

limc→0+ lima→0+ 0
√
b 0

limc→0+ limb→0+

√
a 0 0


.

These show, in particular, that condition (4) in Lemma 2.5 holds.

5.3. SU(n)⊕SU(n) SU(n)∗ (n ≥ 3). This is a twisted variant of Example 5.2 with
K = U(n)× T acting on V = V1 ⊕ V2 = Cn ⊕ Cn ∼= Mn,2(C) via

(k, c) · z =
[
ckz•,1 | k−tz•,2

]
where k−t := (k−1)t.

Here the action in the second column is contragredient to the standard action in
the first column. One takes n ≥ 3 here as Examples 5.3 and 5.2 are geometrically
equivalent when n = 2. This is so because the standard representation for SU(2) is
self-contragredient.

Again K : V has rank 3 with fundamental B-highest weights and highest weight
vectors  α1 = −(ε1 + ε◦) h1(z) = z11

α2 = +εn h2(z) = zn2

α3 = −ε◦ h3(z) =
∑n

i=1 zi1zi2 = z•,1 · z•,2

 .

For non-negative integer exponents hα = ha1h
b
2h

c
3 is a highest weight vector in C[V ]

with weight

α = aα1 + bα2 + cα3 = −
(
aε1 − bεn + (a+ c)ε◦

)
.
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Now 〈T · z, z〉 = ‖z•,1‖2 as before but 〈Ei,j · z, z〉 = zj1zi1 − zi2zj2 for elementary
matrices Ei,j ∈ gl(n,C). So the matrix entries zij of a spherical point for α must
satisfy

‖z•,1‖2 = a+ c, |z11|2 − |z12|2 = a, |zn1|2 − |zn2|2 = −b
and zj1zi1 − zi2zj2 = 0 for i 6= j. The matrix entries in

(5.6) v(a, b, c) :=



√
a(a+b+c)
a+b

√
ac
a+b

0 0
...

...
0 0√
bc
a+b

√
b(a+b+c)
a+b


satisfy these equations for any real values a, b, c ≥ 0 with a+b 6= 0. In particular (5.6)
is a generic generalized spherical point when a, b, c > 0. Evaluating the fundamental
highest weight vectors hj at v = v(a, b, c) again yields Equations 5.5. Thus conditions
(2)-(4) from Lemma 2.5 hold as verified in Example 5.2.

5.4. (SU(n)⊗ SU(2))⊕SU(2) (SU(2)⊗ SU(m)) (n,m ≥ 2). Here K = U(n) ×
U(m)× U(2) acts on V = V1 ⊕ V2 = (Cn ⊗ C2)⊕ (Cm ⊗ C2) ∼= Mn+m,2(C) via

(5.7) (k1, k2, k3) · z =

[
k1 0
0 k2

]
zkt3.

We take Borel subgroup B = Bn×Bm×B2 in KC = GL(n,C)×GL(m,C)×GL(2,C)
and let εj, ε

′
j, ε

′′
j denote functionals on h = hn × hm × h2 as in (5.1) supported on

each of the three factors. This is a rank 5 multiplicity free action with fundamental
B-highest weights and highest weight vectors

(5.8)



α1 = −(ε1 + ε′′1) h1(z) = z11

α2 = −(ε′1 + ε′′1) h2(z) = zn+1,1

α3 = −(ε1 + ε2 + ε′′1 + ε′′2) h3(z) = det2(z)

α4 = −(ε′1 + ε′2 + ε′′1 + ε′′2) h4(z) =

∣∣∣∣ zn+1,1 zn+1,2

zn+2,1 zn+2,2

∣∣∣∣
α5 = −(ε1 + ε′1 + ε′′1 + ε′′2) h5(z) =

∣∣∣∣ z11 z12

zn+1,1 zn+1,2

∣∣∣∣


.

For non-negative integer exponents hα = ha1h
b
2h

c
3h

d
4h

e
5 is a highest weight vector in

C[V ] with weight

α = aα1 + bα2 + cα3 + dα4 + eα5

= −
(
(a+ c+ e)ε1 + cε2 + (b+ d+ e)ε′1 + dε′2 + (a+ b+ c+ d+ e)ε′′1 + (c+ d+ e)ε′′2

)
.
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Letting Ei,j, E
′
i,j and E ′′i,j denote elementary matrices in gl(n,C), gl(m,C) and

gl(2,C) respectively one has

〈Ei,j · z, z〉 = 〈zj,•, zi,•〉 ,
〈
E ′i,j · z, z

〉
= 〈zn+j,•, zn+i,•〉 ,

〈
E ′′i,j · z, z

〉
= 〈z•,j, z•,i〉

for z ∈Mn+m,2(C). Thus a spherical point z for weight α must have

• orthogonal columns,
• rows 1 . . . n pair-wise orthogonal and rows n+1 . . . n+m pair-wise orthogonal,
• ‖z1•‖2 = a+ c+ e, ‖z2,•‖2 = c, ‖zn+1,•‖2 = b+ d+ e, ‖zn+2,•‖2 = d,
• ‖z•,1‖2 = a+ b+ c+ d+ e, ‖z•,2‖2 = c+ d+ e.

To solve these equations we may set rows other than 1, 2, n + 1 and n + 2 to zero
and reduce to the case n = m = 2. So now K = U(2)× U(2)× U(2), V = M4,2(C).
One can check that the matrix entries of

v
(
a, b, c, d, e) :=



−
√

a(a+b+e)(a+c+e)
(a+b)(a+e)

√
be(a+c+e)
(a+b)(a+e)√

bce
(a+b)(a+e)

√
ac(a+b+e)
(a+b)(a+e)√

b(a+b+e)(b+d+e)
(a+b)(b+e)

√
ae(b+d+e)
(a+b)(b+e)

−
√

ade
(a+b)(b+e)

√
bd(a+b+e)
(a+b)(b+e)


satisfy each of the above conditions for arbitrary positive real parameters. This is
a generic generalized spherical point for this example. Evaluating the fundamental
highest weight vectors at v = v(a, b, c, d, e) gives

h1(v) = −
√

a(a+b+e)(a+c+e)
(a+b)(a+e)

h2(v) =
√

b(a+b+e)(b+d+e)
(a+b)(b+e)

h3(v) = −
√
c(a+ c+ e) h4(v) =

√
d(b+ d+ e)

h5(v) = −
√

e(a+b+e)(a+c+e)(b+d+e)
(a+e)(b+e)

 .

These values are non-zero as required by Lemma 2.5 condition (2). To check condi-
tions (3) and (4) in the Lemma one needs to take limits as one or more parameters
approach zero in succession and compute the limiting values of the hj(v)’s. This is
routine but there are 25− 2 = 30 limits to examine in all. We used Maple to perform
this task. For example one finds

lim
c→0+

lim
a→0+

v(a, b, c, d, e) = lim
c→0+


0

√
c+ e√

c 0√
b+ d+ e 0

0
√
d

 =


0

√
e

0 0√
b+ d+ e 0

0
√
d

 = v◦

say and each of the values

h2(v◦) =
√
b+ d+ e, h4(v◦) =

√
d(b+ d+ e), h5(v◦) = −

√
e(b+ d+ e)

are non-zero.
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5.5. (Sp(2n)⊗ SU(2))⊕SU(2) (SU(2)⊗ SU(m)) (n,m ≥ 2). Now K = Sp(2n) ×
U(m) × U(2) acts on V = V1 ⊕ V2 = (C2n ⊗ C2) ⊕ (Cm ⊗ C2) ∼= M2n+m,2(C) as in
Equation 5.7 from the previous example. This is a rank 6 multiplicity free action.

We use Borel subgroup B = BSp
2n × Bm × B2 in KC = Sp(2n,C) × GL(m,C) ×

GL(2,C) and Cartan subalgebra h = hSp2n × hm× h2. Let εj ∈ h∗ be given by (5.3) on

hSp2n and ε′j, ε
′′
j ∈ h∗ be given by (5.1) on the factors hm and h2 respectively. With these

notational conventions the fundamental highest weights and highest weight vectors
are as in Equations 5.8 above (but with “n” replaced by “2n” in the formulas for
h2(z), h4(z), h5(z)) together with

α6 = −(ε′′1 + ε′′2), h6(z) = ω(z′•,1, z
′
•,2),

where z′ ∈M2n,2(C) denotes the first 2n rows in z ∈M2n+m,2(C) and ω the symplectic

inner product (5.2). For non-negative integer exponents hα = ha1h
b
2h

c
3h

d
4h

e
5h

f
6 is a

highest weight vector in C[V ] with weight

α = aα1 + bα2 + cα3 + dα4 + eα5 + fα6

= −
(
(a+ c+ e)ε1 + cε2 + (b+ d+ e)ε′1 + dε′2 + (a+ b+ c+ d+ e+ f)ε′′1

+ (c+ d+ e+ f)ε′′2
)
.

It will suffice, as in the Example 5.4, to consider the case n = m = 2. So now
K = Sp(4) × U(2) × U(2) and V = M6,2(C). From the actions of the two copies of
gl(2,C) one obtains

〈
E ′i,j · z, z

〉
= 〈z4+j,•, z4+i,•〉 and

〈
E ′′i,j · z, z

〉
= 〈z•,j, z•,i〉. The

action of sp(4,C) gives


〈(E1,1 − E3,3) · z, z〉 = ‖z1,•‖2 − ‖z3,•‖2 〈E1,3 · z, z〉 = 〈z3,•, z1,•〉
〈(E2,2 − E4,4) · z, z〉 = ‖z2,•‖2 − ‖z4,•‖2 〈E2,4 · z, z〉 = 〈z4,•, z2,•〉
〈(E1,2 − E4,3) · z, z〉 = 〈z2,•, z1,•〉 − 〈z3,•, z4,•〉
〈(E1,4 + E2,3) · z, z〉 = 〈z4,•, z1,•〉+ 〈z3,•, z2,•〉

 .

Thus a spherical point z ∈M6,2(C) for weight α must have

• 〈z•,1, z•,2〉 = 0,
• 〈z1,•, z3,•〉 = 0 = 〈z2,•, z4,•〉 = 〈z5,•, z6,•〉,
• 〈z1,•, z2,•〉 = 〈z4,•, z3,•〉, 〈z1,•, z4,•〉 = −〈z2,•, z3,•〉
• ‖z1,•‖2 − ‖z3,•‖2 = a+ c+ e, ‖z2,•‖2 − ‖z4,•‖2 = c,
• ‖z5,•‖2 = b+ d+ e, ‖z6,•‖2 = d,
• ‖z•,1‖ = a+ b+ c+ d+ e+ f , ‖z•,2‖2 = c+ d+ e+ f .
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A generic generalized spherical point whose matrix entries solve these equations for
arbitrary positive values of a, . . . , f is given below.

v(a, b, c, d, e, f) :=



√
a(a+b+e)(a+c+e)(a+2 c+e+f)

(a+b)(a+e)(a+2c+e)
−
√

be(a+c+e)(a+2 c+e+f)
(a+b)(a+e)(a+2c+e)√

bce(a+2 c+e+f)
(a+b)(a+e)(a+2c+e)

√
ac(a+b+e)(a+2 c+e+f)
(a+b)(a+e)(a+2c+e)√

bef(a+c+e)
(a+b)(a+e)(a+2c+e)

√
af(a+b+e)(a+c+e)

(a+b)(a+e)(a+2c+e)

−
√

acf(a+b+e)
(a+b)(a+e)(a+2c+e)

√
bcef

(a+b)(a+e)(a+2c+e)

−
√

b(a+b+e)(b+d+e)
(a+b)(b+e)

−
√

ae(b+d+e)
(a+b)(b+e)

−
√

ade
(a+b)(b+e)

√
bd(a+b+e)
(a+b)(b+e)


Evaluating the h′js at v = v(a, b, c, d, e, f) yields

h1(v) =
√

a(a+b+e)(a+c+e)(a+2 c+e+f)
(a+b)(a+e)(a+2c+e)

h2(v) = −
√

b(a+b+e)(b+d+e)
(a+b)(b+e)

h3(v) =
(a+2c+e+f)

√
c(a+c+e)

a+2c+e
h4(v) = −

√
d(b+ d+ e)

h5(v) = −
√

e(a+b+e)(a+c+e)(b+d+e)(a+2c+e+f)
(a+e)(b+e)(a+2c+e)

h6(v) =
√
f(a+ 2c+ e+ f)


.

upon simplification using a computer algebra system. These show, in particular, that
condition (2) in Lemma 2.5 holds. We also used Maple to check conditions (3) and
(4) from the lemma, completing the verification for this example. This entails routine
examination of 26 − 2 = 62 limits.

5.6. (Sp(2n)⊗ SU(2))⊕SU(2) (SU(2)⊗ Sp(2m)) (n,m ≥ 2). Next K = Sp(2n)×
Sp(2m)×U(2)×T acts on V = V1⊕ V2 = (C2n⊗C2)⊕ (C2m⊗C2) ∼= M2(n+m),2(C).
Letting z′ and z′′ denote the first 2n and last 2m rows of z ∈M2(n+m),2(C) we have

(k1, k2, k3, c) · z =

[
cI2n 0

0 I2m

] [
k1 0
0 k2

]
zkt3 =

[
ck1z

′
•,1 ck1z

′
•,2

k2z
′′
•,1 k2z

′′
•,2

]
kt3.

The factor T is required to fully saturate this example. In fact this action fails to be
multiplicity free if the circle is removed [3, Theorem 6].

We use Borel subgroup B = BSp
2n × B

Sp
2m × B2 × C× in KC and Cartan subalgebra

h = hSp2n × hSp2m × h2 × C. Let

• εj, ε′j ∈ h∗ be as in (5.3) on the symplectic factors hSp2n and hSp2m,
• ε′′j ∈ h∗ be as in (5.1) on the h2 factor and
• ε◦ ∈ h∗ be dual to T = (0, 0, 0, 1) ∈ h.
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The action K : V has rank 7 with fundamental highest weights


α1 = −(ε1 + ε′′1 + ε◦) α4 = −(ε′1 + ε′2 + ε′′1 + ε′′2)
α2 = −(ε′1 + ε′′1) α5 = −(ε1 + ε′1 + ε′′1 + ε′′2 + ε◦)
α3 = −(ε1 + ε2 + ε′′1 + ε′′2 + 2ε◦) α6 = −(ε′′1 + ε′′2 + 2ε◦)

α7 = −(ε′′1 + ε′′2)

 .

Fundamental highest weight vectors h1(z), . . . , h6(z) with weights α1, . . . , α6 are as
in Example 5.5. A highest weight vector for α7 is

h7(z) = ω(z′′•,1, z
′′
•,2).

For non-negative integer exponents hα = ha1h
b
2h

c
3h

d
4h

e
5h

f
6h

g
7 is a highest weight vector

in C[V ] with weight

α = aα1 + bα2 + cα3 + dα4 + eα5 + fα6 + gα7

= −
(
(a+ c+ e)ε1 + cε2 + (b+ d+ e)ε′1 + dε′2 + (a+ b+ c+ d+ e+ f + g)ε′′1

+ (c+ d+ e+ f + g)ε′′2 + (a+ 2c+ e+ 2f)ε◦
)
.

As in Examples 5.4, 5.5 we need only consider the case n = m = 2. So now
K = Sp(4) × Sp(4) × U(2) × T and V = M8,2(C). Lemma 2.2 yields a system of
equations for the matrix entries of a spherical point z ∈ M8,2(C) for weight α, just
as in Example 5.5, namely

• 〈z•,1, z•,2〉 = 0,
• 〈z1,•, z3,•〉 = 0 = 〈z2,•, z4,•〉 = 〈z5,•, z7,•〉 = 〈z6,•, z8,•〉,
• 〈z1,•, z2,•〉 = 〈z4,•, z3,•〉, 〈z1,•, z4,•〉 = −〈z2,•, z3,•〉
• 〈z5,•, z6,•〉 = 〈z8,•, z7,•〉, 〈z5,•, z8,•〉 = −〈z6,•, z7,•〉
• ‖z1,•‖2 − ‖z3,•‖2 = a+ c+ e, ‖z2,•‖2 − ‖z4,•‖2 = c,
• ‖z5,•‖2 − ‖z7,•‖ = b+ d+ e, ‖z6,•‖2 − ‖z8,•‖ = d,
• ‖z•,1‖ = a+ b+ c+ d+ e+ f + g, ‖z•,2‖2 = c+ d+ e+ f + g,
• 〈z′, z′〉 = ‖z′•,1‖2 + ‖z′•,2‖2 = a+ 2c+ e+ 2f .
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A generic generalized spherical point whose matrix entries solve these equations for
arbitrary positive values of a, . . . , g is given below.

v(a, b, c, d, e, f, g) :=



−
√

a(a+b+e)(a+c+e)(a+2 c+e+f)
(a+b)(a+e)(a+2 c+e)

√
be(a+c+e)(a+2 c+e+f)
(a+b)(a+e)(a+2 c+e)

−
√

bce(a+2 c+e+f)
(a+b)(a+e)(a+2 c+e)

−
√

ac(a+b+e)(a+2 c+e+f)
(a+b)(a+e)(a+2 c+e)√

bef(a+c+e)
(a+b)(a+e)(a+2 c+e)

√
af(a+b+e)(a+c+e)

(a+b)(a+e)(a+2 c+e)

−
√

acf(a+b+e)
(a+b)(a+e)(a+2 c+e)

√
bcef

(a+b)(a+e)(a+2 c+e)

−
√

b(a+b+e)(b+d+e)(b+2 d+e+g)
(a+b)(b+e)(b+2d+e)

−
√

ae(b+d+e)(b+2 d+e+g)
(a+b)(b+e)(b+2d+e)

−
√

ade(b+2 d+e+g)
(a+b)(b+e)(b+2d+e)

√
bd(a+b+e)(b+2 d+e+g)
(a+b)(b+e)(b+2d+e)

−
√

aeg(b+d+e)
(a+b)(b+e)(b+2d+e)

√
bg(a+b+e)(b+d+e)

(a+b)(b+e)(b+2d+e)√
bdg(a+b+e)

(a+b)(b+e)(b+2d+e)

√
adeg

(a+b)(b+e)(b+2d+e)



.

The fundamental highest weight vectors take the following non-zero values at v =
v(a, b, c, d, e, f, g).

h1(v) = −
√

a(a+b+e)(a+c+e)(a+2 c+e+f)
(a+b)(a+e)(a+2 c+e)

h2(v) = −
√

b(a+b+e)(b+d+e)(b+2 d+e+g)
(a+b)(b+e)(b+2d+e)

h3(v) =
(a+2c+e+f)

√
c(a+c+e)

a+2c+e
h4(v) = − (b+2d+e+g)

√
d(b+d+e)

b+2d+e

h5(v) =
√

e(a+b+e)(a+c+e)(b+d+e)(a+2c+e+f)(b+2d+e+g)
(a+e)(b+e)(a+2c+e)(b+2d+e)

h6(v) = −
√
f(a+ 2c+ e+ f) h7(v) = −

√
g(b+ 2d+ e+ g)


.

To complete the verification that K : V is well-behaved via Lemma 2.5 we used com-
puter calculations to check each of 27 − 2 = 126 relevant limits. A Maple worksheet
giving full details can be found at [7].

5.7. SU(2)⊕SU(2) (SU(2)⊗ Sp(2n)) (n ≥ 2). Next consider K = Sp(2n)×U(2)×T
acting on V = V1 ⊕ V2 = (C2n ⊗ C2)⊕ C2 ∼= M2n+1,2(C) via

(k1, k2, c) · z =

[
c 0
0 k1

]
zkt2.

As Borel subgroup in KC = Sp(2n,C)×GL(2,C)×C× we take B = BSp
2n ×B2×C×

and as Cartan subalgebra h = hSp2n × h2 × C. Let εj ∈ h∗ be as in (5.3) on the

symplectic factor hSp2n , ε′j be as in (5.1) on the h2 factor and ε◦ dual to T = (0, 0, 1).
This is a rank 5 multiplicity free action with the following fundamental B-highest

weights and associated highest weight vectors. Here we let z′ ∈ M2n,2(C) be the
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matrix obtained by removing the first row from z ∈M2n+1,2(C).
α1 = −(ε′1 + ε◦) h1(z) = z11

α2 = −(ε1 + ε′1) h2(z) = z21

α3 = −(ε1 + ε′1 + ε′2 + ε◦) h3(z) = det2(z)
α4 = −(ε1 + ε2 + ε′1 + ε′2) h4(z) = det2(z

′)
α5 = −(ε′1 + ε′2) h5(z) = ω(z′•,1, z

′
•,2)

 .

For non-negative integer exponents hα = ha1h
b
2h

c
3h

d
4h

e
5 is a highest weight vector in

C[V ] with weight

α = aα1 + bα2 + cα3 + dα4 + eα5

= −
(
(b+ c+ d)ε1 + dε2 + (a+ b+ c+ d+ e)ε′1 + (c+ d+ e)ε′2 + (a+ c)ε◦

)
.

As in prior examples it suffices to examine the case n = 2. So henceforth K =
Sp(4)× U(2)× T and V = M5,2(C). Applying Lemma 2.2 one obtains the following
equations for the matrix entries of a spherical point z ∈M5,2(C) for weight α.

‖z•,1‖2 = a+ b+ c+ d+ e 〈z•,1, z•,2〉 = 0
‖z•,2‖2 = c+ d+ e 〈z2,•, z4,•〉 = 0
‖z1,•‖2 = a+ c 〈z3,•, z5,•〉 = 0
‖z2,•‖2 − ‖z4,•‖2 = b+ c+ d 〈z2,•, z3,•〉 = 〈z5,•, z4,•〉
‖z3,•‖2 − ‖z5,•‖2 = d 〈z2,•, z5,•〉 = −〈z3,•, z4,•〉

 .

One can check that the entries of

v
(
a, b, c, d, e) :=



√
a(a+b+c)
a+b

−
√

bc
a+b

−
√

b(a+b+c)(b+c+d)(b+c+2 d+e)
(b+c+2 d)(b+c)(a+b)

−
√

ac(b+c+d)(b+c+2 d+e)
(a+b)(b+c)(b+c+2 d)√

acd(b+c+2 d+e)
(a+b)(b+c)(b+c+2 d)

−
√

bd(a+b+c)(b+c+2 d+e)
(a+b)(b+c)(b+c+2 d)√

ace(b+c+d)
(a+b)(b+c)(b+c+2 d)

−
√

be(a+b+c)(b+c+d)
(a+b)(b+c)(b+c+2 d)√

bde(a+b+c)
(a+b)(b+c)(b+c+2 d)

√
acde

(a+b)(b+c)(b+c+2 d)


solve these equations for arbitrary positive parameters. This is our generic gener-
alized spherical point. Evaluating the fundamental highest weight vectors at v =
v(a, b, c, d, e) gives the values

h1(v) =
√

a(a+b+c)
a+b

h2(v) = −
√

b(a+b+c)(b+c+d)(b+c+2 d+e)
(b+c+2 d)(b+c)(a+b)

h3(v) = −
√

c(a+b+c)(b+c+d)(b+c+2d+e)
(b+c)(b+c+2d)

h4(v) =
(b+c+2d+e)

√
d(b+c+d)

b+c+2d

h5(v) =
√
e(b+ c+ 2d+ e)

 .

which are, in particular, non-zero. A computer algebra system was used to check
conditions (3) and (4) from Lemma 2.5. The action K : V is indeed well-behaved.
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5.8. Sp(2n)⊕Sp(2n) Sp(2n) (n ≥ 2). Next K = Sp(2n)×T×T acts on V = V1⊕V2 =
C2n ⊕ C2n ∼= M2n,2(C) via

(k, c1, c2) · z = kz

[
c1 0
0 c2

]
=
[
c1kz•,1

∣∣c2kz•,2].
We take B = BSp

2n × C× × C×, h = hSp2n × C × C, let εj ∈ h∗ be as in (5.3)

supported on the hSp2n factor, ε◦ ∈ h∗ dual to T1 = (0, 1, 0) ∈ h and ε◦◦ ∈ h∗ dual to
T2 = (0, 0, 1) ∈ h. This is a rank 4 multiplicity free action with fundamental highest
weights and highest weight vectors

α1 = −(ε1 + ε◦) h1(z) = z11

α2 = −(ε1 + ε◦◦) h2(z) = z12

α3 = −(ε1 + ε2 + ε◦ + ε◦◦) h3(z) = det2(z)
α4 = −(ε◦ + ε◦◦) h4(z) = ω(z•,1, z•,2)

 .

For non-negative integer exponents hα = ha1h
b
2h

c
3h

d
4 has weight

α = aα1 + bα2 + cα3 + dα4

= −
(
(a+ b+ c)ε1 + cε2 + (a+ c+ d)ε◦ + (b+ c+ d)ε◦◦

)
.

We may take n = 2, K = Sp(4) × T × T, V = M4,2(C) here. The Lemma 2.2
equations on the entries in a spherical point z ∈M4,2(C) for weight α read 〈z1,•, z3,•〉 = 0 = 〈z2,•, z4,•〉 〈z1,•, z2,•〉 = 〈z4,•, z3,•〉 〈z1,•, z4,•〉 = −〈z2,•, z3,•〉
‖z1,•‖2 − ‖z3,•‖2 = a+ b+ c ‖z2,•‖2 − ‖z4,•‖2 = c
‖z•,1‖ = a+ c+ d ‖z•,2‖2 = b+ c+ d

 .

One generic generalized spherical point whose matrix entries solve these equations
for arbitrary positive values of the parameters is

v(a, b, c, d) :=



−
√

a(a+b+c)(a+b+2 c+d)
(a+b)(a+b+2 c)

−
√

b(a+b+c)(a+b+2 c+d)
(a+b)(a+b+2 c)√

bc(a+b+2 c+d)
(a+b)(a+b+2 c)

−
√

ac(a+b+2 c+d)
(a+b)(a+b+2 c)

−
√

bd(a+b+c)
(a+b)(a+b+2 c)

√
ad(a+b+c)

(a+b)(a+b+2 c)

−
√

acd
(a+b)(a+b+2 c)

−
√

bcd
(a+b)(a+b+2 c)


and the fundamental highest weight vectors take values h1(v) = −

√
a(a+b+c)(a+b+2 c+d)

(a+b)(a+b+2 c)
h2(v) = −

√
b(a+b+c)(a+b+2 c+d)

(a+b)(a+b+2 c)

h3(v) =
(a+b+2c+d)

√
c(a+b+c)

a+b+2c
h4(v) = −

√
d(a+ b+ 2c+ d)


at v = v(a, b, c, d). Thus Lemma 2.5 condition (2) holds and it is not difficult to check
conditions (3) and (4) for each of 24 − 2 = 14 relevant limits.
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5.9. Spin(8)⊕Spin(8) SO(8). The compact group Spin(8) has three inequivalent ir-
reducible representations of dimension eight, the natural representation via SO(8)
and two half spin representations. Consider Spin(8) acting on a sixteen dimensional
space via the direct sum of two of these representations. As the triality automorphism
permutes the eight dimensional irreducibles (see [10, §20.3]) it makes no difference,
up to geometric equivalence, which pair are used. It is convenient to choose the two
half spin representations.

The positive and negative half spin representations, σ± say, can be realized in

Λeven(C4) = Λ0(C4)⊕ Λ2(C4)⊕ Λ4(C4) and Λodd(C4) = Λ1(C4)⊕ Λ3(C4)

respectively. We take V = V1 ⊕ V2 = Λeven(C4) ⊕ Λodd(C4) = Λ(C4) and let K =
Spin(8)× T× T act via

(k, c1, c2) · (v1, v2) =
(
c1σ+(k)(v1), c2σ−(k)(v2)

) (
(v1, v2) ∈ V1 ⊕ V2

)
.

We adopt some notation from [2, Section 4.7]. V = Λ(C4) =
∑4

j=0 Λj(C4) carries
its usual Hermitian inner product and letting ej1···jk = ej1 ∧ · · · ∧ ejk denotes a wedge
product of standard basis vectors in C4,

B = {1, e1, e2, e3, e4, e12, e13, e14, e23, e24, e34, e234, e134, e124, e123, e1234}

is an orthonormal basis. We write

(z∅, z1, z2, z3, z4, z12, z13, z14, z23, z24, z34, z234, z134, z124, z123, z1234)

for coordinates with respect to B. The compact group Spin(8) acts unitarily on
V via σ+ ⊕ σ−. The image of the derived representation of so(8) in u(V ) is given
explicitly in [11, Chapter 3] and elsewhere. Complexifying yields a copy of so(8,C)
inside gl(V ). This is the C-span of the 28 operators{

Hk = 1
2
(DkWk −WkDk) (1 ≤ k ≤ 4),

WkD` (1 ≤ k 6= ` ≤ 4), WkW` (1 ≤ k < ` ≤ 4), DkD` (1 ≤ k < ` ≤ 4)

}
.

Here Wk is the operator Wk(v) = ek ∧ v and Dk its adjoint, contraction by ek. As
Cartan subalgebra h8 and Borel subalgebra b8 = h8 ⊕ n8 in this copy of so(8,C) we
take h8 = C-Span{H1, . . . , H4},

n8 = C-Span
(
{WkD` : 1 ≤ k < ` ≤ 4} ∪ {WkW` : 1 ≤ k < ` ≤ 4}

)
.

K has complexified Lie algebra kC = so(8,C)×C×C with Cartan and Borel subal-
gebras h = h8 ×C×C, b = b8 ×C×C. Let T1 = (0, 1, 0) ∈ h, T2 = (0, 0, 1) ∈ h and
ε1, ε2, ε3, ε4, ε◦, ε◦◦ ∈ h∗ denote the functionals εj

(
a1H1 + · · ·+ a4H4 + b1T1 + b2T2

)
= aj

ε◦
(
a1H1 + · · ·+ a4H4 + b1T1 + b2T2

)
= b1

ε◦◦
(
a1H1 + · · ·+ a4H4 + b1T1 + b2T2

)
= b2

 .



18 C. BENSON AND G. RATCLIFF

K : V is a rank 5 multiplicity free action with fundamental highest weights and
highest weight vectors

α1 = −1
2
(ε1 + ε2 + ε3 + ε4)− ε◦ h1(z) = z∅

α2 = −1
2
(ε1 + ε2 + ε3 − ε4)− ε◦◦ h1(z) = z4

α3 = −2ε◦ h3(z) = z∅z234 − z12z34 + z13z24 − z14z23

α4 = −2ε◦◦ h4(z) = z1z234 − z2z134 + z3z124 − z4z123

α5 = −(ε1 + ε◦ + ε◦◦) h5(z) = z2z34 − z3z24 + z4z23 − z∅z234

 .

For non-negative integer exponents hα = ha1h
b
2h

c
3h

d
4h

e
5 is a highest weight vector in

C[V ] with weight

α = aα1 + bα2 + cα3 + dα4 + eα5

= −
[(

1

2
a+

1

2
b+ e

)
ε1 +

(
1

2
a+

1

2
b

)
ε2 +

(
1

2
a+

1

2
b

)
ε3 +

(
1

2
a− 1

2
b

)
ε4

+ (a+ 2c+ e)ε◦ + (b+ 2d+ e)ε◦◦

]
.

Lemma 2.2 gives a system of 18 equations for the coordinates (z∅, . . . , z1234) of a
spherical point for weight α. These are obtained by letting X in (2.1) range over the
basis given above for b8 together with T1 and T2. Numerical experimentation with
a computer algebra system reveals that this system has generic solutions in which
eight of the coordinates vanish, namely z2, z3, z12, z13, z24, z34, z134, z124. Setting these
coordinate variables to zero reduces the system to the following eight equations in
the remaining eight variables.

z4z1 + z234z123 = 0
z∅z14 + z23z1234 = 0

z∅z23 + z4z234 + z1z123 + z14z1234 = 0

‖z∅‖2 − ‖z1‖2 + ‖z4‖2 − ‖z14‖2 + ‖z23‖2 + ‖z234‖2 − ‖z123‖2 − ‖z1234‖2 = a+ b+ 2 e

‖z∅‖2 + ‖z1‖2 + ‖z4‖2 + ‖z14‖2 − ‖z23‖2 − ‖z234‖2 − ‖z123‖2 − ‖z1234‖2 = a+ b

‖z∅‖2 + ‖z1‖2 − ‖z4‖2 − ‖z14‖2 + ‖z23‖2 − ‖z234‖2 + ‖z123‖2 − ‖z1234‖2 = a− b
‖z∅‖2 + ‖z14‖2 + ‖z23‖2 + ‖z1234‖2 = a+ 2 c+ e

‖z1‖2 + ‖z4‖2 + ‖z234‖2 + ‖z123‖2 = b+ 2 d+ e



.

These arise by taking X = W1D4, W1W4, W2W3, H1, H2, H4, T1, T2 in (2.1). One
can check that

v(a, b, c, d, e) :=

√
a(a+ b+ e)(a+ c+ e)

(a+ b)(a+ e)
1 +

√
ade

(a+ b)(b+ e)
e1

+

√
b(a+ b+ e)(b+ d+ e)

(a+ b)(b+ e)
e4 −

√
bce

(a+ b)(a+ e)
e14 +

√
be (a+ c+ e)
(a+ b)(a+ e)

e23
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−

√
ae (b+ d+ e)
(a+ b)(b+ e)

e234 +

√
bd (a+ b+ e)
(a+ b)(b+ e)

e123 +

√
ac (a+ b+ e)
(a+ b)(a+ e)

e1234

is a generic generalized spherical point solving the above system for arbitrary pos-
itive parameter values. Evaluating the fundamental highest weight vectors at v =
v(a, b, c, d, e) gives

h1(v) =
√

a(a+b+e)(a+c+e)
(a+b)(a+e)

h2(v) =
√

b(a+b+e)(b+d+e)
(a+b)(b+e)

h3(v) =
√
c(a+ c+ e) h4(v) = −

√
d(b+ d+ e)

h5(v) =
√

e(a+b+e)(a+c+e)(b+d+e)
(a+e)(b+e)

 ,

which verifies condition (2) in Lemma 2.5. Maple was used to carry out the routine
calculations required to verify the two remaining conditions.

6. Case-by-case analysis: Variable rank examples

The last four entries in Table 1 are infinite families of multiplicity free actions with
increasing ranks. Lemma 2.5 will be used to show that these are well-behaved. We
will discuss these actions together as their spherical points are closely related. Proofs
will be provided for the first of these examples. Proofs for the remaining examples are
similar, and are omitted for brevity. We begin by tabulating basic data concerning
these examples.

6.1. SU(n)⊕SU(n) (SU(n)⊗ SU(m)) (Table 2). The group K = U(n)×U(m) acts

on V = V1 ⊕ V2 = Cn ⊕Mn,m(C) as (k1, k2) · (ξ, z′) =
(
k1ξ, k1z

′kt2
)
. We identify V

with Mn,m+1(C) by adjoining the column vector ξ to z′,

(ξ, z′)↔ z =
[
ξ|z′
]
,

and will number the columns of z ∈ V by 0 through m. By embedding U(m) in

U(m + 1) as

[
1 0
0 U(m)

]
the action of K is realized by restriction of the usual

action of U(n) × U(m + 1) on Mn,m+1(C). The standard Hermitian inner product
on V = Mn,m+1(C) is K-invariant. Fundamental highest weights, associated highest
weight vectors and the set Λ of all highest weights that occur in C[V ] are listed in
Table 2. Here we use Borel subgroup B = Bn ×Bm and let εj, ε

′
j denote functionals

on h = hn × hm as in (5.1) supported on the two factors. We write detj for the
determinant of the first j rows and columns of a matrix. Action K : V has rank 2n
when m ≥ n and rank 2m + 1 when m < n. For purposes of verifying that these
actions are well-behaved we assume henceforth that either m = n or m = n− 1. The
final entry in Table 2 gives criteria, derived from Lemma 2.2, for a matrix of size

n× (m+ 1) to be a spherical point for weight −
(∑

j λjεj +
∑

j µjε
′
j

)
∈ Λ.
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Group U(n)× U(m) ⊂ U(n)× U(m+ 1), n,m ≥ 2
Vector Space Cn ⊕Mn,m(C) ∼= Mn,m+1(C), rows 1 . . . n, columns 0 . . .m

Action (k1, k2) · z = k1zk
t
2

Rank 2n when m ≥ n; 2m+ 1 when m < n
Cases m = n, m = n− 1

Fundamental
Highest Weights

−
(
ε1 + · · ·+ εj + ε′1 + · · ·+ ε′j

)
(1 ≤ j ≤ min(n,m))

−
(
ε1 + · · ·+ εj + ε′1 + · · ·+ ε′j−1

)
(1 ≤ j ≤ min(n,m+ 1))

Fundamental
H. W. Vectors

h′j(z) = detj(z′) (1 ≤ j ≤ min(n,m))
hj(z) = detj(z) (1 ≤ j ≤ min(n,m+ 1))

Spectrum Λ
−
(∑

j λjεj +
∑

j µjε
′
j

)
; λj , µj ∈ Z,

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn ≥ µn ≥ 0, m = n
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn ≥ 0, m = n− 1

Spherical Points
rows are pairwise orthogonal with norms λ1/2

1 , . . . , λ
1/2
n

columns 1 through m are pairwise orthogonal
with norms µ1/2

1 , . . . , µ
1/2
m

Table 2. Data for SU(n)⊕SU(n) (SU(n)⊗ SU(m))

6.2. SU(n)∗ ⊕SU(n) (SU(n)⊗ SU(m)) (Table 3). This is a twisted variant of Ex-
ample 6.1 with K = U(n) × U(m) acting on V = V1 ⊕ V2 = Cn ⊕ Mn,m(C) via
(k1, k2) · (ξ, z′) =

(
k−t1 ξ, k1z

′kt2
)
. We identify V with Mn,m+1(C) as in the previous

example and number the columns of matrices z ∈ V by 0 through m. Table 3 lists

relevant data for this action. In the formula for highest weight vector h̃j(z) = detj(z̃)
the matrix z̃ ∈Mn+1,m(C) is defined as

z̃ :=

[
ξtz′•,1 · · · ξtz′•,m

z′

]
for z =

[
ξ z′

]
.

Entries in the first row of z̃ are dot products of ξ with the columns of z′. Note that

h̃j is a polynomial of degree j + 1. Thus the number and degrees of the fundamental
highest weight vectors agree with those in the untwisted example. For purposes of
verifying that these actions are well-behaved it suffices to assume that either m = n
or m = n− 1.

6.3. SU(n)⊕SU(n) Λ2(SU(n)) (Table 4). Identifying Λ2(Cn) with the space Skew(n,C)
of n × n skew symmetric matrices the group K = U(n) acts on V = V1 ⊕ V2 =
Cn⊕Skew(n,C) via k·(ξ, z′) =

(
kξ, kz′kt

)
. We further identify V with Skew(n+1,C)

via the isomorphism (ξ, z′)↔
[

0 ξt

−ξ z′

]
and number rows and columns as 0 through

n. In this model the action of U(n) on V1⊕V2 is realized as a restriction of the usual
action of U(n + 1) on Skew(n + 1,C). The space V = Skew(n + 1,C) carries the
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Group U(n)× U(m), n ≥ 3,m ≥ 2

Vector Space (Cn)∗ ⊕Mn,m(C) ∼= Cn ×Mn,m(C) ∼= Mn,m+1(C)
rows 1 . . . n, columns 0 . . .m

Action (k1, k2) · (ξ, z′) = (k−t1 ξ, k1z
′kt2) (k−t1 := (kt1)−1)

Rank 2n when m ≥ n; 2m+ 1 when m < n
Cases m = n, m = n− 1

Fundamental
Highest Weights

+εn
−
(
ε1 + · · ·+ εj + ε′1 + · · ·+ ε′j

)
(1 ≤ j ≤ min(n,m))

−
(
ε1 + · · ·+ εj + ε′1 + · · ·+ ε′j−1

)
(1 ≤ j ≤ min(n− 1,m))

Fundamental
H. W. Vectors

h◦(z) = ξn
h′j(z) = detj(z′) (1 ≤ j ≤ min(n,m))
h̃j(z) = detj(z̃) (1 ≤ j ≤ min(n− 1,m))

Spectrum Λ
−
(∑

j λjεj +
∑

j µjε
′
j

)
; λj , µj ∈ Z

µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · · ≥ µn ≥ λn, µn ≥ 0, m = n
µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · · ≥ µn−1 ≥ λn−1 ≥ 0 ≥ λn, m = n− 1

Spherical Points

−zi,0zj,0 +
∑m

k=1 zj,kzi,k = 0, 1 ≤ i 6= j ≤ n
−|zi,0|2 +

∑m
k=1 |zi,k|2 = λ2

i , 1 ≤ i ≤ n
columns 1 through m are pairwise orthogonal

with norms µ1/2
1 , . . . , µ

1/2
m

Table 3. Data for SU(n)∗ ⊕SU(n) (SU(n)⊗ SU(m))

K-invariant Hermitian inner product

〈z, w〉 =
1

2
tr(zw∗) =

∑
i<j

zi,jwi,j.

Table 4 summarizes data for this action. Here Pfj denotes the Pfaffian of the first
2j rows and columns of a skew symmetric matrix and z′ ∈ Skew(n,C) denotes the
last n rows and columns of z. In our subsequent analysis for this example we will
distinguish the cases n even and n odd.

Remark 6.1. In contrast to all previous examples this action fails to be fully sat-
urated since the scalars in U(n) act diagonally. This is none-the-less a multiplicity
free action [3, Theorem 6]. In view of Lemma 2.4 we choose to work with this non-
saturated action. This remark applies equally to Example 6.4 which follows.

6.4. SU(n)∗ ⊕SU(n) Λ2(SU(n)) (Table 5). This is the twisted variant of Example
6.3 with K = U(n) acting on V = V1 ⊕ V2 = Cn ⊕ Skew(n,C) via k · (ξ, z′) =(
k−tξ, kz′kt

)
. As in the previous example we identify V with Skew(n + 1,C) and

number rows and columns as 0 through n. Explicitly we have

k · z =

[
0 ξtk−1

−k−tξ kz′kt

]
for k ∈ U(n), z =

[
0 ξt

−ξ z′

]
∈ Skew(n+ 1,C).
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Group U(n), n ≥ 4

Vector Space
Cn ⊕ Λ2(Cn) ∼= Λ2(Cn+1) ∼= Skew(n+ 1,C)

rows and columns 0 . . . n
Action k · (ξ, z′) =

(
kξ, kz′kt

)
Rank n
Cases n = 2m, n = 2m− 1

Fundamental
Highest Weights

−
(
ε1 + · · ·+ ε2j

)
(1 ≤ j ≤ bn/2c)

−
(
ε1 + · · ·+ ε2j−1

)
(1 ≤ j ≤ b(n+ 1)/2c)

Fundamental
H. W. Vectors

h′j(z) = Pfj(z
′) (1 ≤ j ≤ bn/2c)

hj(z) = Pfj(z) (1 ≤ j ≤ b(n+ 1)/2c)
Spectrum Λ −

∑n
i=1 ciεi : ci ∈ Z, c1 ≥ c2 ≥ · · · ≥ cn ≥ 0

Spherical Points
rows 1 through n are pairwise orthogonal

with norms c
1/2
1 , . . . , c

1/2
n

Table 4. Data for SU(n)⊕SU(n) Λ2(SU(n))

In Table 5 for this example matrix z̃ ∈ Skew(n+ 1,C) is defined as

z̃ :=


0 ξtz′•,1 · · · ξtz′•,n

z′1,•ξ
... z′

z′n,•ξ

 for z =

[
0 ξt

−ξ z′

]
.

Entries in the first row of z̃ are dot products of ξ with the columns z′•,j of z′.

6.5. Spherical points. Generalized generic spherical points are given below for each
of Examples 6.1-6.4. Full justification for the spherical point formulas will be provided
for Example 6.1. Given sequences of distinct real parameters λ1, . . . , λN and µ1, . . . µN
we set, for 1 ≤ i, j ≤ N ,

(6.1) zi,0 =

∣∣∣∣∣
∏n

k=1(λi − µk)∏
k 6=i(λi − λk)

∣∣∣∣∣
1/2

and zi,j =

∣∣∣∣∣µj
∏

k 6=j(λi − µk)
∏

k 6=i(µj − λk)∏
k 6=i(λi − λk)

∏
k 6=j(µj − µk)

∣∣∣∣∣
1/2

.

6.5.1. SU(n)⊕SU(n) (SU(n)⊗ SU(m)) (Table 2). We must consider the cases m =
n and m = n− 1.

For m = n, generic weights in Λ are indexed by (integral) parameters λ,µ with
λ1 > µ1 > λ2 > µ2 > · · · > λn−1 > µn−1 > λn > µn > 0. Let v = v(λ,µ) ∈ V be the
matrix with entries indexed by (1 ≤ i ≤ n, 0 ≤ j ≤ n) given by zi,0 and sign(i, j)zi,j
for j ≥ 1, where

(6.2) sgn(i, j) =

{
−1 if i > j
+1 if i ≤ j

,
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Group U(n), n ≥ 4

Vector Space
(Cn)∗ ⊕ Λ2(Cn) ∼= Λ2(Cn+1) ∼= Skew(n+ 1,C)

rows and columns 0 . . . n
Action k · (ξ, z′) =

(
k−tξ, kz′kt

)
Rank n
Cases n = 2m, n = 2m− 1

Fundamental
Highest Weights

+εn
−
(
ε1 + · · ·+ ε2j

)
(1 ≤ j ≤ bn/2c)

−
(
ε1 + · · ·+ ε2j−1

)
(1 ≤ j ≤ b(n− 1)/2c)

Fundamental
H. W. Vectors

h◦(z) = ξn, h′j(z) = Pfj(z
′), h̃j(z) = Pfj(z̃)

Spectrum Λ
−
∑n

i=1 ciεi, ci ∈ Z
c1 ≥ c2 ≥ · · · ≥ cn
cn−1 ≥ 0 and 0 ≥ cn for n odd

Spherical Points
−|ξi|2 +

∑n
k=1 |z′i,k|2 = c2i , (1 ≤ i ≤ n)

−ξiξj +
∑n

k=1 z
′
j,kz
′
i,k = 0, (1 ≤ i 6= j ≤ n)

Table 5. Data for SU(n)∗ ⊕SU(n) Λ2(SU(n))

and zi,0 and zi,j are as in Equations 6.1. It is show below that this is a generic
generalized spherical point for this example. That is, the rows of v(λ,µ) are pairwise

orthogonal with norms λ
1/2
1 , . . . , λ

1/2
n and columns 1 through n are pairwise orthogonal

with norms µ
1/2
1 , . . . , µ

1/2
n .

For m = n − 1, generic weights in Λ are indexed by parameters λ,µ with λ1 >
µ1 > λ2 > µ2 > · · · > λn−1 > µn−1 > λn > 0. Let v(λ,µ) be obtained by setting
µn = 0 in the formulas for the case m = n discussed above and deleting the last
column. This gives a generic generalized spherical point for the case m = n− 1. All
of the identities needed to confirm this may also be derived by setting µn = 0 in the
arguments for the case m = n. (See Section 6.7.) One obtains all lower-dimensional
examples by successively setting µn, λn−1, µn−1, . . . equal to zero and deleting a row
or column.

6.5.2. SU(n)∗ ⊕SU(n) (SU(n)⊗ SU(m)) (Table 3). For m = n, generic weights in Λ
are indexed by parameters λ,µ with µ1 > λ1 > µ2 > λ2 > · · · > µn > λn and µn ≥ 0.
Let v(λ,µ) be the matrix with entries given by vi,0 = zi,0 and vi,j = sign(i, j)zi,j for
j ≥ 1 as in Equations 6.1 but where now

(6.3) sgn(i, j) =

{
−1 if i ≥ j
+1 if i < j

.

This gives a generic generalized spherical point.
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For m = n − 1, generic weights in Λ are indexed by parameters λ,µ with µ1 >
λ1 > µ2 > λ2 > · · · > µn−1 > λn−1 > λn and λn−1 > 0 > λn. One can obtain a
generic generalized spherical point for this data by setting µn = 0 in the formulas
for the case m = n discussed above and deleting the last column. One obtains all
lower-dimensional examples by successively setting µn, λn−1, µn−1, . . . equal to zero
and deleting a row or column.

6.5.3. SU(n)⊕SU(n) Λ2(SU(n)) (Table 4). Generic weights in Λ are indexed by
strictly decreasing (integral) sequences c1 > c2 > · · · > cn > 0. First suppose that n
is even, n = 2m say, and let λj = c2j−1, µj = c2j, so that λ1 > µ1 > λ2 > µ2 · · · >
λm > µm > 0. A generic generalized spherical point v(λ,µ) for such data is the skew
symmetric matrix with entries indexed by 0 ≤ i ≤ n, 0 ≤ j ≤ n, defined as follows
for i < j:

• vi,j = 0 if i and j have equal parity.
• Non-zero entries on row 0 are

(6.4) v0,2j−1 = zj,0 for 1 ≤ j ≤ m.

• Below row 0 one has

(6.5) v2i,2j−1 = zj,i

for 1 ≤ i < j ≤ m
• and

(6.6) v2i−1,2j = zi,j

for 1 ≤ i ≤ j ≤ m.

Setting µm = 0 in formulas (6.4-6.6) and deleting the last row and column produces
the spherical point for the case n = 2m− 1 with data (λ1, . . . , λm;µ1, . . . , µm−1).

6.5.4. SU(n)∗ ⊕SU(n) Λ2(SU(n)) (Table 5). For n = 2m, we have parameters (λ,µ)
with µ1 > λ1 > · · · > µm > λm and µm ≥ 0. Let v = v(λ,µ) ∈ Skew(n+ 1,C) have
entries zi,j defined as follows for i < j:

• In row 0 we have v0,2j−1 = 0 and

(6.7) v0,2j = zj,0 for 1 ≤ j ≤ m.

• zi,j = 0 for i ≥ 2 if i and j have equal parity and

(6.8) v2i,2j−1 = zi,j

for 1 ≤ i < j ≤ m
• and

(6.9) v2i−1,2j = zj,i

for 1 ≤ i ≤ j ≤ m.
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This is a generic generalized spherical point for the data (λ,µ).

For n = 2m − 1 generic weights are indexed by data (λ,µ) with µ1 > λ1 > · · · >
µm−1 > λm−1 > λm and λm−1 > 0 > λm. Form the generic generalized spherical point
for the case n = 2m as above with data (λ1, . . . , λm; µ1, . . . , µm−1, 0) and delete the
second last row and column. This gives a generic generalized spherical point for the
case n = 2m− 1.

6.6. A combinatorial lemma. To justify the formulas given above for generic gen-
eralized spherical points in Examples 6.1-6.4 we make extensive use of the following
lemma.

Lemma 6.2. Let p(x) =
∑n−1

j=0 pjx
j be a polynomial of degree at most n − 1 and

a1, . . . an be distinct real numbers. Then
n∑
i=1

p(ai)∏
k 6=i(ai − ak)

= pn−1.

Proof. For non-negative integers j let

(6.10) Qj(a) :=

∣∣∣∣∣∣∣∣∣∣
aj1 an−2

1 . . . a1 1

aj2 an−2
2 . . . a2 1

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
ajn an−2

n . . . an 1

∣∣∣∣∣∣∣∣∣∣
,

so that Qj(a) = 0 for j < n− 1 and Qn−1(a) is the Vandermonde determinant,

Qn−1(a) = Vn(a) =
∏
k<`

(ak − a`).

Expanding along the first column, we obtain

Qj(a) =
n∑
i=1

(−1)i−1ajiVn−1(âi) =
n∑
i=1

(−1)i−1aji
∏
k<`
k, 6̀=i

(ak − a`)

where Vn−1(âi) is the (n− 1)× (n− 1) Vandermonde determinant obtained by elim-
inating ai. Hence also

Qj(a)

Vn(a)
=

n∑
i=1

(−1)i−1 aji∏
k<i(ak − ai)

∏
k>i(ai − ak)

=
n∑
i=1

aji∏
k 6=i(ai − ak)

.

So
n∑
i=1

p(ai)∏
k 6=i(ai − ak)

=
n∑
i=1

n−1∑
j=0

pja
j
i∏

k 6=i(ai − ak)
=

n−1∑
j=0

pj
Qj(a)

Vn(a)
=

n−1∑
j=0

pjδj,n−1 = pn−1

as claimed. �
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Remark 6.3. Taking j > n − 1 in (6.10) the quotient Qj(a)/Vn(a) becomes the
Schur function s(j−n+1,0,...,0)(a). This coincides with a complete symmetric function,
explicitly

Qj(a)

Vn(a)
=

∑
|k|=j−n+1

ak11 a
k2
2 · · · akn

n

for j > n− 1. (See, for example, [16, §1.15].)

6.7. Justification of the spherical point formulas. We concentrate on Example
6.1 (see Table 2) with m = n, as proofs for all other examples are similar. For the
matrix v(λ,µ) ∈Mn,n+1(C) given in (6.5.1) we must verify that

• the rows are pairwise orthogonal with norms λ
1/2
1 , . . . , λ

1/2
n and

• columns 1 through n are pairwise orthogonal with norms µ
1/2
1 , . . . , µ

1/2
n .

6.7.1. Row norms. First consider the polynomial

E(x) :=
∏
k

(x− µk) +
∑
j

µj
∏

k 6=j(x− µk)
∏

k≥2(µj − λk)∏
k 6=j(µj − µk)

Setting x = λ2, we get

E(λ2) =
∏
k

(λ2 − µk) +
∑
j

µj
∏

k 6=j(λ2 − µk)(µj − λ2)
∏

k≥3(µj − λk)∏
k 6=j(µj − µk)

=
∏
k

(λ2 − µk)−
∑
j

µj
∏

k(λ2 − µk)
∏

k≥3(µj − µk)∏
k 6=j(µj − µk)

=
∏
k

(λ2 − µk)

[
1−

∑
j

µj
∏

k≥3(µj − λk)∏
k 6=j(µj − µk)

]
= 0

by Lemma 6.2. Likewise, by symmetry, E(λk) = 0 for all k ≥ 2. Also,

E(0) =
∏
k

(−µk) +
∑
j

µj
∏

k 6=j(−µk)
∏

k≥2(µj − λl)∏
k 6=j(µj − µk)

=
∏
k

(−µk)

[
1−

∑
j

∏
k≥2(µj − λk)∏
k 6=j(µj − µk)

]
= 0.

Thus E(x) has zeros at 0, λ2, . . . λn. Since the highest order term is xn, we conclude
that in fact

E(x) = x
∏
k≥2

(x− λk).
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One can check that, for Example 6.1, the expressions inside the absolute values in
Equations 6.1 are positive. Thus the first row of v = v(λ,µ) satisfies

‖v1,•‖2 = v2
1,0 +

∑
j

v2
1,j =

∏
k(λ1 − µk)∏
k≥2(λ1 − λk)

+
∑
j

µj
∏

k 6=j(λ1 − µk)
∏

k≥2(µj − λk)∏
k≥2(λ1 − λk)

∏
k 6=j(µj − µk)

=
1∏

k≥2(λ1 − λk)
E(λ1)

= λ1.

A similar argument shows that ‖vi,•‖2 = λi for 2 ≤ i ≤ n. �

6.7.2. Column norms. An argument similar to that used above for the row norms
shows that

E(x) :=
∑
i

∏
k 6=j(λi − µk)

∏
k 6=i(x− λk)∏

k 6=i(λi − λk)
=
∏
k 6=j

(x− µk).

So now

‖v•,j‖2 =
∑
i

v2
i,j =

∑
i

µj
∏

k 6=j(λi − µk)
∏

k 6=i(µj − λk)∏
k 6=i(λi − λk)

∏
k 6=j(µj − µk)

=
µj∏

k 6=j(µj − µl)
∑
i

∏
k 6=j(λi − µk)

∏
k 6=i(µj − λk)∏

k 6=i(λi − λk)

=
µj∏

k 6=j(µj − µl)
E(µj)

= µj

as required. �

6.7.3. Row and column inner products. Next we will show that the rows and columns
of v = v(λ,µ) are pair-wise orthogonal. For 1 ≤ a < b ≤ n one has

〈va,•, vb,•〉 = va,0vb,0 +
∑
j

va,jvb,j

=

√√√√∣∣∣∣∣
∏

k(λa − µk)∏
k 6=a(λa − λk)

∏
k(λb − µk)∏
k 6=b(λb − λk)

∣∣∣∣∣
+
∑
j

sgn(a, j)sgn(b, j)

√√√√∣∣∣∣∣
∏

k(λa − µk)∏
k 6=a(λa − λk)

∏
k(λb − µk)∏
k 6=b(λb − λk)

∣∣∣∣∣
×

∣∣∣∣∣ µj
∏

k(µj − λk)
(λa − µj)(λb − µj)

∏
k 6=j(µj − µl)

∣∣∣∣∣
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=

√√√√∣∣∣∣∣
∏

k(λa − µk)∏
k 6=a(λa − λk)

∏
k(λb − µk)∏
k 6=b(λb − λk)

∣∣∣∣∣
×

(
1 +

∑
j

sgn(a, j)sgn(b, j)

∣∣∣∣∣µj
∏

k 6=a,b(µj − λk)∏
k 6=j(µj − µl)

∣∣∣∣∣
)
.

For a < b, the signs have been chosen so that

sgn(a, j)sgn(b, j)
µj
∏

k 6=a,b(µj − λk)∏
k 6=j(µj − µk)

< 0.

Hence

1 +
∑
j

sgn(a, j)sgn(b, j)

∣∣∣∣∣µj
∏

k 6=a,b(µj − λk)∏
k 6=j(µj − µl)

∣∣∣∣∣ = 1−
∑
j

µj
∏

k 6=a,b(µj − λl)∏
k 6=j(µj − µl)

= 0,

by another application of Lemma 6.2, and thus 〈va,•, vb,•〉 = 0 as required. The proof
that 〈v•,a, v•,b〉 = 0 for 1 ≤ a < b ≤ n is similar. �

6.8. Evaluation of the highest weight vectors. Lemma 2.5 will be used to show
that Examples 6.1-6.4 are well-behaved. We continue to focus on Example 6.1 as
the calculations for the remaining examples are similar. First suppose that m = n.
The fundamental highest weight vectors are h′r(z) = detr(z

′) and hr(z) = detr(z)
(1 ≤ r ≤ n). Below we evaluate these, up to sign, at the generic generalized spherical
point z = v(λ,µ) to show that h′r

(
v(λ,µ)

)
6= 0 6= hr

(
v(λ,µ)

)
, as required by Lemma

2.5 condition (2).

6.8.1. Calculation of detr(z
′) for z = v(λ,µ) in case m = n. Pulling common factors

from the first r rows and columns of z′ gives

detr(z
′) = detr

sgn(i, j)

√√√√∣∣∣∣∣µj
∏

k 6=j(λi − µk)
∏

k 6=i(µj − λk)∏
k 6=i(λi − λk)

∏
k 6=j(µj − µk)

∣∣∣∣∣


=

√√√√√
∣∣∣∣∣∣

∏
j≤r µj∏

1≤i≤r, 1≤k≤n
k 6=i

(λi − λk)
∏

1≤j≤r, 1≤k≤n
k 6=j

(µj − µk)

∣∣∣∣∣∣
× detr

[
sgn(i, j)

√∣∣∣∣∏k(λi − µk)
∏

k(µj − λk)
(λi − µj)(µj − λi)

∣∣∣∣
]

=

∏
j≤r
√
µj
∏

i,k≤r |λi − µk|∏
i<k≤r |λi − λk|

∏
j<k≤r |µj − µk|
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×

√√√√∣∣∣∣∣
∏

i≤r<k(λi − µk)
∏

j≤r<k(µj − λk)∏
i≤r<k(λi − λk)

∏
j≤r<k(µj − µk)

∣∣∣∣∣detr

[
sgn(i, j)

∣∣∣∣ 1

λi − µj

∣∣∣∣]
Since sgn(i, j) and (λi − µj) have opposite signs one has

detr

[
sgn(i, j)

∣∣∣∣ 1

λi − µj

∣∣∣∣] = (−1)rdetr

[
1

λi − µj

]
where detr

[
1/(λi − µj)

]
is a Cauchy determinant. As is well-kown [16, page 397],

detr

[
1

λi − µj

]
=

∏
a<b≤r(λb − λa)(µa − µb)∏

a,b≤r(λa − µb)
.

So now

(6.11)
∣∣h′r(v(λ,µ)

)∣∣ =
∏
j≤r

√
µj

√√√√∣∣∣∣∣
∏

i≤r<k(λi − µk)
∏

j≤r<k(µj − λk)∏
i≤r<k(λi − λk)

∏
j≤r<k(µj − µk)

∣∣∣∣∣ .
Remark 6.4. Thus, in particular,

∣∣h′n(v(λ,µ)
)∣∣ =

√
µ1 · · ·µn. In fact this is clear

since z′ is an orthogonal matrix whose jth column has norm
√
µj.

6.8.2. Calculation of detr(z) for z = v(λ,µ) in case m = n. Pulling common factors
from the first r rows and columns of z gives

detr(z) = detr

[ √∣∣∣Qn
k=1(λi−µk)Q
k 6=i(λi−λk)

∣∣∣ [sgn(i, j)

√∣∣∣µj
Q

k 6=j(λi−µk)
Q

k 6=i(µj−λk)Q
k 6=i(λi−λk)

Q
k 6=j(µj−µk)

∣∣∣]
1≤i≤r

1≤j≤r−1

]

=

∏
j≤r−1

√
µj
∏

1≤i≤r, 1≤k≤r−1 |λi − µk|∏
i<k≤r |λi − λk|

∏
j<k≤r−1 |µj − µk|

×

√√√√∣∣∣∣∣
∏

i≤r≤k(λi − µk)
∏

j<r<k(µj − λk)∏
i≤r<k(λi − λk)

∏
j<r≤k(µj − µk)

∣∣∣∣∣ det(w)

where w is the r × r matrix

w =

 1
...
1

[
sgn(i,j)
|λi−µj |

]
1≤i≤r

1≤j≤r−1

 =

 1
...
1

[
−1

λi−µj

]
1≤i≤r

1≤j≤r−1

 .
Subtracting the r’th row of w from the first r − 1 rows reduces the calculation of
det(w) to that for a Cauchy determinant. Explicitly
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det(w) = (−1)r−1

∣∣∣∣∣∣
1
...
1

[
1

λi−µj

]
1≤i≤r

1≤j≤r−1

∣∣∣∣∣∣ = (−1)r−1

∣∣∣∣∣∣∣∣∣
0
...
0

[
λr−λi

(λi−µj)(λr−µj)

]
1≤i,j≤r−1

1 1
λr−µ1

· · · 1
λr−µr−1

∣∣∣∣∣∣∣∣∣
= det

([
λr − λi

(λi − µj)(λr − µj)

]
1≤i,j≤r−1

)

=

∏
1≤i≤r−1(λr − λi)∏
1≤j≤r−1(λr − µj)

detr−1

[
1

λi − µj

]
=

∏
1≤i≤r−1(λr − λi)∏
1≤j≤r−1(λr − µj)

×
∏

a<b≤r−1(λb − λa)(µa − µb)∏
a,b≤r−1(λa − µb)

=

∏
a<b≤r(λb − λa)

∏
a<b≤r−1(µa − µb)∏

1≤a≤r, 1≤b≤r−1(λa − µb)
Thus we obtain

(6.12)
∣∣hr(v(λ,µ)

)∣∣ =
∏
j<r

√
µj

√√√√∣∣∣∣∣
∏

i≤r≤k(λi − µk)
∏

j<r<k(µj − λk)∏
i≤r<k(λi − λk)

∏
j<r≤k(µj − µk)

∣∣∣∣∣ .
6.8.3. Calculation of detr(z) and detr(z

′) for z = v(λ,µ) in case m = n − 1. Next
consider Example 6.1 with m = n− 1. We have fundamental highest weight vectors
hr(z) = detr(z) for 1 ≤ r ≤ n and hr(z

′) = detr(z
′) for 1 ≤ r ≤ n − 1. Values

for these at the generic generalized spherical point z = v(λ,µ) may be obtained by
setting µn = 0 in Equations 6.12 and 6.11 respectively. This gives

(6.13)
∣∣hr(v(λ,µ)

)∣∣ =
∏
i≤r

√
λi

√√√√∣∣∣∣∣
∏

i≤r≤k(λi − µk)
∏

j<r<k(µj − λk)∏
i≤r<k(λi − λk)

∏
j<r≤k(µj − µk)

∣∣∣∣∣ ,

(6.14)
∣∣h′r(v(λ,µ)

)∣∣ =
∏
i≤r

√
λi

√√√√∣∣∣∣∣
∏

i≤r<k(λi − µk)
∏

j≤r<k(µj − λk)∏
i≤r<k(λi − λk)

∏
j≤r<k(µj − µk)

∣∣∣∣∣ .
6.9. Limit conditions. Finally we verify conditions (3) and (4) from Lemma 2.5 for
Example 6.1 with m = n. (See Table 2.) This works by induction on n and m. For
non-negative integer exponents aj, bj the polynomial hα = ha1

1 · · ·han
n (h′1)

b1 · · · (h′n)bn

is a highest weight vector in C[V ] with weight

α = −

(
n∑
i=1

λiεi +
n∑
i=1

µiε
′
i

)
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where λ1 ≥ µ1 ≥ λ2 ≥ µ2 · · · ≥ λn ≥ µn ≥ 0 are given by

(6.15) λi =
∑
j≥i

aj +
∑
j≥i

bj, µi =
∑
j≥i+1

aj +
∑
j≥i

bj.

The highest weight vector hα has all exponents positive if and only if the weight
coefficients satisfy λ1 > µ1 > λ2 > µ2 · · · > λn > µn > 0. Let v(λ,µ) be the generic
generalized spherical point from (6.5.1) with (λ,µ) determined by Equations 6.15
and positive real parameters (a,b).

Since µn = bn the limit as bn → 0 is just the limit as µn → 0. As we have already
discussed, when the last parameter µn → 0, the last column of v(λ,µ) becomes
zero and the remaining matrix is a spherical point for the case m = n − 1. Thus
this limit exists. The limiting values for hr

(
v(λ,µ)

)
(1 ≤ r ≤ n) and h′r

(
v(λ,µ)

)
(1 ≤ r ≤ n − 1) are given, up to sign, by Equations 6.13 and 6.14 respectively. In
particular, these limiting values are non-zero as required by Lemma 2.5 condition (4).

Other limits as parameters ai, bi approach zero are equivalent to two adjacent
parameters merging in (λ,µ). Indeed ai → 0 (1 ≤ i ≤ n) corresponds to λi → µi
and bi → 0 (1 ≤ i ≤ n − 1) to µi → λi+1. Taking, for example, the limit as a1 → 0
one obtains

lim
a1→0

v(λ,µ) = lim
λ1→µ1

v(λ,µ) =

[
0
√
µ1 0

ζ0 0 ζ

]
,

where [ζ0|ζ] = v
(
λ2, . . . , λn; µ2, . . . , µn

)
∈ Mn−1,n(C) is a generic generalized spheri-

cal point for Example 6.1 with n and m reduced by one and data λ2 > µ2 > . . . >
µn > 0. In particular, this limit exists. Moreover lima1→0 h

′
1

(
v(λ,µ)

)
=
√
µ1 6= 0,

lim
a1→0

h′r
(
v(λ,µ)

)
=
√
µ1 detr−1(ζ) =

√
µ1 h

′
r−1

(
[ζ0|ζ]

)
6= 0

for 2 ≤ r ≤ n and

lim
a1→0

hr
(
v(λ,µ)

)
= −√µ1 hr−1

(
[ζ0|ζ]

)
6= 0

for 2 ≤ r ≤ n, as required. Similarly one has

lim
b1→0

v(λ,µ) = lim
µ1→λ2

v(λ,µ) =

 z◦1,0 0 ζt1
0 −

√
λ2 0

ζ0 0 ζ


where

[
z◦1,0 ζt1
ζ0 ζ

]
= v

(
λ1, λ3, . . . , λn; µ2, . . . , µn

)
∈ Mn−1,n(C) is a generic general-

ized spherical point for Example 6.1 with n and m reduced by one. Here

lim
b1→0

h′r
(
v(λ,µ)

)
=
√
λ2 h

′
r−1

([
z◦1,0 ζt1
ζ0 ζ

])
6= 0
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for 2 ≤ r ≤ n, limb1→0 h1

(
v(λ,µ)

)
= z◦1,0 6= 0 and

lim
b1→0

hr
(
v(λ,µ)

)
= −

√
λ2 h

′
r−1

([
z◦1,0 ζt1
ζ0 ζ

])
6= 0

for 2 ≤ r ≤ n. Limits as ai → 0 for 2 ≤ i ≤ n and bi → 0 for 2 ≤ i ≤ n − 1 behave
in a similar manner.
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