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Abstract. Let G be a connected and simply connected nilpotent Lie group with
Lie algebra g and unitary dual Ĝ. The moment map for π ∈ Ĝ sends smooth vectors
in the representation space of π to g∗. The closure of the image of the moment
map for π is called its moment set. N. Wildberger has proved that the moment set
for π coincides with the closure of the convex hull of the corresponding coadjoint
orbit. We say that Ĝ is moment separable when the moment sets differ for any pair
of distinct irreducible unitary representations. Our main results provide sufficient
and necessary conditions for moment separability in a restricted class of nilpotent
groups.

1. Introduction

Let G be a real Lie group with Lie algebra g and π be a (strongly continuous)
unitary representation of G in some Hilbert space H. The moment map for π is
defined as

ψπ : H∞ \ {0} → g∗, ψπ(v)(X) =
1

i

〈dπ(X)v, v〉
〈v, v〉

,(1.1)

where dπ denotes the derived representation of g in the space H∞ of smooth vectors.
When π is finite dimensional, this notion, which is due to N. Wildberger, reduces to
that of the usual moment map for the Hamiltonian action of G via π on the projective
space P (H) [Wil92]. The moment set for π is defined as

Iπ = {ψπ(v) : v ∈ H∞ \ {0}},

the closure of the image of ψπ in g∗. We let Ĝ denote the set of irreducible unitary
representations of G (up to unitary equivalence) and consider the moment sets Iπ for

π ∈ Ĝ. One says that Ĝ is moment separable if Iπ 6= Iπ′ for all π, π′ ∈ Ĝ with π 6' π′.
In the case of a compact groupG, the moment set Iπ of an irreducible representation

π need not be convex. Wildberger has shown, however, that the set of extremal points
of the convex hull of Iπ is a single coadjoint orbit, namely the orbit through the
highest weight of the representation π. Thus the moment set completely determines
the representation.
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In this paper we consider the situation whereG is a connected and simply connected
nilpotent Lie group. In this setting, a fundamental result of Wildberger relates the

moment set Iπ for π ∈ Ĝ to the coadjoint orbit O ⊂ g∗ associated to π via the Kirillov
method [Kir62]. Namely

Iπ = Conv(O),(1.2)

the closure of the convex hull of O in g∗ [Wil89]. We remark that this result has been
generalized to encompass connected solvable Lie groups by D. Arnal and J. Ludwig

in [AL92]. In view of Equation 1.2, Ĝ is moment separable if and only if

Conv(O) = Conv(O′)⇒ O = O′

for all coadjoint orbits O,O′ ⊂ g∗.

In [Wil89], Wildberger presents an example which shows that Ĝ need not be mo-
ment separable in the nilpotent case. It is thus natural to seek a characterization
of the class of connected and simply connected nilpotent Lie groups for which the

moment sets do separate Ĝ. Our main results in this direction are given below in
Theorems 3.4 and 3.5. These provide sufficient and necessary conditions, respec-

tively, for moment separability of Ĝ. In fact, our results apply only to a restricted
class of nilpotent groups, namely those which satisfy Condition (C) formulated below
in Section 3.

The sufficient and necessary conditions in Theorems 3.4 and 3.5 involve properties
of the Pukanszky polynomials which parameterize the coadjoint orbits. We review
this orbit parameterization in Section 2 in order to introduce notation needed to
formulate our results. The orbits are grouped in layers and the polynomial functions
which determine the orbits within a layer have a common domain. It is, however,
possible for the convex hull of a coadjoint orbit to pass though other orbit layers. This
fact greatly complicates the use of Pukanszky polynomials in this problem. We are
led to formulate Condition (C) for use as a hypothesis in Theorems 3.4 and 3.5. This
condition implies that the moment sets for representations whose coadjoint orbits lie
in different layers are necessarily distinct. We show that all three step groups satisfy
Condition (C), so these are among the groups to which our results apply.

We present several examples in Section 4. These show that the sufficient condition
for separability in Theorem 3.4 is not necessary and that the necessary condition in
Theorem 3.5 is not sufficient. In addition, we present an example to show that the
convex hull of a coadjoint orbit need not lie within a layer. In Section 5 we discuss
some questions that remain open in this area.

We conclude this introduction by noting that the definition given in Equation 1.1
extends to yield a generalized moment map,

Ψπ : H∞ \ {0} → U(g)∗,
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where U(g) denotes the complexified universal enveloping algebra. One can define
the generalized moment set Jπ ⊂ U(g)∗ as

Jπ = Conv(Ψπ(H∞ \ {0})).
It is shown in [BLS98] that such generalized moment sets always separate the unitary

dual Ĝ of any connected and simply connected nilpotent Lie group.

2. Preliminaries on Orbit Parameterization

We begin this section by reviewing Pukanszky’s parameterization of the coadjoint
orbits for a nilpotent Lie group. This material is quite standard. We refer the
reader to [Puk67], [Ped84] or [CG90] for details. Throughout, G will always denote
a connected and simply connected nilpotent Lie group with Lie algebra g. Let

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gn = g

be any fixed Jordan-Hölder sequence in g and

X1, X2, . . . , Xn

be an associated strong Malcev basis with Xj ∈ gj \ gj−1. We denote by

X∗1 , X
∗
2 , . . . , X

∗
n

the dual basis for g∗.
For ` ∈ g∗ we let O` = Ad∗(G)` denote the coadjoint orbit through ` and

g(`) = {X ∈ g : `[X, g] = {0}},
the Lie algebra of the stabilizer of `. A value j ∈ {1, . . . , n} is a jump index for ` if

Xj 6∈ g(`) + gj−1.

We let

e(`) = {j : j is a jump index for `}, ẽ(`) = {1, . . . , n} \ e(`)
and

E = {e(`) : ` ∈ g∗}.
The set e(`) contains exactly dim(O`) indices, which is necessarily an even number.
The sets

Ωe = {` ∈ g∗ : e(`) = e}
for each e ∈ E are the layers in g∗. One has O` ⊂ Ωe(`) for ` ∈ g∗.

Each layer Ωe is a semi-algebraic set in g∗. To understand this fact, one first
introduces the strict total ordering ≺ on E defined as follows. For e, e′ ∈ E we have
e ≺ e′ if either

1. e = {j1 < j2 < · · · < jd}, e′ = {j′1 < j′2 < · · · < j′d′} where j1 = j′1, . . . , jk−1 =
j′k−1 and jk < j′k for some k ≤ min(d, d′), or

2. e′ ( e.
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Note that, in view of the second condition, the empty set e = ∅ is the maximal

element in E . The layer Ω∅ corresponds to the one-dimensional representations in Ĝ.
The layer Ωe given by the minimal element e in E contains the generic orbits and
forms a Zariski open set in g∗. More generally, one has that for e ∈ E , the layer Ωe is
the intersection of a Zariski open set with

⋃
e′�e Ωe′ , which is Zariski closed. In fact,

there are Ad∗(G)-invariant polynomial functions

Pe : g∗ → R

for each e ∈ E with the property that

Ωe = {` ∈ g∗ : Pe(`) 6= 0 and Pe′(`) = 0 for e′ ≺ e}.
These are defined explicitly as P∅ = 1 and

Pe(`) = Pf(Me(`)), where Me(`) =
(
`[Xi, Xj]

)
i,j∈e

(2.1)

for e ≺ ∅. That is, Pe(`) is the Pfaffian of the even skew-symmetric matrix Me(`).
Given any subset S of {1, 2, . . . ,m}, we let

VS = Span{X∗j : j ∈ S} ⊂ g∗.

For e ∈ E and ` ∈ Ωe, there is a polynomial function

re(`, ·) : Ve → Vẽ

for which re(`, 0) = 0 and

O` = `+Graph(re(`, ·)) = `+ {x+ re(`, x) : x ∈ Ve}.(2.2)

Writing

re(`, x) =
∑
j∈ẽ

rej(`, x)X∗j ,

the polynomial rej(`, ·) : Ve → R depends only on `|gj−1
and on the value of x on gj−1.

For ` ∈ g∗ we define

ẽ1(`) = {j ∈ ẽ(`) : r
e(`)
j (`, x) = 0 ∀x ∈ Ve(`)}, ẽ2(`) = ẽ(`) \ ẽ1(`).

The orbit O` is constant in the directions X∗j for each j ∈ ẽ1(`). For e = e(`),
the polynomial re(`, x) =

∑
j∈ẽ(`) r

e
j(`, x)X∗j =

∑
j∈ẽ2(`) r

e
j(`, x)X∗j takes values in the

subspace Vẽ2(`) of Vẽ(`). We will also write this polynomial as

r` : Ve(`) → Vẽ2(`).

For e ∈ E , the set
U e = Ωe ∩ Vẽ

is a cross section to the coadjoint orbits in Ωe. That is, O` meets U e(`) in exactly one
point. For ` =

∑
j∈ẽ `jX

∗
j ∈ U e we write

`(1) =
∑
j∈ẽ1(`)

`jX
∗
j ∈ Vẽ1(`), `(2) =

∑
j∈ẽ2(`)

`jX
∗
j ∈ Vẽ2(`),
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so that ` = `(1) + `(2). With this notation, Equation 2.2 now yields

O` = `(1) +
(
`(2) +Graph(r`)

)
⊂ Vẽ1(`) ⊕

(
Ve ⊕ Vẽ2(`)

)
,(2.3)

Conv(O`) = `(1) +
(
`(2) + Conv(Graph(r`))

)
, and(2.4)

Conv(O`) = `(1) +
(
`(2) + Conv(Graph(r`))

)
.(2.5)

The indices ẽ1(`) can be characterized algebraically as follows.

Lemma 2.1. ẽ1(`) = {j ∈ ẽ(`) : Xj ∈ a(`)} where a(`) denotes the largest ideal of
g that is contained in g(`).

Proof. Note that the largest ideal in g that is contained in g(`) is

a(`) =
⋂
g∈G

Ad(g)(g(`)) = {X ∈ g : Ad(g)(X) ∈ g(`) ∀g ∈ G}.

Let j ∈ ẽ(`). Now j ∈ ẽ1(`) if and only if the map G → R, g 7→ (Ad∗(g)`)(Xj) is
constant. Equivalently, we must have

d

dt

∣∣∣∣
t=0

(
Ad∗(exp(tY )g)`

)
(Xj) = 0

for all g ∈ G and all Y ∈ g. That is, j ∈ ẽ1(`) if and only if (Ad∗(g)`)[Xj, Y ] = 0 for
all g, Y . Equivalently, Xj ∈ g(Ad∗(g)`) = Ad(g)(g(`)) for all g ∈ G.

Lemma 2.1 shows that we can have e(`) = e(`′) but ẽ1(`) 6= ẽ1(`′). The ideal a(`)
can be characterized in terms of the representation π asociated to the coadjoint orbit
O` through `:

a(`) = {X ∈ g : dπ(X) is a scalar operator} = {X ∈ g : dπ(X) = i`(X)I}.
(2.6)

We refer the reader to [Lud78] for this fact, the proof of which requires details con-
cerning the Kirillov correspondence. Lemma 2.3 below recasts Equation 2.6 in terms
of the moment map for π. The proof uses a preliminary result.

Lemma 2.2. Let X ∈ g, π ∈ Ĝ and λ ∈ R be given. We have ψπ(v)(X) = λ for all
v ∈ H∞π \ {0} if and only if dπ(X) = iλI.

Proof. It is clear that if dπ(X) = iλId, then ψπ(v)(X) = λ for all v ∈ H∞π \ {0}.
Conversely, suppose that ψπ(v)(X) = λ for all v ∈ H∞π \ {0}. Thus

〈dπ(X)v, v〉 = iλ‖v‖2.(2.7)

Replacing v by u+ v in this equation (u, v ∈ H∞π \ {0} with v 6= −u) gives

Im(〈dπ(X)v, u〉) = λRe(〈v, u〉).
On the other hand, replacing v in Equation 2.7 by u+ iv yields

Re(〈dπ(X)v, u〉) = −λIm(〈v, u〉).
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Thus
〈dπ(X)v, u〉 = iλ〈v, u〉,

and hence dπ(X)v = iλv for all v ∈ H∞π \ {0}.

Lemma 2.3. Let ` ∈ g∗ and π ∈ Ĝ be the representation corresponding to O`. Then
the largest ideal a(`) in g contained in g(`) is

a(`) = {X ∈ g : v 7→ ψπ(v)(X) is constant on H∞π }
= {X ∈ g | ψπ(v)(X) = `(X) ∀ v ∈ H∞π }.

Proof. Lemma 2.2 shows that v 7→ ψπ(v)(X) is constant on H∞π if and only if dπ(X)
is a scalar operator. The result now follows immediately from Equation 2.6.

Lemma 2.4. Let π, π′ ∈ Ĝ correspond to coadjoint orbits O` and O`′. If Iπ = Iπ′
then a(`) = a(`′) and ` = `′ on a(`) = a(`′).

Proof. Let X ∈ a(`). We will show that X ∈ a(`′) and that `′(X) = `(X). Let
v′ ∈ H∞π′ \ {0}. Since ψπ′(v

′) ∈ Iπ′ and Iπ′ = Iπ we have that ψπ(un) → ψπ′(v
′) for

some sequence (un)∞n=1 in H∞π \ {0}. Using Lemma 2.3 and the fact that X ∈ a(`)
we obtain

ψπ′(v
′)(X) = lim

n→∞
ψπ(un)(X) = lim

n→∞
`(X) = `(X).

Thus v′ 7→ ψπ′(v
′) takes the constant value `(X) on H∞π′ \{0}. Lemma 2.3 now shows

that X ∈ a(`′) and that `′(X) = `(X).

Corollary 2.5. If `, `′ ∈ g∗ satisfy e(`) = e(`′) and Conv(O`) = Conv(O`′) then
ẽ1(`) = ẽ1(`′) and ẽ2(`) = ẽ2(`′).

Proof. In view of Equation 1.2, this result is an immediate consequence of Lemmas
2.1 and 2.4.

3. Moment Separability

In this section we will consider connected and simply connected nilpotent Lie
groups G that satisfy the following condition:

(C) For every ` ∈ g∗, Conv(O`) ⊂
⋃
e′�e(`) Ωe′ .

Example 4.5 in Section 4 shows that Condition (C) need not hold in general. Since⋃
e′�e(`) Ωe′ is closed, we also will have Conv(O`) ⊂

⋃
e′�e(`) Ωe′ when Condition (C)

holds. Note that each of the following conditions imply (C):

• Conv(O`) ⊂ Ωe(`) for all ` ∈ g∗.
• The connected components of each layer Ωe (e ∈ E) are convex.

In many examples it is easy to verify these latter properties. For example, the coad-
joint orbits, layers and Pukanszky polynomials for all groups G of dimension at most
6 are computed explicitly by O. Nielsen in [Nie83]. One sees very easily from this
that the connected components of the layers are convex in all but two of these cases.
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The two exceptions are the generic layers for the six dimensional groups denoted
G6,17 and G6,23 in [Nie83]. The orbits in these layers are, however, flat (of dimension
4) and hence we have Conv(O`) = O` ⊂ Ωe(`) for such orbits. Thus we see that
Condition (C) holds for all cases where dim(G) ≤ 6. The following proposition gives
two further classes of examples which satisfy Condition (C).

Proposition 3.1. a) If G is at most step three then G satisfies Condition (C).
b) If all coadjoint orbits for G have dimension at most two then G satisfies (C).

Proof. Suppose that G is nilpotent of step at most three and let ` ∈ g∗. We will show
that Conv(O`) ⊂ Ωe(`). For `′ ∈ Conv(O`) we have

`′ = λ1` ◦ Ad(exp(Y1)) + · · ·+ λN` ◦ Ad(exp(YN))

for some Y1, . . . , YN ∈ g and values λ1, . . . , λN ∈ (0, 1) with λ1 + · · ·+ λN = 1. Since
the layers are determined by the polynomials {Pe : e ∈ E}, we need only show
that Pe(`

′) = Pe(`) for all e ∈ E . This is immediate for e = ∅. For e 6= ∅ we have

Pe(`
′) = Pf(Me(`

′)) where Me(`
′) =

(
`′[Xi, Xj]

)
i,j∈e

. As G is at most 3-step, we

have

`′[Xi, Xj] =
N∑
k=1

λk`(Ad(exp(Yk))[Xi, Xj])

=
N∑
k=1

λk`([Xi, Xj] + [Yk, [Xi, Xj]])

= `[Xi, Xj] + `

[
N∑
k=1

λkYk, [Xi, Xj]

]

= ` ◦ Ad

(
exp

(
N∑
k=1

λkYk

))
[Xi, Xj].

Letting g = exp(−
∑
λkYk) we have show that

Me(`
′) = Me(Ad

∗(g)`).

Thus also Pe(`
′) = Pe(Ad

∗(g)`) = Pe(`) by Ad∗(G)-invariance of Pe. This proves the
first assertion in Proposition 3.1

Next suppose that all coadjoint orbits for G are at most two dimensional. For e ∈ E
let He = {` ∈ g∗ : Pe(`) = 0}. If e ≺ ∅ then #(e) = 2 since the orbits in Ωe are
two dimensional. If e = {j1 < j2} then we see that Pe(`) = `[Xj1 , Xj2 ]. Thus He is a

codimension 1 subspace of g∗ for each e ≺ ∅. We have Ωe =
(⋂

e′≺eHe′

)
∩
(
g∗ \He

)
for e ≺ ∅ and Ω∅ =

⋂
e′≺∅He′ . We see that the connected components for each layer

Ωe are convex sets.
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Remark 3.1. In [Wil89] it is shown that any pair of two-dimensional coadjoint orbits
O1, O2 is “convex distinguishable”. That is, Conv(O1) = Conv(O2) only when

O1 = O2. It is thus probably true that Ĝ is moment separable when all coadjoint
orbits have dimension at most 2. In particular, this is the case if, in addition, the
convex hull of each coadjoint orbit is closed. On the other hand, examples presented

below in Section 4 show that Ĝ may or may not be moment separable when G is
3-step.

Proposition 3.2. If G satisfies Condition (C), then Ĝ is moment separable if and
only if the following condition holds: For each e ∈ E , given f, g ∈ U e, we have
Conv(Of ) = Conv(Og) implies f = g.

Proof. The condition is clearly necessary for moment separability. Now suppose that
the condition holds, and we are given f, g ∈ g∗ with Conv(Of ) = Conv(Og). In view
of Condition (C) one has

g ∈ Conv(Og) = Conv(Of ) ⊂
⋃

e′�e(f)

Ωe′

and hence e(g) � e(f). Likewise e(f) � e(g) and hence e(g) = e(f).
Now we can take f ′ in U e∩Of and g′ in Ue∩Og. Then our condition gives f ′ = g′,

and hence Of = Og. Thus G is moment separable.

Lemma 3.3. Let `, `′ be points in a coadjoint orbit O ⊂ Ωe. Then

re(`′, x) = re(`, x+ y)− re(`, y)

for some y in Ve.

Proof. By our description of the coadjoint orbit O = O`, we have `′ = `+ y+ re(`, y)
for some y in Ve. On the other hand, an arbitrary point in O = O`′ is of the form
`′ + x′ + re(`′, x′) or

`+ x+ re(`, x) = `′ − y − re(`, y) + x+ re(`, x)

= `′ + x− y + re(`, x)− re(`, y).

Thus x′ = x− y, and re(`′, x′) = re(`, x)− re(`, y) = re(`′, x′ + y)− re(`, y).

Our main results concerning groups G subject to Condition (C) are Theorems 3.4
and 3.5 below. These provide a sufficient and a necessary condition, respectively,

for moment separability of Ĝ. We will see via examples in Section 4 that the suffi-
cient condition provided in the first of these theorems is not necessary and that the
necessary condition in the second theorem is not sufficient.

Theorem 3.4. Suppose that G satisfies Condition (C) and, for all ` ∈ g∗, e = e(`),

we have rej(`, Ve) 6= R for all j ∈ ẽ. Then Ĝ is moment separable.
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Proof. In light of Lemma 3.3, we see that the condition on rej(`, ·) holds for all ` in a
layer Ωe iff it holds for all ` in the cross-section U e. Thus we consider only points in
the cross-sections.

Given e ∈ E , take f, g ∈ U e with Conv(Og) = Conv(Of ) . We will show that
f = g. Corollary 2.5 yields ẽ1(f) = ẽ1(g) and ẽ2(f) = ẽ2(g). Equation 2.5 implies,
moreover, that f (1) = g(1) must hold. It remains to show that f (2) = g(2).

We write ẽ1 and ẽ2 for the common sets ẽ1(f) = ẽ1(g) and ẽ2(f) = ẽ2(g) respec-
tively. We suppose below that ẽ2 6= ∅ as otherwise we are done. Let

Cf = Conv(Graph(rf )), Cg = Conv(Graph(rg)) ⊂ Ve ⊕ Vẽ2 .
From above we have that

f (2) + Cf = g(2) + Cg.
For j ∈ ẽ2, let pj : Ve ⊕ Vẽ2 → R be the X∗j -coordinate map. That is, pj(`) = `(X∗j ).
As pj is linear, we have

pj(f
(2) + Cf ) = fj + pj(Cf )

= fj + Conv(pj(Graph(rf )))

= fj + Conv(rej(f, Ve))

= fj + rej(f, Ve).

Since j ∈ ẽ2, rej(f, ·) : Ve → R is a non-constant polynomial, hence rej(f, Ve) is an
unbounded interval in R. By assumption we have rej(f, Ve) 6= R, so rej(f, Ve) is a
proper unbounded interval, (−∞, a), (−∞, a], (a,∞), or [a,∞) for some a ∈ R.

We also have

fj + rej(f, Ve) ⊂ pj(f
(2) + Cf ) ⊂ fj + pj(Cf ) ⊂ fj + rej(f, Ve)

where rej(f, Ve) is a proper unbounded interval in R, and a similar string of inclusions

for g. Since f (2) + Cf = g(2) + Cg we conclude that

fj + rej(f, Ve) = gj + rej(g, Ve)(3.1)

for all j ∈ ẽ2.
Let j ∈ ẽ2 and assume inductively that fi = gi for all i ∈ ẽ2 with i < j. (In

particular, this is automatic when j = min(ẽ2).) We have that f |gj−1
= g|gj−1

.

Indeed, for i < j we have either

• i ∈ e, in which case fi = 0 = gi since f, g ∈ U e,
• i ∈ ẽ1, in which case fi = gi since f (1) = g(1), or
• i ∈ ẽ2, in which case fi = gi by the inductive hypothesis.

As rj(f, ·) and rj(g, ·) depend only on f |gj−1
and g|gj−1

respectively, we conclude that

rej(f, Ve) = rej(g, Ve). Letting A = rej(f, Ve) = rej(g, Ve), Equation 3.1 becomes

(fj − gj) + A = A.

As A is of the form (−∞, a] or [a,∞) we now conclude that fj = gj as desired.
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Theorem 3.5. Suppose that G satisfies Condition (C) and that Ĝ is moment sepa-
rable. Then for all ` ∈ g∗, either ẽ2(`) = ∅ or Conv(Graph(r`)) 6= Ve(`) ⊕ Vẽ2(`).

Note that when ẽ2(`) = ∅ we have O` = ` + Ve. These are flat orbits and the
associated representations are square integrable modulo their kernels [MW73]. In
such cases we have, in particular, that O` is convex.

When ẽ2(`) 6= ∅ then Conv(Graph(r`)) 6= Ve(`)⊕Vẽ2(`) if and only if Graph(r`) lies
to one side of a hyperplane in Ve(`) ⊕ Vẽ2(`). Thus the condition in Theorem 3.5 can
also be stated as:

• For all ` ∈ g∗ either ẽ2(`) = ∅ or there exist real numbers {aj : j ∈ e(`)},
{bj : j ∈ ẽ2(`)}, c ∈ R with∑

j∈e(`)

ajxj +
∑
j∈ẽ2(`)

bjr
e(`)
j (`, x) > c

for all x =
∑

j∈e(`) xjX
∗
j ∈ Ve(`).

Equivalently:

• For all ` ∈ g∗ either ẽ2(`) = ∅ or there exist elements A ∈ Span{Xj : j ∈ e(`)},
B ∈ Span{Xj : j ∈ ẽ2(`)}, c ∈ R with

x(A) + (r`(x))(B) > c

for all x ∈ Ve(`).

Proof of Theorem 3.5. As in the proof of Theorem 3.4, by Lemma 3.3 we only need
to consider points in the cross-sections U e. Suppose that G satisfies Condition (C)
and ẽ2(f) 6= ∅ for some f ∈ U e, but that Conv(Graph(rf )) = Ve(f) ⊕ Vẽ2(f). Let

g = f + εX∗k

where k = max(ẽ2(f)) and ε > 0 is chosen small enough so that Pe(g) 6= 0. The
latter is possible since Pe(f) 6= 0 and Pe is continuous. We will show that g ∈ U e and
that Conv(Og) = Conv(Of ). As g 6= f and U e is a cross section for Ωe, this shows

that that Ĝ is not moment separable.
From Equation 2.4 we obtain

Conv(Of ) = f (1) +
(
f (2) + Conv(rf )

)
= f (1) +

(
Ve ⊕ Vẽ2(f)

)
.

As g = f (1) + (f (2) + εX∗k) ∈ f (1) +
(
Ve ⊕ Vẽ2(f)

)
, we see that g ∈ Conv(Of ).

Condition (C) now implies that g ∈
⋃
e′�e Ωe′ and hence Pe′(g) = 0 for all e′ ∈ E

with e′ ≺ e. Since Pe(g) 6= 0 we now conclude that g ∈ Ωe = {` ∈ g∗ : Pe(`) 6=
0 and Pe′(`) = 0 for e′ ≺ e}. Moreover, g = f + εX∗k ∈ Vẽ so g ∈ U e = Ωe ∩ Vẽ.

We claim that re(g, ·) = re(f, ·), or equivalently,

rej(g, ·) = rej(f, ·) for all j ∈ ẽ.
For this we consider two cases:
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1. If j ≤ k then g|gj−1
= f |gj−1

and hence rej(g, ·) = rej(f, ·).
2. If j > k then j ∈ ẽ1(f) since k = max(ẽ2(f)). But as noted above, g ∈
Conv(Of ) = f (1) +

(
Ve ⊕ Vẽ2(f)

)
and as Conv(Of ) is an Ad∗(G)-invariant set

we have
Og ⊂ f (1) +

(
Ve ⊕ Vẽ2(f)

)
.

Hence the polynomial gj + rej(g, ·) = fj + rej(g, ·) which gives the orbit Og in the
X∗j -direction must be constant (gj = fj). That is, rej(g, ·) = 0 = rej(f, ·) in this
case.

It now follows that ẽ1(g) = ẽ1(f), ẽ2(g) = ẽ2(f) and rg = rf . Finally we compute

Conv(Og) = g(1) +
(
g(2) + Conv(Graph(rg))

)
= f (1) +

(
g(2) + Conv(Graph(rf ))

)
= f (1) +

(
g(2) + Ve ⊕ Vẽ2(f)

)
= f (1) +

(
Ve ⊕ Vẽ2(f)

)
= Conv(Of ).

Examples in Section 4 show that the converses for Theorems 3.4 and 3.5 do not
hold in general. The necessary condition from Theorem 3.5 is, however, sufficient in
the special case where each coadjoint orbit has at most one non-constant direction:

Proposition 3.6. Suppose that G satisfies Condition (C) and that #(ẽ2(`)) ≤ 1 for

all ` ∈ g∗. Then Ĝ is moment separable if and only if Conv(Graph(r`)) 6= Ve(`)⊕Vẽ2(`)

for all ` ∈ g∗ with ẽ2(`) 6= ∅.

Proof. In view of Theorem 3.5, we need only prove that Of = Og follows from

Conv(Of ) = Conv(Og). By Proposition 3.2, we can assume that f, g ∈ U e for some
e ∈ E . As in the proof of Theorem 3.4, we obtain ẽ1(f) = ẽ1(g) and f (1) = g(1). We
suppose that ẽ2(f) = ẽ2(g) = {j}, and wish to show that fj = gj. As in the proof of
Theorem 3.4 we have

fjX
∗
j + Conv(Graph(rej(f, ·)X∗j )) = gjX

∗
j + Conv(Graph(rej(g, ·)X∗j )).

Moreover, as f (1) = g(1) and f, g ∈ U e we have f |gj−1 = g|gj−1 and hence rej(f, ·) =
rej(g, ·). Thus

Conv(Graph(rej(f, ·)X∗j )) = Conv(Graph(rej(g, ·)X∗j )) = C
say. We have now

(fj − gj)X∗j + C = C
and, by iteration, n(fj − gj)X∗j + C = C for all n ∈ Z.
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Now suppose that fj 6= gj. Then, by convexity, we have RX∗j + C = C. Since C
is the graph of a function from Ve to RX∗j , we conclude that C = Ve ⊕ RX∗j . This
contradicts the hypothesis that C 6= Ve ⊕ RX∗j and hence fj = gj .

4. Examples

As remarked in [Wil89], Ĝ is moment separable for all connected and simply con-
nected nilpotent groups G with dim(G) ≤ 5. Examples 4.1 and 4.2 below illustrate
the application of Theorems 3.4 and 3.5 to groups of dimension 6. When dim(G) = 6,

as is noted in [Wil89], Ĝ may or may not be moment separable.
Examples 4.3, 4.4 and 4.5 demonstrate some limitations to the results obtained

in this paper. Example 4.3 shows that Ĝ may be moment separable in cases where
Condition (C) holds but G does not satisfy the remaining hypothesis in Theorem 3.4.
Example 4.4 shows that G may satisfy Condition (C) and the conclusion of Theorem

3.5 but Ĝ may fail to be moment separable. Example 4.5 shows that not all nilpotent
groups satisfy Condition (C).

Example 4.6 suggests that some of our results should carry over to the setting of
exponential solvable Lie groups.

Example 4.1. Let G be the 6-dimensional group with Lie algebra g having strong
Malcev basis X1, . . . , X6 where

[X6, X5] = X4, [X6, X4] = X1, [X3, X2] = X1,

and other brackets of basis elements vanish. This is the group denoted G6,1 in [Nie83].
G is a 3-step group with center RX1. Condition (C) holds in view of Proposition 3.1.
In fact, the jump sets and layers are, from [Nie83]:

E =
{
{2, 3, 4, 6} ≺ {5, 6} ≺ ∅

}
, where

Ω{2,3,4,6} = {` : `1 6= 0}, Ω{5,6} = {` : `1 = 0, `4 6= 0}, Ω∅ = {` : `1 = `4 = 0}.
Here we write elements ` ∈ g∗ as ` = `1X

∗
1 + · · · + `6X

∗
6 . For e = {2, 3, 4, 6}

and ` ∈ U e = {`1X
∗
1 + `5X

∗
5 : `1 6= 0}, one has ẽ1(`) = {1}, ẽ2(`) = {5} and

re5(`, ·) : Ve → R is

re5(`, x2, x3, x4, x6) =
1

2`1

x2
4

Thus re5(`, Ve) 6= R. For ` ∈ Ω{5,6} ∪ Ω∅ we have ẽ2(`) = ∅. (The orbit O` is flat

of dimension two or is a single point.) Thus Theorem 3.4 shows that Ĝ is moment
separable.

Example 4.2. Next consider the 6-dimensional group G whose Lie algebra g is given
by the strong Malcev basis X1, . . . , X6 with non-zero brackets

[X6, X5] = X3, [X6, X4] = X2, [X5, X2] = X1, [X4, X3] = X1.
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This is the group G6,4 in [Nie83]. As in Example 4.1, g is 3-step with one dimensional
center RX1. Condition (C) holds and we have

E =
{
{2, 3, 4, 5} ≺ {4, 6} ≺ {5, 6} ≺ ∅

}
, where

Ω{2,3,4,5} = {` : `1 6= 0}, Ω{4,6} = {` : `1 = 0, `2 6= 0},
Ω{5,6} = {` : `1 = `2 = 0, `3 6= 0}, Ω∅ = {` : `1 = `2 = `3 = 0}.

For e = {2, 3, 4, 5} and ` ∈ U e = {`1X
∗
1 + `6X

∗
6 : `1 6= 0} one has ẽ1(`) = {1},

ẽ2(`) = {6} and r` : Ve → Vẽ2(`) is the map

r`(x2, x3, x4, x5) = − 1

`1

x2x3X
∗
6 .

This gives a saddle in the the space spanned by {X∗2 , X∗3 , X∗6}. It follows that
Conv(Graph(r`)) = Ve ⊕ Vẽ2(`) for ` ∈ Ω{2,3,4,5}. Theorem 3.5 now implies that

Ĝ is not moment separable.
We remark that Examples 4.1 and 4.2 taken together show that the unitary dual

of a 3-step group may or may not be moment separable.

Example 4.3. The n-step ladder group Gn (n ≥ 2) has Lie algebra gn of dimension
n+ 1 with strong Malcev basis X1, . . . , Xn+1 where

[Xn+1, Xj] = Xj−1

for j = 2, . . . , n. In this example one has

E = {e1 ≺ e2 ≺ · · · ≺ en} where ej = {j + 1, n+ 1}

for j = 1, . . . , n− 1 and en = ∅. The layers Ωej are

Ωej = {` ∈ g∗ : `1 = · · · = `j−1 = 0, `j 6= 0}

for j = 1, . . . , n− 1, and

Ωen = Ω∅ = {` ∈ g∗ : `1 = · · · = `n−1 = 0} = {`nX∗n + `n+1X
∗
n+1 : `n, `n+1 ∈ R}.

We see that the connected components of each layer are convex, so Condition (C)
holds. Alternatively, this follows from Proposition 3.1 since each coadjoint orbit has

dimension at most two. We’ll show that Ĝn is moment separable but that for n ≥ 4
the condition in Theorem 3.4 does not hold. The case n = 2, the three dimensional
Heisenberg group, is transparent. So we suppose below that n ≥ 3.

First note that there is an obvious algebra isomorphism gn/RX1
∼= gn−1. Coadjoint

orbits in layers Ωej with j > 1 are diffeomorphic to coadjoint orbits in g∗n−1 via the

associated linear map g∗n−1 → g∗n. Thus an inductive argument shows that Ĝn is

moment separable if and only if Conv(O) = Conv(O′) ⇒ O = O′ for coadjoint
orbits O,O′ ⊂ Ωe1 .
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Writing e = e1 and functionals ` = `1X
∗
1 + · · ·+ `n+1X

∗
n+1 as ` = (`1, . . . , `n+1), we

have

U e = {(`1, 0, `3, . . . , `n, 0) : `1 6= 0}.
A brute-force computation shows that for ` ∈ U e, ` = (`1, 0, `3, . . . , `n, 0), one has

O` =
{(
`1, x2, `3 +

1

2`1

x2
2, `4 +

`3

`1

x2 +
1

6`2
1

x3
2, `5 +

`4

`1

x2 +
`3

2`2
1

x2
2 +

1

24`3
1

x4
2, . . . ,

`n +
`n−1

`1

x2 +
`n−2

2`2
1

x2
2 + · · ·+ `3

(n− 3)!`n−3
1

xn−3
2 +

1

(n− 1)!`n−2
1

xn−1
2 , xn+1

)
: x2, xn+1 ∈ R

}
.

The Pukanszky polynomials rej(`, ·) : Ve → R are here given by

rej(`, x2, xn+1) =

j−1∑
i=1

`j−i
i!`i1

xi2 =

j−3∑
i=1

`j−i
i!`i1

xi2 +
1

(j − 1)!`j−2
1

xj−1
2 .

We have ẽ1(`) = {1} and ẽ2(`) = {3, . . . , n}.
Suppose now that ` = (`1, 0, `3, . . . , `n, 0) and `′ = (`′1, 0, `

′
3, . . . , `

′
n, 0) are two points

in U e with Conv(O`′) = Conv(O`). It follows that `′1 = `1. We can suppose here
that `1 > 0. All points `′′ in O` have `′′3 ≥ `3. Hence the same is true for all points

`′′ in Conv(O`). Thus we have `′3 ≥ `3. Interchanging the roles of ` and `′ we obtain

also `3 ≥ `′3 and hence `′3 = `3. We note, moreover, that all points `′′ ∈ Conv(O`)
with `′′ 6= ` have `′′3 > `3. Since `′ ∈ Conv(O`) and `′3 = `3, we now conclude that

`′ = ` must hold. This shows that Ĝn is moment separable.
On the other hand, for n ≥ 4 we see that re4(`, x) = (`3/`1)x2 + (1/6`2

1)x3
2 has

re4(`, Ve) = R for all ` ∈ Ωe. Thus the condition in Theorem 3.4 does not hold here.

Example 4.4. Consider the 7-dimensional group G with Lie algebra g given by the
strong Malcev basis X1, . . . , X7 where:

[X5, X4] = X3, [X5, X3] = X2, [X5, X2] = X1,

[X6, X5] = X3, [X6, X4] = X2, [X6, X3] = X1,

[X7, X5] = X1,

and other brackets of basis elements are zero. g is 4-step with center RX1. The jump
sets for this example are

E =
{
{2, 3, 5, 6} ≺ {3, 4, 5, 6} ≺ {4, 5} ≺ ∅

}
with layers given by:

Ω{2,3,5,6} = {` ∈ g∗ : `1 6= 0}, Ω{3,4,5,6} = {` ∈ g∗ : `1 = 0, `2 6= 0},
Ω{4,5} = {` ∈ g∗ : `1 = `2 = 0, `3 6= 0}, Ω∅ = {` ∈ g∗ : `1 = `2 = `3 = 0},
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where ` = `1X
∗
1 + · · ·+`7X

∗
7 . Condition (C) holds because the connected components

of each layer are convex. We will show that the condition in Theorem 3.5 holds but

that Ĝ is not moment separable.
The cross sections U e are given by

U{2,3,5,6} = {`1X
∗
1 + `4X

∗
4 + `7X

∗
7 : `1 6= 0}, U{3,4,5,6} = {`2X

∗
2 + `7X

∗
7 : `2 6= 0},

U{4,5} = {`3X
∗
3 + `6X

∗
6 + `7X

∗
7 : `3 6= 0}, U∅ = {`4X

∗
4 + · · · `7X

∗
7}.

Writing elements ` ∈ g∗ as “(`1, . . . , `7)”, the coadjoint orbit through a point ` in
U{2,3,5,6}, U{3,4,5,6}, U{4,5}, or U∅ is:

O` = {(`1, x2, x3, `4 + x2x3/`1 − x3
2/(3`

2
1), x5, x6, `7 − x2) : x2, x3, x5, x6 ∈ R},

O` = {(0, `2, x3, x4, x5, x6, `7) : x3, x4, x5, x6 ∈ R},
O` = {(0, 0, `3, x4, x5, `6 − x4, `7) : x4, x5 ∈ R}, or

O` = {`}

respectively.
One can read off the Pukanszky polynomials from these orbit descriptions. For

e = {2, 3, 5, 6} and ` ∈ U e, we see that ẽ2(`) = {4, 7} and that the map r` : Ve → Vẽ2(`)

is

r`(x2, x3, x5, x6) =

(
x2x3

`1

− x3
2

3`2
1

)
X∗4 − x2X

∗
7 .

Thus Graph(r`) is contained in the linear subspace {`′ : `′2 + `′7 = 0} of Ve ⊕ Vẽ2(`).
Hence the same is true for Conv(Graph(r`)). This shows that Conv(Graph(r`)) 6=
Ve ⊕ Vẽ2(`) for all ` ∈ U{2,3,5,6}. For e = {4, 5} and ` ∈ U e, we have ẽ2(`) = {6} and
r` : Ve → Vẽ2(`) is

r`(x4, x5) = −x4X
∗
6 .

We see that Conv(Graph(r`)) = Graph(r`) 6= Ve ⊕ Vẽ2(`) for all ` ∈ Ω{4,5}. For
e = {3, 4, 5, 6} or e = ∅ and ` ∈ U e we have ẽ2(`) = ∅. Hence the condition in the
conclusion of Theorem 3.5 holds for this example.

On the other hand, Ĝ is not moment separable. Indeed, let f = X∗1 and g =
X∗1 + X∗4 . Since f, g ∈ U{2,3,5,6} and f 6= g, we have that Of 6= Og. In fact, these
orbits are:

Of = {(1, x2, x3, x2x3 − x3
2/3, x5, x6,−x2) : x2, x3, x5, x6 ∈ R},

Og = {(1, x2, x3, 1 + x2x3 − x3
2/3, x5, x6,−x2) : x2, x3, x5, x6 ∈ R}.

Since (1, 1, 1, 2/3, 0, 0,−1) ∈ Of and (1,−1,−1, 4/3, 0, 0, 1) ∈ Of , we have

g = (1, 0, 0, 1, 0, 0, 0) =
1

2
(1, 1, 1, 2/3, 0, 0,−1)+

1

2
(1,−1,−1, 4/3, 0, 0, 1) ∈ Conv(Of ).
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Thus Conv(Og) ⊂ Conv(Of ). But we also have (1, 1,−1,−1/3, 0, 0,−1) ∈ Og and
(1,−1, 1, 1/3, 0, 0, 1) ∈ Og. So

f = (1, 0, 0, 0, 0, 0, 0) =
1

2
(1, 1,−1,−1/3, 0, 0,−1)+

1

2
(1,−1, 1, 1/3, 0, 0, 1) ∈ Conv(Og)

and hence Conv(Of ) ⊂ Conv(Og). As Of 6= Og but Conv(Of ) = Conv(Og), Ĝ is
not moment separable.

This example shows that the necessary condition for moment separability furnished
by Theorem 3.5 is not sufficient.

Example 4.5. Let G be the group of 5 × 5 unipotent upper-triangular matrices.
This is a 4-step group of dimension 10 with one dimensional center. We’ll show that
Condition (C) does not hold for this example. The Lie algebra g for G is the set of
5× 5 upper triangular matrices with 0’s on the diagonal. Let Ei,j denote the matrix
with a 1 in position (i, j) and other entries zero. Then {Ei,j : i < j} is a strong
Malcev basis for g when ordered as:

E1,5, E1,4, E2,5, E1,3, E2,4, E3,5, E1,2, E2,3, E3,4, E4,5.

The structure equations are

[Ei,j, Ek,`] = δj,kEi,`.

There are nine layers Ωe in g∗. Rather than writing “X1 = E1,5, . . . , X10 = E4,5”
and listing jump sets e as subsets of {1, . . . , 10}, we will specify the basis vectors Ei,j
that give the jump indices in each case. One has

E = {e1 ≺ e2 ≺ · · · ≺ e9}

where:

e1 = {E1,4, E2,5, E1,3, E3,5, E1,2, E2,3, E3,4, E4,5},
e2 = {E1,4, E2,5, E1,3, E3,5, E1,2, E4,5},
e3 = {E1,3, E2,4, E3,5, E1,2, E2,3, E3,4},
e4 = {E1,3, E2,4, E1,2, E3,4},
e5 = {E2,4, E3,5, E2,3, E4,5},
e6 = {E1,2, E2,3, E3,4, E4,5},
e7 = {E2,3, E3,4},
e8 = {E3,4, E4,5},
e9 = ∅.
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Writing elements ` ∈ g∗ as ` =
∑

i<j `i,jE
∗
i,j, the corresponding layers Ωej are:

Ωe1 = {` ∈ g∗ : `1,5 6= 0, `1,4`2,5 − `2,4`1,5 6= 0},
Ωe2 = {` ∈ g∗ : `1,5 6= 0, `1,4`2,5 − `2,4`1,5 = 0},
Ωe3 = {` ∈ g∗ : `1,5 = 0, `1,4`2,5 6= 0},
Ωe4 = {` ∈ g∗ : `1,5 = `2,5 = 0, `1,4 6= 0},
Ωe5 = {` ∈ g∗ : `1,5 = `1,4 = 0, `2,5 6= 0},
Ωe6 = {` ∈ g∗ : `1,5 = `1,4 = `2,5 = 0, `1,3`3,5 6= 0},
Ωe7 = {` ∈ g∗ : `1,5 = `1,4 = `2,5 = `1,3 = 0, `2,4 6= 0},
Ωe8 = {` ∈ g∗ : `1,5 = `1,4 = `2,5 = `1,3 = `2,4 = 0, `3,5 6= 0},
Ωe9 = {` ∈ g∗ : `1,5 = `1,4 = `2,5 = `1,3 = `2,4 = `3,5 = 0}.

Orbits in Ωe1 are 8-dimensional with one non-constant direction (E∗2,4). Orbits in
Ωe2 are 6-dimensional with three non-constant directions (E∗2,4, E

∗
2,3, E

∗
3,4). Orbits in

Ωe3 are 6-dimensional with one non-constant direction (E∗4,5). Orbits in Ωe4 are 4-
dimensional with one non-constant direction (E∗2,3). Orbits in Ωe5 are 4-dimensional
with one non-constant direction (E∗3,4). Orbits in Ωe6 are flat and 4-dimensional.
Orbits in Ωe7 are 2-dimensional with one non-constant direction (E∗4,5). Orbits in Ωe8

are flat and 2-dimensional. Orbits in Ωe9 = Ω∅ are single points.
From above we see that the cross sections for the layers Ωe1 and Ωe2 are:

U e1 = {aE∗1,5 + bE∗2,4 : a 6= 0, b 6= 0}, U e2 = {aE∗1,5 + bE∗2,3 + cE∗3,4 : a 6= 0}.

One computes that the coadjoint orbit through a point f = aE∗1,5+bE∗2,3+cE∗3,4 ∈ U e2
(a 6= 0) is

Of =




0 x12 x13 x14 a
0 0 b+ x25x13

a
x14x25

a
x25

0 0 0 c+ x14x35

a
x35

0 0 0 0 x45

0 0 0 0 0

 : x14, x25, x13, x35, x12, x45 ∈ R

 .

Note that both aE∗1,5 + 2E∗1,4 + bE∗2,3 + cE∗3,4 and aE∗1,5 + 2E∗2,5 + bE∗2,3 + cE∗3,4 belong
to Of . Hence

g = aE∗1,5 + E∗1,4 + E∗2,5 + bE∗2,3 + cE∗3,4

=
1

2
(aE∗1,5 + 2E∗1,4 + bE∗2,3 + cE∗3,4) +

1

2
(aE∗1,5 + 2E∗2,5 + bE∗2,3 + cE∗3,4)

∈ Conv(Of ).
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Since g ∈ Ωe1 we see that

Conv(Of ) 6⊂

 ⋃
e′�e(f)

Ωe′ =
9⋃
j=2

Ωej

 .
Thus, Condition (C) fails for this example.

We note, moreover, that Ĝ fails to be moment separable in a rather spectacular
fashion. The coadjoint orbit through a point g = aE∗1,5 + bE∗2,4 ∈ U e1 (a 6= 0, b 6= 0) is

Og =




0 x12 x13 x14 a
0 0 x23 b+ x14x25

a
x25

0 0 0 x34 x35

0 0 0 0 x45

0 0 0 0 0

 : x14, x25, x13, x35, x12, x23, x34, x45 ∈ R

 .

From this we see that Conv(Og) = {` ∈ g∗ : `1,5 = a} for all such g. (The key obser-
vation here is that Og forms a saddle in the subspace spanned by {E∗1,4, E∗2,5, E∗2,4}.)
But we saw above that for f = aE∗1,5 + bE∗2,3 + cE∗3,4 ∈ U e2 , Conv(Of ) meets Ωe1 .
Letting g ∈ Conv(Of ) ∩ Ωe1 we have

{` ∈ g∗ : `1,5 = a} = Conv(Og) ⊂ Conv(Of ) ⊂ {` ∈ g∗ : `1,5 = a}.

This shows that for any point ` ∈ Ωe1 ∪ Ωe2 ,

Conv(O`) = {`′ ∈ g∗ : `′1,5 = `1,5}.

We remark that one can also find pairs of coadjoint orbits in each of the layers Ωe3 ,
Ωe4 and Ωe5 whose convex hulls coincide.

Example 4.6. The aim here is to examine our results from the nilpotent situation
in an exponential solvable case. Another aim is the following: In Remark 3.1 we
mention that in [Wil89], it is shown that any pair of two dimensional coadjoint orbits
O1, O2 is “convex distinguishable”. We are going to show that this does not hold in
the more general context of exponential groups.

Let G be the 4-dimensional group with the Lie algebra g having strong Malcev
basis {Z,X, Y,A} where

[A,X] = −X, [A, Y ] = Y, [X, Y ] = Z,

and other brackets of basis elements vanish. This group is completely solvable
and hence exponential solvable. Let {Z∗, X∗, Y ∗, A∗} be the basis of g∗ dual to
{Z,X, Y,A}. Let `λ,ν,α,η = λZ∗ + νX∗ + αY ∗ + ηA∗ and

θ = exp(aA) · exp(xX) · exp(yY ) · exp(zZ), a, x, y, z ∈ R.

Then a routine calculation shows that:

Ad∗(θ)`λ,ν,α,η = λZ∗ + ea(ν + yλ)X∗ + e−a(α− xλ)Y ∗ + (η − xν + yα− xyλ)A∗.
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From this it follows that for λ 6= 0, the orbit O(λ,ν,α,η) through `λ,ν,α,η is given by:

O(λ,ν,α,η) =

{
λZ∗ + uX∗ + vY ∗ +

(
uv − αν

λ
+ η

)
A∗ : u, v ∈ R

}
.

We see that for ` = λZ∗ + ηA∗ with λ 6= 0 one has e(`) = {2, 3} and ẽ2(`) = {4}.
The map r` : Ve(`) → Vẽ2(`) is here

r`(u, v) =
uv

λ
A∗.

We see that Conv(Graph(r`)) = Ve(`) ⊕ Vẽ2(`). In view of Theorem 3.5, we expect

that Ĝ is not moment separable. This is indeed the case. In fact, the orbits O(λ,0,0,η)

for fixed λ 6= 0 are not convex distinguishable.
Consider for example the following pair of coadjoint orbits:

O = O(1,0,0,0) = {`(1,u,v,uv) : u, v ∈ R},
O′ = O(1,0,0,1) = {`(1,u,v,uv+1) : u, v ∈ R}.

We see that O′ 6= O since `(1,0,0,1) 6∈ O. As `(1,1,1,1) ∈ O and `(1,−1,−1,1) ∈ O satisfy

1

2
`(1,1,1,1) +

1

2
`(1,−1,−1,1) = `(1,0,0,1)

we have Conv(O′) ⊂ Conv(O). On the other hand

1

2
`(1,1,−1,0) +

1

2
`(1,−1,1,0) = `(1,0,0,0)

with `(1,1,−1,0), `(1,−1,1,0) ∈ O′ and thus Conv(O) ⊂ Conv(O′). This shows that
Conv(O) = Conv(O′), so that O, O′ are a pair of (two dimensional) coadjoint orbits
which are not convex distinguishable.

5. Concluding Remarks and Questions

For a given group G, the conditions in Theorems 3.4 and 3.5 are usually easy to
check. This is illustrated by the examples described above in Section 4. It would,
however, be desirable to have a single condition which is both necessary and sufficient
for moment separability. One might also hope to eliminate the use of Condition (C)
as a hypothesis, although this seems difficult provided one sticks to the framework

of Pukanszky polynomials. In this regard, we ask whether Ĝ necessarily fails to be
moment separable whenever Condition (C) fails.

Finally, we remark that the closure in Equation 1.2 plays a mysterious role. In
fact, we know of no example where the convex hull Conv(O) of some coadjoint orbit
is not itself closed. This is a subtle issue because the convex hull for the graph of a
polynomial function Rn → R

m can fail to be closed. (The polynomial p : R2 → R
2

defined as p(x, y) = (x2, x2y2) is one example.) In any case, we ask whether convex
distinguishability implies moment separability. That is, if Conv(O) = Conv(O′) ⇒
O = O′ for all coadjoint orbits O,O′ ⊂ g∗ then is Ĝ moment separable?
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