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1. Preliminaries

Much of the literature on multiplicity free actions is set in the framework of alge-
braic groups. We begin by summarizing the basic definitions and results we require
concerning such groups and their representations.

1.1. Algebraic groups. The general linear group GL(n,C) can be viewed as an al-
gebraic group. Letting gl(n,C) denote the space of n × n complex matrices, the
group GL(n,C) can be identified with the zero set for the polynomial function
p(A,w) = det(A)w − 1 on gl(n,C) × C. This determines the structure of GL(n,C)
as an affine variety. One calls G a reductive complex (linear) algebraic group when

• (linear) G is an algebraic subgroup of GL(n,C), and
• (reductive) Cn is a direct sum of G-irreducible subspaces.

The classical examples are

GL(n.C), SL(n,C), O(n,C), SO(n,C), Sp(2n,C)

and direct products of these groups. The torus (C×)n is a direct product of copies
of GL(1,C) = C×. A reductive complex algebraic group is connected (in the Zariski
topology) if and only if it is irreducible as an algebraic variety. The classical examples
are all connected except for O(n,C), which has two components. We will assume
that our algebraic groups G are connected unless noted otherwise.
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2 C. BENSON AND G. RATCLIFF

1.2. Regular functions. C[G] denotes the ring of regular functions on G. This is
the coordinate ring of G as an affine variety. More concretely

C[G] is the algebra generated by the matrix entries of G and det−1.

A function f : G → C is regular if and only if f is the restriction of a regular function
on GL(n,C). So

C[G] ∼= C[GL(n,C)]/I(G), where I(G) = {f ∈ C[GL(n,C)] : f(G) = 0}.
Examples 1.2.1. For g = [aij] ∈ GL(n,C) let zij(g) = aij. Then

• C[GL(n,C)] = C[zij, det−1],
• C[SL(n,C)] = C[zij],
• C[(C×)n] = C[z11, z

−1
11 , . . . , znn, z

−1
nn ].

1.3. Algebraic groups as Lie groups. As an algebraic group, G carries the Zariski
topology. As a set of n × n complex matrices, G also has a subspace topology from
gl(n,C). In fact, G is a smooth submanifold of gl(n,C), viewed as a real vector space
of dimension (2n)2. In this way G is seen as a (real) Lie group with Lie algebra

g = {A ∈ gl(n,C) : etA ∈ G for all t ∈ R}.
Moreover g is closed under multiplication by i and hence is a complex Lie-subalgebra
of gl(n,C). Alternatively one can define the (complex) Lie algebra g for G as

g = {A ∈ gl(n,C) : f ∈ I(G) =⇒ Af ∈ I(G)}
where

Af(g) =
d

dt

∣∣∣∣
t=0

f(g(I + tA)).

When G is reductive, g is a complex reductive Lie algebra. This implies that

g = z(g)⊕ g′

where z(g) denotes the center of g and the derived subalgebra g′ = [g, g] is semi-
simple, a direct sum of simple ideals. g′ is the Lie algebra of the commutator subgroup
G′ = (G,G).

1.4. Structure theory. A maximal connected solvable algebraic subgroup B of G
is called a Borel subgroup. The following facts concerning such subgroups are well
known:

• Any two Borel subgroups are conjugate in G.
• Given any Borel subgroup B, there is an opposite Borel subgroup B− with the

property that B−B is Zariski dense in G and contains an open neighborhood
of I.

• B is the semidirect product B = HN of its commutator subgroup N = (B, B)
with a maximal torus H in G. The group N is a maximal unipotent subgroup
of G.
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The Lie algebra h of H is a maximal abelian subalgebra of g. For α ∈ h∗ let

gα = {Y ∈ g : [X,Y ] = α(X)Y for all X ∈ h}.
Then

∆ = ∆(g, h) = {α ∈ h∗ : gα 6= 0}
is the set of roots for g (relative to h). Each root space gα is one dimensional and

g = h⊕
⊕
α∈∆

gα.

There is a subset ∆+ of ∆, called the positive roots, such that N has Lie algebra

n =
⊕

α∈∆+

gα.

Now

• ∆ = ∆+ ∪ (−∆+),
• b = h⊕ n is the Lie algebra of B, and
• N− has Lie algebra n− =

⊕
α∈∆+ g−α.

For each α ∈ ∆+ there are elements Xα ∈ gα, X−α ∈ g−α, Hα ∈ h which form an
sl(2)-triple:

[Hα, Xα] = 2Xα, [Hα, X−α] = −2X−α, [Xα, X−α] = Hα.

For each α ∈ ∆ we have a root reflection

sα : h∗ → h∗, sα(λ) = λ− 〈λ, α〉α
where

〈λ, α〉 = λ(Hα).

The Weyl group W = W (g, h) is the subgroup of GL(h∗) generated by {sα : α ∈ ∆}.
It is a finite reflection group that acts by permutations on the set ∆.

Example 1.4.1. The standard Borel subgroup in G = GL(n,C) is

Bn =








z1

O
. . . F

zn


 : zj ∈ C×



 ,

the group of invertible upper triangular matrices. We have

Bn = HnNn

where Hn denotes the diagonal matrices in GL(n,C) and Nn denotes the unipotent
upper triangular matrices. The opposite Borel subgroup for Bn is

B−
n = HnN−

n

where B−
n and N−

n are the invertible and unipotent lower triangular matrices respec-
tively.
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The Lie algebra hn of Hn is the set of all diagonal matrices. Letting εi ∈ h∗ denote
the functional

εi(diag(z1, . . . , zn)) = zi

one has

roots ∆ = {εi − εj : i 6= j} and positive roots ∆+ = {εi − εj : i < j}.
For α = εi − εj ∈ ∆+ we have

Xα = Eij, X−α = Eji, Hα = Eii − Ejj.

The root reflection sα satisfies sα(εk) = ετ(k) where τ ∈ Sn is the transposition that
interchanges i with j. Thus the Weyl group is isomorphic to Sn.

1.5. Rational representations.

Definition 1.5.1. Let (σ, V ) be a representation of G.

(1) (σ, V ) is said to be rational (or regular) if it is finite dimensional and its matrix
coefficients

g 7→ ξ(σ(g)v), ξ ∈ V ∗, v ∈ V

all belong to C[G].
(2) (σ, V ) is locally rational (or locally regular) if dim(V ) = ∞ and for any finite

dimensional subspace F of V there is a σ(G)-invariant subspace W with F ⊂
W ⊂ V for which σ|W is rational.

We let Ĝ denote the set of equivalence classes of irreducible rational representations

of G and sometimes write Vσ for the representation space of σ ∈ Ĝ.

Note that subrepresentations of rational (or locally rational) representations are
rational (resp. locally rational).

Example 1.5.2. As G = C× is abelian, its irreducible representations are given by
characters ρ : C× → C×. For such a character to be rational we require ρ ∈ C[G] =
C[z, 1/z]. So ρ is holomorphic on C× and hence determined by its restriction to the
unit circle T. One concludes that

(C×)̂ = {ρn : n ∈ Z}
where ρn(z) = zn. The character

ρ(z) =
z

|z|
gives a representation of C× which is not rational.

This example illustrates the:

Weyl Unitarian Trick: Rational representations of G are determined by holomorphic
extension from a maximal compact connected subgroup K of G (viewed as a real Lie
group).
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It now follows from the representation theory for compact Lie groups that rational
representations are completely reducible. Moreover, the Unitarian Trick establishes

a bijection between Ĝ and the set K̂ of unitary equivalence classes of irreducible
unitary representations of K. So one can work entirely in the compact group setting,
should one so prefer. Maximal compact subgroups for the classical groups GL(n.C),
SL(n,C), O(n,C), SO(n,C), Sp(2n,C) are

U(n), SU(n), O(n,R), SO(n,R), Sp(2n) = U(2n) ∩ Sp(2n,C).

Each rational representation (σ, V ) of G is smooth. That is, t 7→ σ(etX)v is a
smooth map R→ V for each v ∈ V , X ∈ g. Thus we obtain a derived representation

σ(X)v =
d

dt

∣∣∣∣
t=0

σ(etX)v

of the Lie algebra g on V . (Note that we are using the same notation for the repre-
sentation σ on both the Lie group and the Lie algebra.)

When there is no ambiguity, we will denote the action of G (or g) on V by

σ(g)v = g · v (or σ(X)v = X · v).

1.6. Highest weight theory. Let B = HN be a Borel subgroup in G and (σ, V )
be a rational representation. By the Lie-Kolchin Theorem, there are non-zero σ(B)-
eigenvectors. That is, there are vectors v 6= 0 in V such that

σ(b)v = ψ(b)v for all b ∈ B,

where ψ : B → C× is a regular character. As N = (B, B), we have ψ|N = 1 and
hence

• {v ∈ V : v is a B-eigenvector} = V N , the N -fixed vectors in V , and

• ψ is determined by ψ|H ∈ Ĥ.

Highest weight theory asserts that

σ is irreducible ⇐⇒ dim(V N) = 1.

For each σ ∈ Ĝ, there is a non-zero B-eigenvector vσ ∈ Vσ, unique up to scalar
multiples. This is the highest weight vector for σ.

The corresponding character ψ : B → C× can be differentiated to give a functional
λ on the Lie algebra b, with λ(n) = 0. We have X · vσ = λ(X)vσ for all X ∈ b. As
noted above, λ is determined by its value on the Lie algebra h of H.

The functional λ in h∗ is the highest weight for σ. We can extend λ to b (or b−)
by taking λ(n) = 0 (resp. λ(n−) = 0). Thus vσ is, up to scalars, the unique vector in
V with

X · vσ = λ(X)vσ for all X ∈ b.

Highest weight theory asserts, moreover, that

σ is determined up to equivalence by its highest weight.
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Given a representation of G with highest weight λ, we will denote the correspond-
ing representation as Vλ. (Keep in mind that this all depends on the initial choice of
a Borel subgroup.) For an element b in the subgroup B, we will denote the corre-
sponding character by b 7→ bλ.

The highest weights for GL(n,C) (with respect to the standard Borel subgroup)
are

{diag(h1, . . . , hn) 7→ d1h1 + · · ·+ dnhn : d1, . . . , dn ∈ Z with d1 ≥ d2 ≥ · · · ≥ dn}.

1.7. The contragredient representation. Given a representation of G on V , we
define the contragredient representation of G on V ∗ by:

g · ξ(v) = ξ(g−1 · v) for ξ ∈ V ∗, v ∈ V .

If V has highest weight vector v with highest weight λ with respect to some Borel
subgroup B, then V ∗ has a highest weight vector v∗ with weight −λ with respect to
the opposite Borel subgroup B−.

1.8. Decompositions and multiplicities. Let (ρ,W ) be a rational representation

of G and σ ∈ Ĝ. One has a direct sum decomposition

W =
⊕

σ∈ bG
W σ

of W into σ-isotypic components

W σ =
∑

{V : V is a ρ(G)-invariant subspace of W with ρ|V ' σ}
=

∑
{T (Vσ) : T : Vσ → W intertwines σ with ρ}.

Then

W σ ' m(σ, ρ)Vσ = Vσ ⊕ · · · ⊕ Vσ︸ ︷︷ ︸
m(σ,ρ)

as G-modules where the multiplicity m(σ, ρ) of σ in ρ is given by

m(σ, ρ) = dim(W σ)/dim(Vσ) = dim
(
HomG(Vσ,W )

)
.

(HomG(Vσ,W ) is the space of linear maps Vσ → W intertwining σ with ρ.)
The multiplicity m(σ, ρ) can also be characterized using highest weight theory. Let

B be a Borel subgroup of G and λ be the highest weight for σ. Then

m(σ, ρ) = dim
(
WB,λ

)

where

WB,λ = {w ∈ W : b · w = bλw}
is the space of weight vectors in W with weight λ.
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1.9. Group actions. We use the notation

G : X

to indicate that there is a rational action of G on a variety X,

G×X → X, (g, x) 7→ g · x.

This means G×X → X is a morphism of algebraic varieties satisfying

(gh) · x = g · (h · x) and e · x = x.

The variety X may be affine or, more generally, quasi-projective. That is, the inter-
section of a closed with an open set in CPn.

It follows that if f ∈ C[X], the regular functions on X, then

x 7→ f(g−1 · x)

is a regular function. Thus we obtain a representation ρ of G on C[X],

(ρ(g)f)(x) = (g · f)(x) = f(g−1 · x).

Lemma 1.9.1. The representation ρ of G on C[X] is locally rational.

Remark 1.9.2. Linear actions G : X will be our main concern. That is, X will
usually be a vector space on which G acts by a rational representation. Then C[X]
is the algebra of polynomials on the vector space X and one can give an easy proof
of Lemma 1.9.1. Let Pk(X) denote the space of polynomials on X homogeneous of
degree k. For any finite dimensional subspace F of C[X], we have F ⊂ W where

W =
n∑

k=0

Pk(X)

for n sufficiently large. Now W is a finite dimensional, G-invariant subspace and we
have a rational representation.

Now for σ ∈ Ĝ define the σ-isotypic component C[X]σ as:

C[X]σ =
∑

{T (Vσ) : T ∈ HomG(Vσ,C[X])}.
Lemma 1.9.3. We have an algebraic direct sum

C[X] =
⊕

σ∈ bG
C[X]σ.

Thus
C[X] ∼=

⊕

σ∈ bG
m(σ,C[X])Vσ

as G-modules, where the (possibly infinite) multiplicity m(σ,C[X]) of σ in C[X] is

m(σ,C[X]) = dim(HomG(Vσ,C[X])) = dim
(
C[X]B,λ

)
,

where λ is the highest weight for the representation σ.
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We can now introduce our principal objects of study.

Definition 1.9.4. G : X is a multiplicity free action if m(σ,C[X]) ≤ 1 for each

σ ∈ Ĝ.

Given an action G : X and an algebraic subgroup H of G, one has

(1.9.1) H : X multiplicity free =⇒ G : X multiplicity free.

Indeed, if G : X fails to be multiplicity free, then some representation σ ∈ Ĝ occurs
in C[X] with multiplicity greater than one. Thus all irreducible constituents of σ|H
occur with multiplicity greater than one. So H : X also fails to be multiplicity free.

1.10. Section 1 notes. The material in this section is standard and there are many
excellent references. One is the book [17] by Goodman and Wallach. See Chapter
1 and Appendix D in [17] for further details on foundational material concerning
algebraic groups and Lie groups. See Section 11.3 of [17] for proofs of the assertions
concerning Borel subgroups. Our treatment of the isotypic decomposition for C[X]
follows Section 12.1 in [17].

2. Multiplicity free actions

This work is mainly devoted to the study of linear multiplicity free actions. In this
section, however, we consider actions G : X in the more general context of algebraic
varieties. Our main purpose is to describe some noteworthy non-linear examples.

2.1. Borel orbits. There is a simple criterion for multiplicity free actions.

Theorem 2.1.1. If a Borel subgroup B in G has a (Zariski) dense orbit in X then
G : X is multiplicity free.

Proof. Suppose that B · x◦ is dense in X. Let σ ∈ Ĝ occur in C[X] (that is
m(σ,C[X]) > 0) and let λ be the highest weight for σ. Let f1, f2 ∈ C[X] be two
B-highest weight vectors with weight λ. One has

fj(b
−1 · x◦) = bλfj(x◦).

As fj is regular and B · x◦ dense in X, we see that fj is completely determined by
the value fj(x◦). In particular, fj(x◦) 6= 0 (as fj 6= 0) and we can write

f2 =
f2(x◦)
f1(x◦)

f1.

So the space of λ-highest weight vectors in C[X] is one dimensional and hence
m(σ,C[X]) = 1. ¤

Since any two Borel subgroups are conjugate in G, the criterion in Theorem 2.1.1
does not depend on the choice of Borel subgroup B.

Suppose that B · x◦ is dense in X. Since B is connected, it follows that X must
be an irreducible variety and that B · x◦ is a Zariski open set. Thus X\(B · x◦) is a
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closed set which contains no open subsets in X. We conclude that there is only one
dense open B-orbit in X.

Conversely, if G : X is a multiplicity free action with X an irreducible affine variety
then X contains an open (hence dense) B-orbit. We will prove this result for linear
multiplicity free actions in the following section. (See Theorem 3.2.8 below.) One
special case of the converse admits, however, a direct proof. This is the case where
G is an algebraic torus G = A ∼= (C×)n. In this case the Borel subgroup is A itself
and one has the following.

Proposition 2.1.2. Let X be an irreducible affine variety and A be a torus. If A : X
is multiplicity free then there is an open (hence dense) A-orbit in X.

Proof. One can choose weight vectors f1, . . . , fr in C[X] that generate C[X] as an
algebra. Since A : X is multiplicity free the weights {λ1, . . . , λr} for f1, . . . , fr must
be linearly independent. Choose a point x◦ ∈ X for which fj(x◦) 6= 0 for 1 ≤ j ≤ r.
Define a map ρ : C[X] → C[A] by

(ρf)(a) = (a · f)(x◦) = f(a−1 · x◦).
We claim that ρ is injective. Indeed, for f = fm = fm1

1 · · · fmr
r one has

(ρf)(a) = am1λ1 · · · amrλrf(x◦) = amλf(x◦),

and hence
(ρf)(a) =

∑
m

cmamλfm(x◦)

for f =
∑

m cmfm ∈ C[X]. If (ρf)(a) = 0 for all a ∈ A, then linear independence of
the λj’s implies that cm = 0 for all m.

Thus every regular function on X is determined by its restriction to A · x◦. It
follows that A · x◦ is open and dense in X. ¤
2.2. Quasi-regular representations. We continue to let G denote a reductive com-
plex linear algebraic group. The left and right actions of G on X = G

• g · x = gx, and
• g · x = xg−1

give rise to the left and right regular representations

• L(g)f(x) = f(g−1x), and
• R(g)f(x) = f(xg) respectively

of G on C[G]. For any algebraic subgroup H of G we let

C[G/H] = C[G]R(H), C[H\G] = C[G]L(H)

and define the left (resp. right) quasi-regular representation of G as the restriction of
L to C[G/H] (resp. R to C[H\G]). The representations L and R of G on C[G/H]
and C[H\G] are equivalent via the intertwining operator

T : C[G/H] → C[H\G], T (f) = f̌ , (f̌(x) = f(x−1)).
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In fact the homogeneous space G/H is a smooth quasi-projective variety with
coordinate ring C[G/H]. If H is a reductive or normal subgroup then G/H is an
affine variety. We remark that one can have C[G/H] = C even when dim(G/H) > 0.
This situation occurs whenever G/H is a projective variety, in particular when H is
a Borel subgroup of G. In any case, the left action G : (G/H) is rational and gives
rise to the left quasi-regular representation. Similar remarks apply for H\G and the
right quasi-regular representation.

The isotypic decomposition for the quasi-regular representations is given by Frobe-
nius Reciprocity:

Theorem 2.2.1. As a G-module we have

C[G/H] ∼=
⊕

σ∈ bG
dim(V H

σ∗ )Vσ.

In particular, C[G] ∼= ⊕σdim(Vσ)Vσ.

Proof. Lemma 1.9.3 applies here since G : (G/H) is a rational action. It suffices to
show that HomG(Vσ,C[G/H]) ∼= V H

σ∗ . For this, one verifies that

Φ : V H
σ∗ → HomG(Vσ,C[G/H]), Φ(ξ)(v)(g) = ξ(σ(g−1)v)

is an isomorphism with inverse

Λ : HomG(Vσ,C[G/H]) → V H
σ∗ , Λ(T )(v) = (T (v))(e).

¤
Corollary 2.2.2. The action of G on G/H (or on H\G ) is multiplicity free if and

only if dim(V H
σ ) ≤ 1 for all σ ∈ Ĝ.

Note that if H1 and H2 are algebraic subgroups of G with H1 ⊂ H2 then V H2
σ ⊂

V H1
σ . Thus if G : (G/H1) is a multiplicity free action then so is G : (G/H2).
The proof of Theorem 2.2.1 shows that the σ-isotypic component in C[G] for the

left regular representation is

C[G]σ,L = {T (v) : v ∈ Vσ, T ∈ HomG(Vσ,C[G])}
= {Φ(ξ)(v) : v ∈ Vσ, ξ ∈ V ∗

σ }
= {m̌ξ,v : v ∈ Vσ, ξ ∈ V ∗

σ },
where mξ,v(g) = ξ(σ(g)v) is a matrix coefficient and m̌ξ,v(g) = mξ,v(g

−1). The right
regular representation preserves C[G]σ,L, since L and R commute. As a module for
G×G, C[G]σ,L is isomorphic to Vσ ⊗ Vσ∗ = Vσ ⊗ V ∗

σ . Indeed, the map

Ψ : Vσ ⊗ V ∗
σ → C[G]σ,L, Ψ(v ⊗ ξ) = m̌ξ,v

intertwines σ ⊗ σ∗ with the left-right regular representation

(LR)(g1, g2)f(x) = f(g−1
1 xg2)
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of G×G on C[G]. This gives the Peter-Weyl Theorem:

Theorem 2.2.3. The left-right action of G × G on G is multiplicity free. As a
G×G-module we have

C[G] ∼=
⊕

σ∈ bG
σ ⊗ σ∗.

2.3. Maximal unipotent subgroups. Let B = HN be a Borel subgroup in G.

For each σ ∈ Ĝ we have dim(V N
σ ) = 1, by highest weight theory. Theorem 2.2.1 now

shows:

Theorem 2.3.1. The action of G on G/N is multiplicity free. Moreover, each irre-

ducible representation σ ∈ Ĝ occurs exactly once in C[G/N ].

The Borel-Weil Theorem provides an explicit model for the irreducible representa-
tion with specified highest weight λ ∈ h∗ inside C[G/N−].

Theorem 2.3.2. The irreducible representation with highest weight λ ∈ h∗ is given
by the left regular representation of G on

Rλ = {f ∈ C[G] : f(gb) = b−λf(g) for all b ∈ B−}.
Moreover, a highest weight vector in Rλ is given on the dense subset NHN− of G by

fλ(nhn−) = h−λ.

Proof. First observe that Rλ is a L(G)-invariant subspace of C[G/N−]. If f ∈ Rλ is
a B-highest weight vector then

f(nhn−) = f(h) = (h−1 · f)(e)

and also f(h) = h−λf(e). Thus f has weight λ and f = f(e)fλ. So Rλ is L(G)-
irreducible with highest weight λ and highest weight vector fλ. ¤
Corollary 2.3.3. The span of RλRµ is Rλ+µ.

Proof. The span of RλRµ is a G-invariant subspace of Rλ+µ. ¤
Remark 2.3.4. It follows from Theorem 2.1.1 that G : (G/B) is also multiplicity

free. But V B
σ = {0} unless σ ∈ Ĝ is the trivial representation. So C[G/B] = C

and this is an uninteresting example. Alternatively, one can note that G/B is a flag
manifold, hence projective, hence compact. So every regular function on G/B is
constant.

2.4. S-varieties. Let B = HN be a Borel subgroup in G with opposite Borel sub-

group B− = HN− = N−H. For i = 1, . . . k, let σi ∈ Ĝ act on the space Vi, and
let vi ∈ Vi be a B−-highest weight vector with weight −λi. Let v = v1 + · · · + vk ∈
V1 ⊕ · · · ⊕ Vk. Then

X = G · v,
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the Zariski-closure of the orbit of v in V1⊕· · ·⊕Vk, is a G-invariant subvariety, called
an S-variety.

Since N− · v = {v}, we see that

B · v = NHN− · v
is dense in G · v and hence also in X. It follows from Theorem 2.1.1 that G : X is a
multiplicity free action. In the present context, however, we will show directly that
G : X is multiplicity free by exhibiting the decomposition of C[X].

Theorem 2.4.1. The multiplicity free decomposition of C[X] is

C[X] ∼=
⊕

λ∈Λ

Rλ,

where Λ = {a1λ1 + · · ·+ akλk : aj ∈ N}.
(Throughout, N denotes the non-negative integers, including zero.)

Proof. We can lift an element ξ of V ∗
i to V , and define a function fξ on G by fξ(g) =

ξ(g · v) = ξ(g · vi). Then for b ∈ B−, fξ(gb) = ξ(gb · vi) = b−λiξ(g · vi) = b−λifξ(v).
Thus fξ is in the G-irreducible space Rλi

defined above. Hence {ξ|X : ξ ∈ V ∗
i } is

equivalent to the G-irreducible Rλi
.

Note that C[X] is generated by the restriction of elements of each V ∗
i to X. So

by Corollary 2.3.3, we conclude that the irreducible components are products of the
subspaces Rλi

. ¤
There is another characterization of S-varieties:

Theorem 2.4.2. Let X be an irreducible affine G-variety with a G-open orbit, such
that the isotropy subgroup of any point in the open orbit contains a maximal unipotent
subgroup. Then X is an S-variety.

Proof. One can find a (rational) representation σ of G and a G-equivariant embedding
of X into Vσ. (See [44].)

So assume that X ⊂ Vσ and let v ∈ X be any point in the open G-orbit. Choose
a Borel subgroup B with N ⊂ B such that N ⊂ StabG(v). Then we can write
v = v1 + · · · + vk, where each vi is a weight vector with weight λi, and the λ′is are
distinct. Since v is stabilized by N , each vi is a highest weight vector.

Thus our variety X is the closure (in V ) of G · v, where v = v1 + · · ·+ vk. ¤

2.5. Spherical pairs. Suppose that H is a reductive algebraic subgroup of G. We

say that (G, H) is a spherical pair if dim(V H
σ ) ≤ 1 for all σ ∈ Ĝ. Equivalently, the

actions of G on G/H and H\G are multiplicity free. In this section we will summarize
some results concerning spherical pairs, without proof.

Let U and K denote maximal compact connected subgroups of G and H. These
are compact real Lie groups. Recall that the irreducible rational representations of G
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and H correspond to irreducible unitary representations of U and K via the Unitarian
Trick. So

(G,H) is spherical ⇐⇒ dim(V K
σ ) ≤ 1 for all σ ∈ Û .

We say that (U,K) is a compact Gelfand pair in this case. It is known that (U,K)
is a Gelfand pair if and only if the algebra L1(U//K) of integrable K-bi-invariant
functions on U is abelian with respect to convolution.

The preceding remarks show that the spherical pairs (G,H) are precisely the com-
plexifications of the compact Gelfand pairs (U,K). It is well known that (U,K) is
a Gelfand pair whenever U/K is a Riemannian symmetric space. The classification
of irreducible symmetric spaces of compact type produces ten families of examples,
listed in Table 1, together with seventeen exceptional cases. In entries 8 and 9, U(n)

The classical compact Riemannian symmetric spaces

U K G H
1 SO(n,R) {I} SO(n,C) {I}
2 SU(n) {I} SL(n,C) {I}
3 Sp(2n) {I} Sp(2n,C) {I}
4 SU(n) SO(n,R) SL(n,C) SO(n,C)
5 SU(2n) Sp(2n) SL(2n,C) Sp(2n,C)
6 SU(p + q) S(U(p)× U(q)) SL(p + q,C) S(GL(p,C)×GL(q,C))
7 SO(p + q,R) SO(p,R)× SO(q,R) SO(p + q,C) SO(p,C)× SO(q,C)
8 SO(2n,R) U(n) SO(2n,C) GL(n,C)
9 Sp(2n) U(n) Sp(2n,C) GL(n,C)
10 Sp(p + q) Sp(p)× Sp(q) Sp(p + q,C) Sp(p,C)× Sp(q,C)

Table 1

is embedded in SO(2n,R) and Sp(2n) via

A + iB 7→
[

A B
−B A

]
.

In each entry of Table 1, G is a simple complex algebraic group (and U is a
simple compact Lie group). This means that the adjoint representation for G on its
Lie algebra g is irreducible. Hence dim(gH) ≤ 1 for spherical pairs (G,H) with G
simple. In particular, the center of H is at most one dimensional.

The spherical pairs (G,H) with G simple were classified by Krämer. In addition
to the examples that arise from symmetric spaces, there are six further families and
six exceptional cases. These are listed in Table 2. The compact form (U,K) for each
entry in Table 2 is a compact Gelfand pair for which U/K is not a symmetric space.
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Spherical pairs with G simple, not arising from symmetric spaces

G H
1 SL(p + q,C) (p 6= q) SL(p,C)× SL(q,C)
2 SL(2n + 1,C) C× × Sp(2n,C)
3 SL(2n + 1,C) Sp(2n,C)
4 Sp(2n,C) Sp(2n− 2,C)× SO(2,C)
5 SO(2n + 1,C) GL(n,C)
6 SO(4n + 2,C) SL(2n + 1,C)
7 SO(10,C) Spin(7,C)× SO(2,C)
8 SO(9,C) Spin(7,C)
9 SO(8,C) GC

2

10 SO(7,C) GC
2

11 EC
6 Spin(10,C)

12 GC
2 SL(3,C)

Table 2

2.6. Section 2 notes. Theorem 2.1.1 is due to Servedio, [49]. The converse was
proved by Vinberg in [52].

The structure of G/H as a quasi-projective algebraic variety is discussed in Section
11.2.1 of [17].

The classical Peter-Weyl Theorem concerns the decomposition of L2(K) under the
action of K × K for compact Lie groups K. Let Eσ denote the space of matrix

coefficients mξ,v(k) = ξ(σ(k)v) for σ ∈ K̂. One has a Hilbert space direct sum

L2(K) =
⊕

σ∈ bK
Eσ

with K × K acting on Eσ by a copy of σ∗ ⊗ σ. Theorem 2.2.3 yields the algebraic
content of this theorem, via the Unitarian Trick. A complete proof also requires two
analytic facts:

• Schur Orthogonality: Eσ ⊥ E ′σ in L2(K) for σ 6' σ′; and
• ⋃

σ∈ bK Eσ is dense in L2(K).

See, for example, Section 5.2 in [15] for proofs.
We refer the reader to Chapter IV in [21] or Chapter 1 in [16] for information con-

cerning Gelfand pairs (U,K). In particular, for the fact that Riemannnian symmetric
spaces yield Gelfand pairs. The classification of Riemannian symmetric spaces, in-
cluding the exceptional cases, can be found in Chapter X of [20]. In [17], Section
12.3, it is shown that symmetric spaces yield spherical pairs (G,H) by showing that
there is an open Borel orbit in G/H. This approach involves a complex version of
the Iwasawa decomposition.
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Krämer’s classification of spherical pairs (G,H) with G simple appeared in [36].
This classification was pushed further by Brion [8] and by Mikityuk [40] to encompass
all spherical pairs (G,H) with G semi-simple. This results in eight additional families
of examples. The classification of spherical pairs can also be found in Vinberg’s recent
survey article [53]. S-varieties were introduced by Vinberg and Popov [54].

3. Linear multiplicity free actions

We now restrict our attention to linear actions G : V . That is, G is a reductive
algebraic group acting on a complex vector space V by some rational representation.

3.1. Connectivity of G. We generally assume that our groups G are connected
unless stated otherwise. Proposition 3.1.3 below shows that this entails no great loss
of generality. For Lemma 3.1.1 and Proposition 3.1.2 we assume G is connected and
B denotes a Borel subgroup.

Lemma 3.1.1. Let h ∈ C[V ] be a highest weight vector for B with prime decompo-
sition

h = pm1
1 · · · pmk

k .

Then each irreducible factor pj is a B-highest weight vector.

Proof. Let ψ : B → C× be the weight for h. Then for b ∈ B,

ψ(b)h = b · h = (b · p1)
m1 · · · (b · pk)

mk

and each b·pj is an irreducible polynomial. By uniqueness of the prime decomposition
for h we conclude that, for each j, b · pj is a non-zero multiple of one of the prime
factors. That is, b · pj ∈ ∪k

l=1C×pl. But B acts continuously on this space, and B is
connected, so B must act by a scalar on each pj. ¤
Proposition 3.1.2. If G : V is not a multiplicity free action then the multiplicities

{m(σ,C[V ]) : σ ∈ Ĝ} are unbounded.

Proof. As G : V is not multiplicity free we can find a pair of linearly independent
B-highest weight vectors h1, h2 in C[V ] with common weight ψ : B → C×. In view
of Lemma 3.1.1 we can remove any common irreducible factors and assume h1, h2

are relatively prime. For each N and 0 ≤ k ≤ N , hk
1h

N−k
2 has weight ψN . Moreover,

{hk
1h

N−k
2 : 0 ≤ k ≤ N} is a linearly independent set in C[V ]. For otherwise we could

express some hk◦
1 hN−k◦

2 as a linear combination

hk◦
1 hN−k◦

2 =
N∑

k=k◦+1

ckh
k
1h

N−k
2

and conclude that h1 divides hN−k◦
2 . This contradicts the fact that h1, h2 are relatively

prime. Thus the irreducible representation with highest weight ψN occurs in C[V ]
with multiplicity at least N . ¤



16 C. BENSON AND G. RATCLIFF

Proposition 3.1.3. Let G be multiply-connected with identity component G◦. Then
G : V is a multiplicity free action if and only if G◦ : V is a multiplicity free action.

Proof. If G◦ : V is multiplicity free then so is G : V , in view of (1.9.1). Conversely,
suppose that G : V is a multiplicity free action but that G◦ : V is not multiplicity
free. Let

C[V ] =
⊕

λ

Pλ

denote the decomposition of C[V ] into distinct G-irreducible subspaces and {g1, . . . , g`}
be a complete set of coset representatives for G◦ in G. Proposition 3.1.2 ensures that

for any N there is some σ ∈ Ĝ◦ with m(σ,C[V ]) ≥ N`2`. As the Pλ’s are G◦-
invariant, each copy of σ in C[V ] is contained in some Pλ. Let W denote a subspace
of some Pλ on which G◦ acts by a copy of σ. Since G◦ is normal in G, gi ·W ⊂ Pλ is

G◦-invariant with G◦ acting via a copy of σi ∈ Ĝ◦, where

σi(g) = σ(gigg−1
i ).

As Pλ is G-irreducible, we must have

(3.1.1) Pλ =
⊕
j∈J

(gj ·W )

for some subset J of {1, . . . , `}. Thus Pλ is equivalent to
∑

j∈J σj as a G◦-module.

Equation 3.1.1 contains at most ` factors, so at least N2` distinct Pλ’s must contain
copies of σ. As there are only 2` possibilities for J , at least N of these Pλ’s must
be equivalent as G◦-modules. Thus we have shown that for each N one can find N
distinct irreducible G-modules that are equivalent as G◦-modules. This is impossible
since G/G◦ is a finite group. ¤

3.2. Borel orbits. We will prove the converse of Theorem 2.1.1 in the context of
linear actions G : V . We use the notation introduced in Section 1.4: Choose a Borel
subgroup B = HN in G and let ∆+ ⊂ h∗ be the associated set of positive roots.

Now suppose that h ∈ C[V ] is a B-highest weight vector with weight λ ∈ h∗. Let

(3.2.1) P = Ph = {g ∈ G : g · h ∈ C×h}.
This is a parabolic subgroup of G that contains B. We have X · h = λ(X)h for all
X ∈ p, the Lie algebra of P .

• Let L and U be the Levi component and unipotent part of P , so P = LU .
• On the Lie algebra level we can write

p = h⊕
∑

α∈∆P

gα, where ∆P = {α ∈ ∆ | 〈λ, α〉 ≥ 0}.

Now setting

∆L = {α ∈ ∆ | 〈λ, α〉 = 0}, ∆U = {α ∈ ∆ | 〈λ, α〉 > 0} = {α ∈ ∆ | − α 6∈ ∆P}
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one has
l = h⊕

∑
α∈∆L

gα, u =
∑

α∈∆U

gα.

• Letting u− =
∑

α∈∆U
g−α we have u ⊂ n, u− ⊂ n− and

g = p⊕ u− = l⊕ u⊕ u−.

We will make extensive use of the following map (which depends on h). Let

V◦ = {z ∈ V : h(z) 6= 0},
a principal open set in V , and define

χ = χh : V◦ → g∗

via

χ(z)(X) =
(X · h)(z)

h(z)
.

Lemma 3.2.1. χ is P -equivariant.

Proof. Note that the action of P on V preserves V◦. Also P acts on g∗ via the
coadjoint action

(g · f)(X) = f(Ad(g−1)X).

For g ∈ P one has

χ(g−1 · z)(X) =
(X · h)(g−1 · z)

h(g−1 · z)
=

(g ·X)(g · h)(z)

(g · h)(z)

=
λ(g)(g ·X)(h)(z)

λ(g)h(z)
= χ(z)(g ·X).

Thus χ(g−1 · z)(X) = (g−1 · χ(z))(X) so χ is P -equivariant. ¤
Lemma 3.2.2. The stabilizer of λ in P is StabP (λ) = L. Moreover, StabU(λ) = {e}.
Proof. Here λ ∈ h∗ is regarded as a functional on all of g with λ(n) = {0} = λ(n−).
For X ∈ p one has X · λ = 0 if and only if λ[X, g] = {0}. Clearly h stabilizes λ
because [h, g] ⊂ n + n−. Also for any α ∈ ∆L and any Y = H +

∑
β∈∆ cβXβ ∈ g,

λ([Xα, Y ]) = c−αλ(Hα) = c−α〈λ, α〉 = 0.

Thus Xα stabilizes λ for each α ∈ ∆L. So l = h +
∑

α∈∆L
gα stabilizes λ.

We have shown that L ⊂ StabP (λ). For the reverse inclusion, let

X = H +
∑

α∈∆L

aαXα +
∑

α∈∆U

bαXα ∈ p

stabilize λ. Then for β ∈ ∆U ,

λ[X,X−β] = bβλ(Hβ) = bβ〈λ, β〉.
But 〈λ, β〉 > 0, and hence bβ = 0. Thus StabP (λ) ⊂ L and the stabilizer of λ in U is
trivial. ¤
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Proposition 3.2.3. The image of χ : V◦ → g∗ is λ + p⊥, a single P -orbit in g∗.

Proof. For all z ∈ V◦ and X ∈ p,

χ(z)(X) =
(X · h)(z)

h(z)
=

λ(X)h(z)

h(z)
= λ(X).

Thus χ(z)− λ annihilates p and χ(V◦) ⊂ λ + p⊥. Note that dim(λ + p⊥) = dim(u).
As U is unipotent and acts without stabilizer on λ we conclude that U · λ is both
open and closed in λ + p⊥ and hence U · λ = λ + p⊥. As P = LU and L stabilizes λ
we also have P · λ = λ + p⊥. As χ is P -equivariant we must have P · λ = χ(V◦). ¤
Corollary 3.2.4. λ = χ(z◦) for some z◦ ∈ V◦.

Let

(3.2.2) Σ = Σh = χ−1(λ) = {z ∈ V◦ : χ(z) = λ}.
The group L acts on Σ because χ is P -equivariant and L stabilizes λ.

Lemma 3.2.5. U × Σ ∼= V◦ via (g, z) 7→ g · z.
Proof. Given z ∈ V◦ one has χ(z) = g ·λ for some g ∈ U in view of Proposition 3.2.3.
Thus λ = g−1 · χ(z) = χ(g−1 · z), so g−1 · z ∈ Σ. Now (g, g−1 · z) ∈ U ×Σ maps to z.

To see that (g, z) 7→ g · z is injective, suppose that g · z = g′ · z′ for some g, g′ ∈ U ,
z, z′ ∈ Σ. Applying χ gives

g · λ = g · χ(z) = g′ · χ(z′) = g′ · λ
and thus g−1g′ stabilizes λ. As U acts without stabilizer on λ it follows that g = g′

and thus also z = z′. ¤
Lemma 3.2.6. There is a unique parabolic subgroup P = Ph of lowest possible di-
mension. Moreover, P ⊂ Ph′ for all B-highest weight vectors h′ ∈ C[V ].

Proof. Suppose that h ∈ C[V ] is a B-highest weight vector with prime decomposition

h = pm1
1 · · · pmr

r .

The proof of Lemma 3.1.1 shows that Ph acts by a character on each irreducible
factor pj. Thus

Ph = Pp1 ∩ · · · ∩ Ppr .

Now assume that h, h′ ∈ C[V ] are two highest weight vectors and that Ph has
minimal dimension. Let p1, . . . , pr be the prime factors of h and q1, . . . , qs the prime
factors of h′. Letting h′′ = p1 · · · prq1 · · · qs one has

Ph′′ = Pp1 ∩ · · · ∩ Ppr ∩ Pq1 ∩ · · · ∩ Pqs = Ph ∩ Ph′ .

If Ph 6⊂ Ph′ then Ph′′ is a proper subset of Ph and hence dim(Ph′′) < dim(Ph), a
contradiction. Thus Ph ⊂ Ph′ as claimed. Moreover if Ph′ also has minimal dimension
then Ph′ ⊂ Ph and now Ph = Ph′ . This shows uniqueness. ¤
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Lemma 3.2.7. Let P = Ph = LU be the unique parabolic subgroup of minimal
dimension. Then (L,L) acts trivially on Σ = Σh.

Proof. First note that as P acts on h by a character, (L,L) ⊂ (P, P ) acts trivially on
h. Suppose, however, that (L,L) does not act trivially on Σ. It follows that there is
some highest weight vector h′ ∈ C[Σ] for the action L : Σ that is not fixed by (L,L).
Recall that B = HN with N ⊂ U and that V◦ = U · Σ. Thus we can extend h′ to a
B-semi-invariant function on V◦. For N sufficiently large, hNh′ is a regular function
on V . Now hNh′ ∈ C[V ] is a B-highest weight vector and P ⊂ PhNh′ by Lemma
3.2.6. Thus P acts by a character on hNh′ and hence (L,L) acts trivially on hNh′.
As (L,L) fixes both h and hNh′, it must fix h′, a contradiction. ¤

Lemma 3.2.7 implies that for the minimal parabolic P = Ph = LU , the action of
L on Σ = Σh is a torus action. Lemma 3.2.5 implies that the variety Σ is affine and
irreducible.

Theorem 3.2.8. If G : V is multiplicity free then there is an open B-orbit in V .

Proof. Suppose that there is no open B-orbit in V . Let P = Ph = LU be the
parabolic subgroup of minimal dimension and Σ = Σh.

We claim that H : Σ is not multiplicity free. Indeed, if H : Σ were multiplicity
free then there would be an open H-orbit in Σ, H · v◦ say, by Proposition 2.1.2. Now
as U · Σ = V◦, one has UH · v◦ open in V◦ and hence open in V . As U ⊂ N , then
B · v◦ = HN · v◦ is open in V , a contradiction.

As H : Σ is not multiplicity free we can find a pair of linearly independent highest
weight vectors h1, h2 ∈ C[Σ] with a common weight for the action L : Σ. As in the
proof of Lemma 3.2.7, one can extend h1 and h2 to B-semi-invariant functions on V◦.
Now for N sufficiently large, hNh1 and hNh2 are regular on V and share a common
weight. Hence the action G : V fails to be multiplicity free. ¤

Note that B · v◦ is open in V if and only if dim(b · v◦) = dim(B · v◦) = dim(V ).
Thus B · v◦ is open if and only if b · v◦ = V . We obtain an infinitesimal version of
Theorems 2.1.1 and 3.2.8:

Corollary 3.2.9. G : V is multiplicity free if and only if b · v◦ = V for some point
v◦ ∈ V .

We will apply Corollary 3.2.9 to the study of examples in Section 4.

3.3. Fundamental highest weights for a multiplicity free action. Let G : V
be a linear multiplicity free action, B = HN a Borel subgroup of G and v◦ a point
in V with B · v◦ open in V . Let

Λ ⊂ h∗

denote the set of highest weights λ for representations σλ ∈ Ĝ that occur in C[V ].
The character B → C× given by λ ∈ Λ will be denoted b 7→ bλ.
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For λ ∈ Λ, let Pλ ⊂ C[V ] be the irreducible subspace of C[V ] on which G acts by
a copy of σλ. Then

(3.3.1) C[V ] =
⊕

λ∈Λ

Pλ

is the multiplicity free decomposition of C[V ] under the action of G. As G preserves
the subspaces Pm(V ) of polynomials homogeneous of degree m, each Pλ is contained
in some Pm(V ).

Each Pλ contains a B-highest weight vector hλ, which is unique up to scalar mul-
tiples. As shown in the proof of Theorem 2.1.1, we must have hλ(v◦) 6= 0 and we can
normalize our choice of hλ by the condition

hλ(v◦) = 1.

For λ, µ ∈ Λ,

b · (hλhµ) = (b · hλ)(b · hµ) = (bλhλ)(b
µhµ) = bλ+µhλhµ.

Hence
λ + µ ∈ Λ and hλ+µ = hλhµ.

In particular, Λ is an additive semigroup in h∗.
Next suppose λ ∈ Λ and let

hλ = pm1
1 · · · pmk

k

be the prime decomposition for hλ. Lemma 3.1.1 shows that each pj is a B-highest
weight vector. Suitably normalizing the pj’s, we can now say that pj = hλj

for some
λj ∈ Λ and λ = m1λ1 + · · ·+ mkλk.

Now let
Λ′ = {λ ∈ Λ : hλ is an irreducible polynomial}.

We know that Λ′ 6= ∅ and that Λ′ generates the semigroup Λ. We will show that Λ′

is a Q-linearly independent subset of h∗. Indeed, suppose that λ1, . . . , λk ∈ Λ′ satisfy
a non-trivial linear dependence relation over Q. Clearing denominators we obtain a
non-trivial linear dependence

a1λ1 + · · ·+ akλk = 0

with integer coefficients aj. Let

L = {j : aj ≥ 0}
and set mj = |aj| for all 1 ≤ j ≤ k. Then

∑
j∈L

mjλj =
∑

j 6∈L

mjλj

and hence ∏
j∈L

h
mj

λj
=

∏

j 6∈L

h
mj

λj
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since these are both highest weight vectors with a common weight and take value 1
at the point v◦. But this is impossible, since the hλj

’s are distinct irreducibles and
C[V ] is a unique factorization domain.

It now follows that Λ′ is a finite set with at most dim(h) elements.
In summary, we have proved the following.

Proposition 3.3.1. Λ′ = {λ ∈ Λ : hλ is irreducible} is a Q-linearly indepen-
dent subset of h∗ with at most dim(H) elements. The additive semigroup Λ is freely
generated by Λ′. Writing

Λ′ = {λ1, . . . , λr},
the decomposition for C[V ] can be written

C[V ] =
⊕

λ

Pλ

where the sum is taken over all N-linear combinations λ = m1λ1 + · · ·mrλr. The
highest weight vector in the irreducible subspace Pλ is hλ = hm1

λ1
· · ·hmr

λr
.

Definition 3.3.2. The number r is the rank of the multiplicity free action G : V ,
{λ1, . . . , λr} are the fundamental highest weights and {h1 = hλ1 , . . . , hr = hλr} are
the fundamental highest weight vectors.

3.4. Section 3 notes. Many results in this section are due to Roger Howe. Propo-
sition 3.3.1 is from [23]. Proposition 3.1.3 appeared in [3] but the proof was shown
to the authors by Howe.

The proof given for Theorem 3.2.8 is due to Friedrich Knop [31] and based on ideas
from [10]. The more standard proof (see [52]) is shorter but requires use of a hard
result of Rosenlicht. For background on parabolic subgroups see Section V.7 in [29].

A linear action G : V is called a prehomogeneous vector space when there is an
open G-orbit in V . We refer the reader to [28] for a survey of this subject, including
classification and applications to analysis. Theorem 3.2.8 implies that each linear
multiplicity free action is, in particular, a prehomogeneous vector space.

Proposition 3.1.2 shows that linear actions G : V are of three types:

(1) G : V is multiplicity free.

(2) Some σ ∈ Ĝ occurs in C[V ] with infinite multiplicity.

(3) Each σ ∈ Ĝ has m(σ,C[V ]) < ∞ but these multiplicities are unbounded.

It is known that (2) is equivalent to the existence of a non-constant G-invariant in

C[V ]. (See Theorem 5.5 in [3].) In this case, every σ ∈ Ĝ which occurs in C[V ] does
so with infinite multiplicity.

4. Examples of multiplicity free decompositions

4.1. GL(n)⊗GL(m). Here we consider the action of G = GL(n,C)×GL(m,C) on
Cn ⊗Cm via the the outer tensor product of the defining representations for the two
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factors. Identifying Cn⊗Cm with the space Mn,m(C) of complex n×m-matrices (via
ei ⊗ ej ↔ Ei,j) one has

(4.1.1) (g, g′) · v = gv(g′)t

In fact it will prove convenient to twist the action by composing with the automor-
phisms g 7→ (g−1)t on both factors. This gives

(4.1.2) (g, g′) · v = (g−1)tv(g′)−1

and the associated representation on C[Mn,m(C)] becomes

(g, g′) · p(v) = p(gtvg′).

Of course the decompositions for C[Mn,m(C)] under the two actions (4.1.1) and (4.1.2)
are the same. Twisting by g 7→ (g−1)t has the effect of interchanging representa-
tions with their contragredients. So decomposing C[Mn,m(C)] with respect to (4.1.2)
amounts to decomposing the symmetric algebra S(Mn,m(C)) ∼= C[Mn,m(C)∗] with
respect to (4.1.1).

Recall that the upper triangular matrices in GL(k,C) give the standard Borel
subgroup Bk with Lie algebra bk. The diagonal matrices Hk in GL(k,C) give the
maximal torus with Lie algebra hk

∼= Ck. We let

B = Bn ×Bm, b = bn × bm, H = Hn ×Hm, h = hn × hm,

εj ∈ h∗n be εj(diag(h1, . . . , hn)) = hj and likewise for ε′j ∈ h∗m. We sometimes use the
shorthand

λ = (µ, ν) = (µ1, . . . , µn; ν1, . . . , νm)

for the weight λ = µ1ε1 + · · ·+µnεn + ν1ε
′
1 + · · ·+ νmε′m in h∗. The dominant weights

have µ ∈ Zn, ν ∈ Zm with µ1 ≥ · · · ≥ µn and ν1 ≥ · · · ≥ νm. We say that λ is
non-negative and write λ ≥ 0 when µj ≥ 0 and νj ≥ 0 for all j.

For any (h, h′) = (diag(h1, . . . , hn), diag(h′1 . . . , h′m)) ∈ H one has

(h, h′) · zi,j = hih
′
jzi,j

where zij : Mn,m(C) → C is the (i, j)-th entry function. So zi,j is a weight vector
with weight εi + ε′j. Hence also zα =

∏
i,j z

αij

ij is a weight vector with weight
∑
i,j

αij(εi + ε′j) ≥ 0.

As the zα’s form a basis for C[Mn,m(C)], all weight vectors in C[Mn,m(C)] are non-
negative. Thus the highest weights λ = (µ, ν) that occur in C[Mn,m(C)] all have

µ1 ≥ · · · ≥ µn ≥ 0, ν1 ≥ · · · ≥ νm ≥ 0.

This explains why we are using the action (4.1.2) in place of (4.1.1).
Let us assume that n ≥ m and set

v◦ =

[
Im

O

]
∈ Mn,m(C).
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A typical element X in the Lie algebra b for B has the form

(4.1.3) X =

([
A B
O C

]
, D

)

where A, D are m ×m upper triangular, C is (n −m) × (n −m) upper triangular
and B is an arbitrary m× (n−m)-matrix. The derived action for (4.1.2) gives

(4.1.4) X · v◦ = −
[

A B
O C

]t [
Im

O

]
−

[
Im

O

]
D = −

[
At + D

Bt

]
.

Here At, D are arbitrary m×m lower and upper triangular matrices respectively and
Bt is an arbitrary matrix of size (n −m) ×m. We conclude that b · v◦ = Mn,m(C).
Hence B · v◦ is open in Mn,m(C), so (4.1.2) is a multiplicity free action.

The element X in Equation 4.1.3 belongs to h when B = O and A, C, D are
diagonal,

A = diag(a1, . . . , am), C = diag(c1, . . . , cn−m), D = diag(d1, . . . , dm)

say. For such X, Equation 4.1.4 shows X · v◦ = 0 if and only if D = −A. So the
stabilizer h◦ of v◦ in h is

h◦ =











a1

. . .
am

c1

. . .
cn−m




,



−a1

. . .
−am











.

If λ = (µ, ν) is the highest weight for a representation that occurs in C[Mn,m(C)]
then we must have λ(h◦) = {0}. That is,

(µ1 − ν1)a1 + · · ·+ (µm − νm)am + µm+1c1 + · · ·+ µncn−m = 0

for all aj, cj. Thus we must have

µj = νj for 1 ≤ j ≤ m and µj = 0 for j > m.

We have now shown that the only candidates for highest weights of representations
occurring in C[Mn,m(C)] have the form

λ = (µ, µ) where µ1 ≥ · · · ≥ µm ≥ 0.

Note that a representation with highest weight λ = (µ, µ) is equivalent to σµ
n ⊗ σµ

m,
the outer tensor product of the irreducible representations of GL(n,C) and GL(m,C)
with highest weight µ. We will show that all such weights λ do occur in C[Mn,m(C)]
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by exhibiting a λ-highest weight vector in C[Mn,m]. For this, let

ξk(z) =

∣∣∣∣∣∣

z11 · · · z1k
...

...
zk1 · · · zkk

∣∣∣∣∣∣
,

the leading minor determinant for z ∈ Mn,m(C), 1 ≤ k ≤ m. For (h, h′) =
(diag(h1, . . . , hn), diag(h′1 . . . , h′m)) ∈ H one computes

(h, h′) · ξk(z) = ξk(hzh′) = ξk

(
[hih

′
jzij]

)
= (h1 · · ·hk)(h

′
1 · · ·h′k)ξk(z).

Hence ξk is a highest weight vector with weight (ε1 + · · ·+εk, ε
′
1 + · · ·+ε′k) = (1k, 1k).

For any µ1 ≥ · · · ≥ µm ≥ 0

(4.1.5) ξµ = ξµ1−µ2

1 ξµ2−µ3

2 · · · ξµm−1−µm

m−1 ξµm
m

has weight λ = (µ, µ) and degree

|µ| = µ1 + · · ·+ µm.

In summary, we have proved:

Theorem 4.1.1. The action of G = GL(n,C)×GL(m,C) on Cn ⊗ Cm ∼= Mn,m(C)
is multiplicity free. For n ≥ m one has the decomposition

C[Mn,m(C)] =
⊕

µ

Pµ

where the sum is over all µ ∈ Nm with µ1 ≥ · · · ≥ µm ≥ 0. The polynomial ξµ given
by (4.1.5) is a highest weight vector in Pµ with weight (µ, µ) and Pµ ' σµ

n ⊗ σµ
m as a

G-module. Moreover
Pk(Mn,m(C)) =

⊕

|µ|=k

Pµ.

We observe the following points regarding this example.

• The action has rank m = min(n,m). Here {(1k, 1k) : 1 ≤ k ≤ m} are
the fundamental highest weights and ξ1, . . . , ξm are the fundamental highest
weight vectors. Indeed, the determinant of a matrix is an irreducible polyno-
mial in the matrix entries.

• For the more conventional (untwisted) action (4.1.1), the decomposition of
C[Mn,m(C)] is as in Theorem 4.1.1, but now ξµ is a highest weight vector for
the opposite Borel with weight (−µ,−µ).

• The group GL(n,C)×GL(m,C) can be replaced by SL(n,C)×GL(m,C) or
SL(n,C)× SL(m,C)× C×.

• If we restrict to SL(n,C)×SL(m,C) then the action remains multiplicity free
provided n 6= m. The Borel subalgebra b′ consists of matrices X as in (4.1.3)
where tr(A) + tr(C) = 0 = tr(D). Equation 4.1.4 shows b′ · v◦ = Mn,m(C)
when n > m.
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• When n = m, the action SL(n)⊗ SL(n) fails to be multiplicity free. Indeed,
det : Mn,n(C) → C is a non-constant (SL(n,C) × SL(n,C))-invariant poly-
nomial. So C[Mn,n(C)] contains two copies of the trivial representation of
SL(n,C)× SL(n,C).

• When m = 1 this example reduces to the action of GL(n,C) on Cn by the
defining representation (or its twisted form, the contragredient representation
on (Cn)∗). In this case the decomposition in Theorem 4.1.1 reduces to

C[z1, . . . , zn] =
∞⊕

k=0

Pk(Cn).

The action has rank one with fundamental highest weight (11) and zk
1 is a

highest weight vector in Pk(Cn).

4.2. S2(GL(n)). Next we consider the action of GL(n,C) on the symmetric 2-tensors
S2(C2) via the symmetric square of the defining representation. Identifying S2(Cn)
with the complex n× n-symmetric matrices

Sym(n,C) = {A ∈ Mn,n(C) : At = A}
our action reads

(4.2.1) g · v = gvgt.

As in the preceding example we prefer to twist the action by g 7→ (g−1)t. This gives
(4.2.2)

g · v = (g−1)tvg−1, g · p(v) = p(gtvg) for v ∈ Sym(n,C), p ∈ C[Sym(n,C)].

As for GL(n)⊗GL(m), twisting ensures that all weights λ = (λ1, . . . , λn) that occur
in C[Sym(n,C)] are non-negative. Again we let

ξλ = ξλ1−λ2
1 · · · ξλn−1−λn

n−1 ξλn
n

for dominant weights λ1 ≥ · · · ≥ λn ≥ 0, where ξk is a leading minor determinant
restricted to Sym(n,C) ⊂ Mn,n(C).

Theorem 4.2.1. The action of GL(n,C) on Sym(n,C) is multiplicity free. We have
the decomposition

C[Sym(n,C)] =
⊕

λ

Pλ

where the sum is over all λ ∈ Nn with λ1 ≥ · · · ≥ λn ≥ 0. The polynomial ξλ is a
highest weight vector in Pλ with weight 2λ. Moreover,

Pk(Sym(n,C)) =
⊕

|λ|=k

Pλ.
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Proof. The proof parallels that for Theorem 4.1.1. First we note that for the derived
action of gl(n,C) one has

X · I = −(X t + X).

We obtain all n×n-symmetric matrices as X ranges over all upper triangular matrices.
Thus bn · I = Sym(n,C) and hence v◦ = I has an open Borel orbit. This proves that
our action is multiplicity free.

Suppose that f ∈ C[Sym(n,C)] is a highest weight vector with weight µ. For
h = diag(h1, . . . , hn) ∈ Hn,

f(h2) = (h · f)(I) = hµf(I) = hµ1

1 · · ·hµn
n f(I).

Now for h = diag(±1, . . . ,±1) we have h2 = I and hence f(I) = hµf(I) for all such
h. As Bn · I is open in Sym(n,C), f is determined by the value f(I) and we must
have f(I) 6= 0. We conclude that hµ = 1 for all h = diag(±1, . . . ,±1) and thus each
µj must be even. (Note that H◦ = {diag(±1, . . . ,±1)} is the stabilizer of v◦ = I in
Hn.)

Since all weights that occur in C[Sym(n,C)] are non-negative we conclude that all
dominant weights µ that occur have the form

µ = 2λ = (2λ1, . . . , 2λn)

for some λ1 ≥ · · · ≥ λn ≥ 0. To complete the proof, one checks that the polynomial
ξλ is a weight vector with weight 2λ. Indeed for h ∈ Hn and 1 ≤ k ≤ n,

h · ξk(z) = ξk

(
[hihjzij]

)
= h2

1 · · ·h2
kξ(z),

so ξk is a (2k)-weight vector. ¤

As regards this example we note:

• The action has rank n with fundamental highest weights (2k) and fundamental
highest weight vectors ξk, 1 ≤ k ≤ n. It is known that the determinant of a
symmetric matrix is irreducible as a polynomial in the entries zij with i ≤ j.

• For the untwisted action (4.2.1), the decomposition of C[Sym(n,C)] is as in
Theorem 4.2.1 but now ξλ is a highest weight vector for the opposite Borel
with weight −2λ.

• S2(SL(n)) is not a multiplicity free action because det ∈ C[Sym(n,C)] is a
non-constant SL(n,C)-invariant.

4.3. Λ2(GL(n)). We now turn to the action of GL(n,C) on Λ2(Cn), the skew-
symmetric 2-tensors. Identifying Λ2(Cn) with

Skew(n,C) = {A ∈ Mn,n(C) : At = −A},
the action is given by Equation 4.2.1. As in the preceding examples, we will employ
the twisted version, as in Equation 4.2.2.
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The leading minor determinant ξj vanishes on Skew(n,C) when j is odd and is
a perfect square when j is even. We let νj ∈ C[Skew(n,C)] denote the Pfaffian
polynomial:

νj(z) = Pf




z1,1 . . . z1,2j
...

...
z2j,1 . . . z2j,2j


 ,

the square root of the principal 2j× 2j subdeterminant. So deg(νj) = j and ν2
j = ξ2j

for j = 1, . . . , bn/2c. The polynomials νj are given explicitly by the formula

νj(z) =
1

j!2j

∑
σ∈S2j

sign(σ)

j∏

`=1

zσ(2`−1)σ(2`).

Let m = bn/2c and write

νλ = νλ1−λ2
1 · · · νλm−1−λm

m−1 νλm
m

for λ1 ≥ · · · ≥ λm ≥ 0.

Theorem 4.3.1. The action of GL(n,C) on Skew(n,C) is multiplicity free. We
have the decomposition

C[Skew(n,C)] =
⊕

λ

Pλ

where the sum is over all λ ∈ Nm with λ1 ≥ · · · ≥ λm ≥ 0. The polynomial νλ is a
highest weight vector in Pλ with weight

λ̃ = (λ1, λ1, λ2, λ2, . . . , λm, λm).

Moreover,

Pk(Skew(n,C)) =
⊕

|λ|=k

Pλ.

Proof. Let J =

[
0 1

−1 0

]
and let J̃ be the n× n-matrix

J̃ = J ⊕ · · · ⊕ J︸ ︷︷ ︸
m-times

for n = 2m even and J̃ = J ⊕ · · · ⊕ J︸ ︷︷ ︸
m-times

⊕0 for n = 2m + 1 odd.

We claim that J̃ has an open Bn-orbit in Skew(n,C). Hence our action is multiplicity
free. In fact, for X ∈ gl(n,C),

X · J̃ = −(X tJ̃ + J̃X) = −(J̃X − (J̃X)t).

First suppose that n = 2m and let X ∈ bn. Decompose X into 2 × 2-blocks Xij,

1 ≤ i, j ≤ m. Now J̃X has 2× 2-blocks JXij, which are arbitrary for i < j. Taking

Xii =

[
0 0
0 ci

]
gives JXii =

[
0 ci

0 0

]
. This shows that an arbitrary strictly upper



28 C. BENSON AND G. RATCLIFF

triangular matrix can be written in the form J̃X for some X ∈ bn. So bn · J̃ =
Skew(n,C) when n is even. When n = 2m + 1 the same argument shows that for

suitable entries in the first n − 1 rows and columns of X ∈ bn, J̃X contains any
desired strictly upper triangular matrix in its first n − 1 rows and columns. As the

last column of J̃X is




x2,n

−x1,n
...

x2m,n

−x2m−1,n

0




we conclude that bn · J̃ = Skew(n,C) when n is odd.
Suppose that µ is a highest weight that occurs in C[Skew(n,C)] and that f is

a µ-weight vector. Since all weights in C[Skew(n,C)] are non-negative, we have

µ1 ≥ · · · ≥ µn ≥ 0. Moreover f(J̃) 6= 0 as Bn · J̃ is open. For h ∈ Hn we have

hµf(J̃) = (h · f)(J̃) = f(hJ̃h).

But

hJ̃h =




h1h2J
h3h4J

. . .




so that hJ̃h = J̃ for elements h = diag(h1, . . . , hn) of the form

h =

{
diag(h1, h

−1
1 , h2, h

−1
2 , . . . , hm, hm) for n = 2m

diag(h1, h
−1
1 , h2, h

−1
2 , . . . , hm, hm, h2m+1) for n = 2m + 1

.

It follows that hµ = 1 for all such h and thus

µ1 = µ2, µ3 = µ4, . . . , µ2m−1 = µ2m and µn = 0 when n is odd.

Thus all highest weights occurring in C[Skew(n,C)] have the form

λ̃ = (λ1, λ1, λ2, λ2, . . . , λm, λm)
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for some λ1 ≥ · · · ≥ λm ≥ 0. To complete the proof one just needs to check that νλ

has weight λ̃. This reduces to the calculation

(h · νj)(z) = Pf







h1

. . .
h2j







z1,1 · · · z1,2j
...

...
z2j,1 · · · z2j,2j







h1

. . .
h2j







= det




h1

. . .
h2j


 Pf




z1,1 · · · z1,2j
...

...
z2j,1 · · · z2j,2j




= h1 · · ·h2jPf




z1,1 · · · z1,2j
...

...
z2j,1 · · · z2j,2j


 ,

which shows that νj is a weight vector with weight (12j). ¤
Regarding the action Λ2(GL(n)) we note:

• The Pfaffian of a skew symmetric matrix is irreducible as a polynomial in the
entries zij with i < j. Thus Λ2(GL(n)) has rank m = bn/2c with fundamental
highest weights (12j) and fundamental highest weight vectors νj.

• The untwisted action has the same decomposition but now νλ is a lowest

weight vector with weight −λ̃.
• For the trace zero upper triangular matrices b′n, one sees, as in the proof of

Theorem 4.3.1, that b′n · J̃ = Skew(n,C) when n is odd. So Λ2(SL(2m + 1))
is a multiplicity free action. On the other hand, this fails for n = 2m
even. Indeed, det ∈ C[Skew(2m,C)] is a non-constant SL(2m,C)-invariant
so Λ2(SL(2m)) is not multiplicity free.

4.4. SO(n)× C×. The group G = SO(n,C)×C× acts on V = Cn in the usual way:

(g, t) · v = tgv.

The decomposition for C[V ] = C[z1, . . . , zn] is given by the classical theory of spherical
harmonics. Let

ε(z) = z2
1 + · · ·+ z2

n

and
∆ = ε(∂) = ∂2

1 + · · ·+ ∂2
n,

the constant coefficient differential operator with Wick symbol p(z, w) = ε(w). Since
ε is an SO(n,C)-invariant polynomial, ∆ is an SO(n,C)-invariant operator. It follows
that the space of harmonic polynomials

H = Ker(∆) = {p ∈ C[V ] : ∆p = 0}
is SO(n,C)-invariant, as is

Hm = H ∩ Pm(V ),
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the harmonic polynomials homogeneous of degree m. It is well known that Hm is an
irreducible module for SO(n,C) and

(4.4.1) Pm(V ) = Hm ⊕ εPm−2(V ).

This gives, in particular,

dim(Hm) = dim(Pm)− dim(Pm−2) =

(
m + n− 1

m

)
−

(
m + n− 3

m− 2

)
for m ≥ 2.

Now Equation 4.4.1 leads inductively to the decomposition

(4.4.2) Pm(V ) =
⊕

k+2`=m

Pk,`

(
Pk,` = Hkε

`
)

of Pm(V ) into irreducible SO(n,C)-modules. The modules {Pk,` : k + 2` = m}
appearing in (4.4.2) are clearly inequivalent because their dimensions are distinct.

Equation 4.4.2 now gives a decomposition

(4.4.3) C[V ] =
⊕

k,`≥0

Pk,`

of C[V ] into irreducibles for G = SO(n,C). This is not, however, multiplicity free
because Hk,` ' Hk,`′ as SO(n,C)-modules for ` 6= `′. We use the scalars C× to repair
this defect.

The action of C× on C[V ] by scalars commutes with ∆ and hence preserves the
Hm’s and Pk,`’s. Now C× acts on Pk,` by the character t 7→ t−(k+2`). Hence Pk,` and
Pk,`′ are inequivalent as C×-modules when ` 6= `′. Thus (4.4.3) is multiplicity free as
a decomposition for the group G = SO(n,C)× C×.

A highest weight vector in Pk,` is given by (z1 + iz2)
kε(z)`, for a suitably chosen

Borel subgroup in G = SO(n,C)×C×. The multiplicity free action G : Cn has rank
2 with fundamental highest weight vectors z1 + iz2 and ε(z).

4.5. GL(n)⊕GL(n) Λ2(GL(n)). The group G = GL(n,C) acts diagonally on

V = V1 ⊕ V2 = Cn ⊕ Λ2(Cn) ∼= Cn ⊕ Skew(n,C).

For consistency with Sections 4.1 and 4.3 we twist the action of G on both V1 and
V2. We have seen how to decompose C[V1] and C[V2] under the action of G. Writing
σµ = σµ

n for the irreducible representation of G with highest weight µ ≥ 0 we have

C[V1] '
⊕

k

σ(k), C[V2] =
⊕

λ

σ
eλ

as G-modules. Here the second sum is over all λ = (λ1 ≥ · · · ≥ λm ≥ 0) (m = bn/2c)
and λ̃ = (λ1, λ1, . . . , λm, λm). Thus we can write

C[V ] = C[V1]⊗ C[V2] '
∑

k,λ

σ(k) ⊗ σ
eλ.
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Tensor product representations of GL(n,C) can be decomposed using the Littlewood-
Richardson rules. To apply this technique, one identifies each highest weight µ ≥ 0
with a Young’s diagram consisting of µj boxes on row j. The Littlewood-Richardson

rules ensure that σ(k) ⊗ σ
eλ has a multiplicity free decomposition. Moreover, the rep-

resentations σµ that occur in the decomposition are given by diagrams that can be

obtained from that for λ̃ by adding k boxes, no two of which fall in the same column.
For example, when λ = (3, 2), and k = 3, we must add three boxes to the Young’s

diagram for λ̃ = (3, 3, 2, 2). For n ≥ 5 this produces five diagrams:

1 1 1 1 1

1

1 1

1

1

1

1

1

1 1

The three boxes added to the diagram for (3, 3, 2, 2) have been marked with 1’s in
each case. This exercise with the Littlewood-Richardson rules shows

σ(3) ⊗ σ(3,3,2,2) ' σ(6,3,2,2) ⊕ σ(5,3,3,2) ⊕ σ(5,3,2,2,1) ⊕ σ(4,3,3,2,1) ⊕ σ(3,3,3,2,2).

In general, the Littlewood-Richardson rules yield

σ(k) ⊗ σ
eλ =

∑
µ

σµ

where the sum is over all highest weights µ ≥ 0 of the form

µ = (λ1 + j1, λ1, λ2 + j2, λ2, . . . ), j1 + · · ·+ jm = k, ji ≤ λi−1 − λi.

Note that λ can be recovered from µ by extracting every other row. This shows that

the representations σµ that occur in σ(k)⊗σ
eλ and in σ(k′)⊗σ

eλ′ are distinct for λ′ 6= λ.

Moreover, the irreducibles σµ in σ(k)⊗σ
eλ and σ(k′)⊗σ

eλ are clearly distinct when k 6= k′

as these satisfy |µ| = 2|λ|+ k and |µ| = 2|λ|+ k′ respectively. This shows that C[V ]
has a multiplicity free decomposition under the action of G. Note that an arbitrary
highest weight µ ≥ 0 can be written in the form “µ = (λ1 + j1, λ1, λ2 + j2, λ2, . . . )”
by letting j` = µ2`−1 − µ2`. We have proved the following.

Theorem 4.5.1. The diagonal action of GL(n,C) on Cn ⊕ Λ2(Cn) is multiplicity
free. Moreover

C[Cn ⊕ Λ2(Cn)] '
⊕
µ≥0

σµ

as a GL(n,C)-module. That is, every non-negative highest weight occurs in
C[Cn ⊕ Λ2(Cn)] with multiplicity one.

There is another viewpoint on this example. One can identify V = V1⊕V2 = Cn⊕
Λ2(Cn) with Skew(n+1,C) by regarding the first row (or column) of an (n+1)×(n+1)
skew symmetric matrix as an element of Cn, and the remaining entries as an element
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of Λ2(Cn) ∼= Skew(n,C). For z ∈ Skew(n + 1,C), we write z′ for the element
of Skew(n,C) obtained by removing the first row and column of z. Under this
identification, the diagonal action of GL(n,C) on V1⊕V2 is realized on Skew(n+1,C)
by restricting the action of GL(n + 1,C) to the subgroup GL(n,C) ⊂ GL(n + 1,C),
embedded as {[

1 0
0 A

]
: A ∈ GL(n,C)

}
.

The fundamental highest weight vectors arising from the separate actions of
GL(n,C) on V1 and V2 are z12 and ν ′k(z) for k = 1, . . . , bn/2c, where ν ′k(z) is the
Pfaffian of the first 2k rows and columns of the n×n matrix z′. There are additional
fundamental highest weight vectors, νk(z) for k = 1, . . . , b(n + 1)/2c. These are the
Pfaffians of the first 2k rows and columns of the (n+1)× (n+1) matrix z. Note that
ν1(z) = z12, so our fundamental highest weight vectors are the νk’s together with the
ν ′k’s. For a highest weight µ ≥ 0, a µ-highest weight vector in C[V ] is

νµ1−µ2

1 (ν ′1)
µ2−µ3νµ3−µ4

2 · · · νµn−1−µn
m (ν ′m)µn

when n = 2m is even, and

νµ1−µ2

1 (ν ′1)
µ2−µ3νµ3−µ4

2 · · · νµn−2−µn−1
m (ν ′m)µn−1−µn(νm+1)

µn

when n = 2m + 1 is odd. In particular, this is a rank n multiplicity free action with
fundamental highest weights {(1k) : 1 ≤ k ≤ n}.
4.6. Section 4 notes. The decomposition for action GL(n)⊗GL(m) is called
GL(n) − GL(m) duality. This decomposition and those for the actions S2(GL(n))
and Λ2(GL(n)) were popularized by Howe in [22]. Reference [23] explains how these
results were rediscovered independently by various mathematicians and are implicit
in earlier work of Weyl and Schur. GL(n) − GL(m) duality is equivalent to Schur
duality, which gives the decomposition for (Cn)⊗m under the action of GL(n,C)×Sm.
In fact, as explained in [23], both dualities can be derived from the First Fundamental
Theorem (FFT) of Invariant Theory.

We refer the reader to Section B.2.6 in [17] for the theory of Pfaffian polynomials.
The irreducibility of determinants and Pfaffians on Sym(n,C) and Skew(n,C) is
proved in Section B.2.7 of [17]. The theory of spherical harmonics can be found in
Section 5.2.3 in [17] as well as many other sources. The Littlewood-Richardson rules
are discussed in Section I.9 of [39].

Compact forms for the actions Gl(n)⊗GL(m), S2(GL(n)), Λ2(GL(n)) and
SO(n)× C× arise in connection with Hermitian symmetric spaces. In fact, let G/K
be an irreducible Hermitian symmetric space of non-compact type. Here G is a
semi-simple real Lie group and K is a compact Lie subgroup. The symmetric space
structure gives a Cartan decomposition g = k + p for the Lie algebra. The complex
structure on Te(G/K) is viewed as an R-linear map J : p → p with J2 = −I. Now

pC = p+ ⊕ p−
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where p± are the (±i)-eigenspaces for J on the complexification of p. The complex-
ified adjoint action of K on gC preserves p±. For the classical irreducible Hermitian
symmetric spaces this construction leads to the following actions. (See [20].)

• Type A III: G/K = SU(n,m)/S(U(n)×U(m)). The action of K = S(U(n)×
U(m)) on p+ can be identified with the action of K on Mn,m(C) via (k, k′)·v =
kv(k′)∗. The group K has a one dimensional center and we essentially have a
compact form of the multiplicity free action SL(n)⊗GL(m). More precisely,
the action here agrees with action (4.1.1) twisted by k′ 7→ ((k′)t)−1 = k′ on
the second factor.

• Type C I: G/K = Sp(2n,R)/U(n). The action of K = U(n) on p+ can be
identified with that of K on Sym(n,C) via k · v = kvkt. So this is a compact
form of S2(GL(n)).

• Type D III: G/K = SO∗(2n)/U(n). The action of K = U(n) on p+ can be
identified with that of K on Skew(n,C) via k · v = kvkt. This is a compact
form of the multiplicity free action Λ2(GL(n)).

• Type BD I: G/K = SO◦(n, 2)/SO(n)×SO(2). The action of K = SO(n,R)×
T on p+ can be identified with the action of K on Cn via (k, t) · z = tkz. This
is a compact form of SO(n)× C×.

The classification of irreducible Hermitian symmetric spaces includes two excep-
tional cases, in addition to the four families described above.

• Type E III: In this case K = Spin(10) × T and G has Lie algebra e6(−14), a
certain real form for the complex Lie algebra e6. One can identify p+ with
Λeven(C5) u C16 and Spin(10) acts by the positive half-spin representation.
It is known that (with the scalars included) this action in multiplicity free.

• Type E VII: Here K = E6 × T and G has Lie algebra e7(−25), a real form of
e7. In this case p+ can be identified with an exceptional Jordan algebra J of
dimension 27. The representation of E6 on J is described in [11]. This action
(with the scalars included) is multiplicity free.

Thus one has:

Theorem 4.6.1. ([25]) The linear action K : p+ associated to any irreducible Her-
mitian symmetric space of non-compact type is multiplicity free.

5. A recursive criterion for multiplicity free actions

In this section we present a recursive criterion for multiplicity free actions due to
Knop [31]. Given a linear action G : V we let

Ψ = Ψ(V ) ⊂ h∗

be the set of all weights for the representation of H on V , listed with multiplicities.
As usual, B = HN is a Borel subgroup and ∆ = ∆+ ∪ (−∆+) are the roots for G,
as in Section 1.4.
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For a highest weight λ ∈ Ψ let

Sλ = {α ∈ ∆+ : 〈λ, α〉 > 0}.
If z ∈ V is a λ-highest weight vector then g · z = Cz if and only if Sλ = ∅.

If Sλ = ∅ for all highest weights λ ∈ Ψ, then G acts by scalars on every weight
space in V . In this case, we essentially have a torus action. In particular, G : V is
multiplicity free if and only if H : V is multiplicity free. This happens if and only if
the set Ψ of weights for H : V is linearly independent.

Suppose that λ ∈ Ψ is a highest weight with Sλ 6= ∅. Let z◦ ∈ V be a λ-
highest weight vector and let f◦ ∈ V ∗ be the corresponding (−λ)-lowest weight vector
normalized so that f◦(z◦) = 1. Let P = Pf◦ and Σ = Σf◦ be as in Equations 3.2.1 and
3.2.2. Now P− = LU− is the opposite parabolic subgroup to P = LU and P− = Pz◦ .

From the definition of Σ one has that z ∈ Σ if and only if f◦(z) 6= 0 and
(X · f◦)(z) = −λ(X)f◦(z) for all X ∈ g = p + u−. But X · f◦ = −λ(X)f◦ for
X ∈ p, so

Σ = {z ∈ V : f◦(z) 6= 0 and (u− · f◦)(z) = 0}.
Hence Σ is a open set in the subspace

W = (u− · f◦)⊥
of V . Recall that Σ is invariant under the action of the Levi component L of P . As
U · Σ = V◦ = {z ∈ V : f◦(z) 6= 0} by Lemma 3.2.5, we see that there is an open
B-orbit in V if and only if there is an open L ∩ B-orbit in Σ. Equivalently, G : V is
multiplicity free if and only if L : W is multiplicity free.

We know, moreover, that l = h +
∑

α∈∆(L) gα where

∆(L) = {α ∈ ∆ : 〈λ, α〉 = 0} = ∆\Sλ.

The positive roots for L are ∆+(L) = ∆+\Sλ. Each of the root vectors {X−α : α ∈
Sλ} ⊂ u− acts non-trivially on f◦, so the set of weights in u− ·f◦ is {−λ+α : α ∈ Sλ}.
Thus the set of weights in W = (u− · f◦)⊥ is Ψ\(λ− Sλ).

In summary, we have a recursive algorithm that begins with the pair

(∆+
0 = ∆+, Ψ0 = Ψ)

where

• ∆+ is the set of positive roots for G, and
• Ψ ⊂ h∗ is the set of all weights for the representation of G on V , listed with

multiplicity.

Given a pair (∆+
n , Ψn) do the following:

• For each highest weight λ ∈ Ψn let Sλ = {α ∈ ∆+
n : 〈λ, α〉 > 0};

• If Sλ = ∅ for all highest weights λ ∈ Ψn, then G : V is a multiplicity free
action if and only if Ψn is linearly independent;

• Otherwise, choose a highest weight λ ∈ Ψn with Sλ 6= ∅ and apply the above
steps to the pair (∆+

n+1, Ψn+1) = (∆+
n \Sλ, Ψn\(λ− Sλ)).
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Eventually all the Sλ’s are empty and the algorithm terminates at the second step
above.

To illustrate this method, we revisit some of the examples described in Section 4.

5.1. GL(n). Here G = GL(n,C) acts on V = Cn as usual. One has

∆+
0 = ∆+ = {εi − εj : i < j}, Ψ0 = Ψ = {ε1, . . . , εn}.

We know e1 = (1, 0, . . . , 0) is a highest weight vector in V with weight ε1, and so

Sε1 = {ε1 − ε2, . . . , ε1 − εn}.
The coordinate vector z1 ∈ V ∗ dual to e1 has parabolic subgroup P = Pz1 with Lie
algebra p spanned by {E11}∪{Eij : i > 2}. The Levi component is L = GL(1,C)×
GL(n−1,C). The nilpotent u− = Span{E1j : j ≥ 2} gives u−z1 = Span{z2, . . . , zn}
and hence W = (u−z1)

⊥ = Ce1. Thus we have

∆+
1 = ∆+

0 \Sε1 = {εi − εj : 2 ≤ i < j}, Ψ1 = Ψ0\{ε2, . . . , εn} = {ε1}.
Since Sε1 = ∅, the process terminates. One concludes that G : V is multiplicity free
since Ψ1 is a linearly independent set.

In practice, it is not necessary to identify L and W at each stage in the induction.
We illustrate this in the next example.

5.2. GL(n)⊗GL(n). Here G = GL(n,C)×GL(n,C) acts on V = Cn ⊗ Cn. Now

∆+
0 = ∆+ = {εi − εj : 1 ≤ i < j ≤ n} ∪ {ε′i − ε′j : 1 ≤ i < j ≤ n}

and
Ψ0 = Ψ = {εi + ε′j : 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

λ = ε1 + ε′1 is the only highest weight in Ψ0. One has

Sε1+ε′1 = {ε1 − ε2, . . . , ε1 − εn} ∪ {ε′1 − ε′2, . . . , ε
′
1 − ε′n}.

Thus
∆+

1 = {εi − εj : 2 ≤ i < j ≤ n} ∪ {ε′i − ε′j : 2 ≤ i < j ≤ n}
and

Ψ1 = {ε1 + ε′1} ∪ {εi + ε′j : 2 ≤ i ≤ n, 2 ≤ j ≤ n}.
From these roots and weights we can see that L : W is equivalent to the action of
C× ×GL(n− 1,C)× C× ×GL(n− 1,C) on C⊕ (Cn−1 ⊗ Cn−1).

At the next stage of the algorithm one takes λ = ε2 + ε′2 and obtains

∆+
2 = {εi − εj : 3 ≤ i < j} ∪ {ε′i − ε′j : 3 ≤ i < j},

Ψ2 = {ε1 + ε′1, ε2 + ε′2} ∪ {εi + ε′j : 3 ≤ i, j}.
After n steps, the process terminates with

∆+
n = ∅, Ψn = {ε1 + ε′1, . . . , εn + ε′n}.

At this point L ∼= (C×)n × (C×)n and Sλ = ∅ for all λ ∈ Ψn. As Ψn is linearly
independent, G : V is multiplicity free.
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5.3. GL(n)⊕GL(n) Λ2(GL(n)). For the diagonal action of G = GL(n,C) on V =
C2 ⊕ Λ2(Cn) one has

∆+
0 = ∆+ = {εi − εj : i < j}, Ψ0 = Ψ = {ε1, . . . , εn} ∪ {εi + εj : i < j}.

Choose λ = ε1, so that Sλ = {ε1 − εj : 2 ≤ j} and

∆+
1 = {εi − εj : 2 ≤ i < j}, Ψ1 = {ε1} ∪ {εi + εj : i < j}.

Next choose λ = ε1 + ε2 to obtain Sλ = {ε2 − εj : 3 ≤ j} and

∆+
2 = {εi − εj : 3 ≤ i < j}, Ψ2 = {ε1, ε1 + ε2} ∪ {εi + εj : 2 ≤ i < j}.

After n steps, the process terminates with ∆+
n = ∅ and

Ψn = {ε1, ε1 + ε2, ε2 + ε3, . . . , εn−1 + εn}.
As this is a linearly independent set, one concludes G : V is a multiplicity free action.

Alternatively, one could begin with λ = ε1 + ε2 in the first step. This gives
Sλ = {ε1 − εj : 3 ≤ j} ∪ {ε2 − εj : 3 ≤ j} and

∆+
1 = {ε1 − ε2} ∪ {εi − εj : 3 ≤ i < j},

Ψ1 = {ε1, . . . , εn} ∪ {ε1 + ε2} ∪ {εi + εj : 3 ≤ i < j}
Next one could choose a highest weight in Ψ1 that was not available in V , namely
λ = ε3 + ε4. This gives Sλ = {ε3 − εj, ε4 − εj : 5 ≤ j} and

∆+
2 = {ε1 − ε2, ε3 − ε4} ∪ {εi − εj : 5 ≤ i < j},

Ψ2 = {ε1 . . . , εn} ∪ {ε1 + ε2, ε3 + ε4} ∪ {εi + εj : 5 ≤ i < j}.
We could then continue in this manner (choosing λ = ε5 + ε6) or take λ = ε1. The
latter choice gives Sλ = {ε1 − ε2},

∆+
3 = {ε3 − ε4} ∪ {εi − εj : 5 ≤ i < j}, and

Ψ3 = {ε1, ε3, . . . , εn} ∪ {ε1 + ε2, ε3 + ε4} ∪ {εi + εj : 5 ≤ i < j}.
For n even, the algorithm could terminate with

Ψn = {ε1, ε3, ε5, . . . , εn−1} ∪ {ε1 + ε2, ε3 + ε4, . . . , εn−1 + εn}.
This example illustrates how different choices for a highest weight λ ∈ Ψk can yield

different paths through the algorithm and result in different terminal sets.
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6. The classification of linear multiplicity free actions

Let (π, V ) be a rational representation of some reductive algebraic group G and
consider the question of whether or not this gives a multiplicity free action. The
answer depends only on the algebraic subgroup π(G) of GL(V ). One says that two
rational representations (π1, V1), (π2, V2) of groups G1, G2 are geometrically equivalent
if π1(G1) coincides with π2(G2) under some isomorphism V1 → V2. For example,
(π, V ) is geometrically equivalent to (π ◦ ϕ, V ) for any ϕ ∈ Aut(G). Taking ϕ(g) =
(gt)−1 on G = GL(n,C), we see that any rational representation of GL(n,C) is
geometrically equivalent to its contragredient.

Linear multiplicity free actions have been completely classified up to geometric
equivalence. In this section we present the results of this classification.

6.1. Irreducible multiplicity free actions. The multiplicity free actions G : V
where G acts irreducibly on V were classified by Victor Kac in [26], building on
earlier work including that of Sato and Kimura [47]. The open Borel orbit criterion
provided the main technique used to achieve this classification.

First suppose that the image G of G in GL(V ) contains a copy of the scalars. In
this case, G is reductive but not semisimple. The group G coincides with the image
of G′×C×, where G′ = (G,G) is the commutator subgroup in G, a semisimple group
with finite center. The possibilites for G′, the image of G′ in GL(V ), are listed in
Table 3, up to geometric equivalence. That is, for each such G′, the joint action of
G′ and C× on V is multiplicity free.

Bold faced type is used in Table 3 to indicate a subgroup of GL(V ), the notation
indicating the representation involved. The first three entries denote the defining rep-
resentations of SL(n,C), SO(n,C) and Sp(2n,C) on Cn, Cn and C2n respectively.
S2(SL(n)) and Λ2(SL(n)) denote the images in GL(S2(Cn)) and GL(Λ2(Cn)) of
the symmetric and skew-symmetric squares of the defining representation of SL(n).
SL(n)⊗ SL(m) denotes the image of the representation of SL(n)× SL(m) on Cn⊗
Cm (outer tensor product of the two defining representations) and similarly for
SL(n)⊗ Sp(2m). Spin(7), Spin(9) denote the image of the spin representations
of Spin(7,C), Spin(9,C) on C8 and C16 respectively. Spin(10) indicates the posi-
tive spin representation of Spin(10,C) on C16. G2 and E6 denote actions on C7 and
C27 respectively. The conditions on n and m in Table 3 are imposed to eliminate re-
dundancies caused by isomorphisms in low dimensions. Note that the actions SO(n),
S2(SL(n)), Λ2(SL(n)) and SL(n)⊗ SL(m) were discussed in Section 4.

The scalars C× act on Pm(V ) by the character t 7→ t−m. Thus G′ × C× : V
is a multiplicity free action if and only if the representations of G′ on each Pm(V )
are multiplicity free. If we remove the scalars, then multiplicities can arise across
different degrees of homogeneity in C[V ]. This happens, for example, when G =
SO(n,C)×C×, as discussed in Section 4.4. In fact, most of the actions from Table 3
fail to be multiplicity free when the scalars are removed. Table 4 lists the irreducible
multiplicity free actions for semisimple groups up to geometric equivalence.
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Irreducible multiplicity free actions G′ × C× : V , G′ semisimple

Semisimple Group G′ Degrees of fundamental Rank
(G′ × C× : V is multiplicity free) highest weight vectors
SL(n) (n ≥ 1) 1 1
SO(n) (n ≥ 3) 1, 2 2
Sp(2n) (n ≥ 2) 1 1
S2(SL(n)) (n ≥ 2) 1, 2, . . . , n n
Λ2(SL(n)) (n ≥ 4) 1, 2, . . . , bn/2c bn/2c
SL(n)⊗ SL(m) (n, m ≥ 2) 1, 2, . . . , min(n,m) min(n,m)
Sp(2n)⊗ SL(2) (n ≥ 2) 1, 2, 2 3
Sp(2n)⊗ SL(3) (n ≥ 2) 1, 2, 2, 3, 3, 4 6
Sp(4)⊗ SL(n) (n ≥ 4) 1, 2, 2, 3, 4, 4 6
Spin(7) 1, 2 2
Spin(9) 1, 2, 2 3
Spin(10) 1, 2 2
G2 1, 2 2
E6 1, 2, 3 3

Table 3

Irreducible multiplicity free actions G′ : V , G′ semisimple

Group
SL(n) (n ≥ 2)
Sp(2n) (n ≥ 2)
Λ2(SL(2m + 1)) (m ≥ 2)
SL(n)⊗ SL(m) (n,m ≥ 2, n 6= m)
Sp(4)⊗ SL(n) (n ≥ 5)
Spin(10)

Table 4

6.2. Decomposable actions. Given linear actions G1 : V1, G2 : V2, one can form
the product action G1 × G2 : V1 ⊕ V2. If G1 : V1, G2 : V2 are both multiplicity free
with decompositions C[Vj] =

⊕
λ∈Λj

Pλ, then C[V1⊕ V2] ∼= C[V1]⊗C[V2] decomposes

in a multiplicity free fashion

C[V1 ⊕ V2] =
⊕

λ∈Λ1,λ′∈Λ2

Pλ ⊗ Pλ′

under the action of G1×G2. Thus products of multiplicity free actions are multiplicity
free.
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One says that an action G : V is decomposable if it is geometrically equivalent to
a product action G1 × G2 : V1 ⊕ V2 with non-zero Vj. Otherwise, we say G : V is
indecomposable. Each irreducible multiplicity free action is indecomposable, but the
converse is far from true. The action GL(n)⊕GL(n) Λ2(GL(n)) described in Section
4.5 provides one example of an indecomposable multiplicity free action that is not
irreducible.

6.3. Saturated indecomposable multiplicity free actions. The classification of
linear multiplicity free actions was completed independently by the authors [5] and
Andrew Leahy [38]. Given a non-irreducible linear action G : V , one decomposes V
as a direct sum of G-irreducible subspaces

V = V1 ⊕ · · · ⊕ Vm.

G : V is said to be saturated if the image G of G in GL(V ) contains a full torus
(C×)m. That is, the dimension of the center in G equals the number m of irreducible
summands. Given G : V one can always form a saturated action G′ × (C×)m : V .
This action is multiplicity free if and only if the representation of G′ on

Pk1(V1)⊗ · · · ⊗ Pkm(Vm)

is multiplicity free for each (k1, . . . , km).
The saturated indecomposable multiplicity free actions consist of the irreducible

actions in Table 3 together with the actions listed in Table 5. Each entry in Table
5 denotes the image G′ of the semisimple part G′ of G in GL(V ). In each case, V
has two irreducible summands, V = V1 ⊕ V2, and one simple factor in G′ is acting
diagonally. Thus, for example, SL(n)⊕SL(n) (SL(n)⊗ SL(m)) denotes the image of
SL(n,C)× SL(m,C) under the representation on V = V1 ⊕ V2 = (Cn)⊕ (Cn ⊗ Cm)
where SL(n,C) acts diagonally on V1 and V2. Spin(8)⊕Spin(8) SO(8) denotes the
image of the action of Spin(8,C) on C8 ⊕ C8 via the direct sum of the positive
spin representation with the natural representation (via SO(8,C)). The notation
SL(n)∗ denotes the contragredient to the defining representation. For each group G′

in Table 5 the saturated action G′× (C×)2 : V is multiplicity free. Together, Tables 3
and 5 classify all saturated indecomposable multiplicity free actions up to geometric
equivalence. In particular, the classification shows that a saturated indecomposable
multiplicity free action can have at most two irreducible summands.

6.4. Non-saturated indecomposable multiplicity free actions. Only one entry
in Table 5 remains multiplicity free when the torus (C×)2 is removed, namely

(SL(n)⊗ SL(2))⊕SL(2) (SL(2)⊗ SL(m)) for n,m ≥ 3

In addition, for each group G′ in Table 5 one can consider the joint action of G′×C×
where C× acts on V = V1 ⊕ V2 via

t · (v1, v2) = (tav1, t
bv2)
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Indecomposable non-irreducible saturated multiplicity free actions

Semisimple Group G′ Degrees of fundamental highest
(G′ × (C×)2 : V is multiplicity free) weight vectors (rank)
SL(n)⊕SL(n) SL(n) (n ≥ 2) 1, 1, 2 (3)
SL(n)⊕SL(n) SL(n)∗ (n ≥ 3) 1, 1, 2 (3)
SL(n)⊕SL(n) Λ2(SL(n)) (n ≥ 4) 1, 2, . . . , bn/2c,

1, 2, . . . , b(n + 1)/2c
(n)

SL(n)∗ ⊕SL(n) Λ2(SL(n)) (n ≥ 4) 1, 2, . . . , bn/2c,
1, 2, . . . , b(n− 1)/2c
(n− 1)

SL(n)⊕SL(n) (SL(n)⊗ SL(m)) (n,m ≥ 2) 1, 2, . . . , min(n,m),
1, 2, . . . , min(n,m + 1)
(min(n,m) + min(n,m + 1))

SL(n)∗ ⊕SL(n) (SL(n)⊗ SL(m)) (n ≥ 3,m ≥ 2) 1, 2, . . . , min(n,m),
1, 2, . . . , min(n,m + 1)
(min(n,m) + min(n,m + 1))

SL(2)⊕SL(2) (SL(2)⊗ Sp(2n)) (n ≥ 2) 1, 1, 2, 2, 2 (5)
(SL(n)⊗ SL(2))⊕SL(2) (SL(2)⊗ SL(m)) 1, 1, 2, 2, 2 (5)
(n,m ≥ 2)
(SL(n)⊗ SL(2))⊕SL(2) (SL(2)⊗ Sp(2m)) 1, 1, 2, 2, 2, 2 (6)
(n,m ≥ 2)
(Sp(2n)⊗ SL(2))⊕SL(2) (SL(2)⊗ Sp(2m)) 1, 1, 2, 2, 2, 2, 2 (7)
(n,m ≥ 2)
Sp(2n)⊕Sp(2n) Sp(2n) (n ≥ 2) 1, 1, 2, 2 (4)
Spin(8)⊕Spin(8) SO(8) 1, 1, 2, 2, 2 (5)

Table 5

for some integers a, b. Such actions are multiplicity free in the cases listed in Table
6.

6.5. Completing the classification. Let G be a connected complex algebraic re-
ductive group acting on V via some rational representation π. The commutator
subgroup G′ of G is semi-simple and, by lifting to a finite covering if necessary, we
can suppose that G = G′ × A where A is some algebraic torus. Write V as a direct
sum

V = W1 ⊕W2 ⊕ · · · ⊕Wr

of π(G)-invariant subspaces Wj which are indecomposable under the action of G′.
Letting πj denote the action of G on Wj, we have π(G′) = G1

′ × G2
′ × · · · × Gr

′

acting on V via the product action, where Gj
′ = πj(G

′).
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Non-saturated multiplicity free actions

(SL(n)⊗ SL(2))⊕SL(2) (SL(2)⊗ SL(m)) n,m ≥ 3
SL(n)⊕SL(n) SL(n) n ≥ 3, a 6= b
SL(n)∗ ⊕SL(n) SL(n) n ≥ 3, a 6= −b
SL(2m)⊕SL(2m) Λ2(SL(2m)) m ≥ 2, b 6= 0
SL(2m + 1)⊕SL(2m+1) Λ2(SL(2m + 1)) m ≥ 2, a 6= −mb
SL(2m)∗ ⊕SL(2m) Λ2(SL(2m)) m ≥ 2, b 6= 0
SL(2m + 1)∗ ⊕SL(2m+1) Λ2(SL(2m + 1)) m ≥ 2, a 6= mb
SL(n)⊕SL(n) (SL(n)⊗ SL(m)) 2 ≤ n < m, a 6= 0
SL(n)⊕SL(n) (SL(n)⊗ SL(m)) m ≥ 2, n ≥ m + 2, a 6= b
SL(n)∗ ⊕SL(n) (SL(n)⊗ SL(m)) 2 ≤ n < m, a 6= 0
SL(n)∗ ⊕SL(n) (SL(n)⊗ SL(m)) m ≥ 2, n ≥ m + 2, a 6= −b
(SL(2)⊗ SL(2))⊕SL(2) (SL(2)⊗ SL(m)) m ≥ 3, a 6= 0
(SL(n)⊗ SL(2))⊕SL(2) (SL(2)⊗ Sp(2m)) n ≥ 3,m ≥ 2, b 6= 0

Table 6

Theorem 6.5.1. ([5]) G : V is a multiplicity free action if and only if A contains a
direct product of the form A1 ×A2 × · · · ×Ar where each Aj is a torus of dimension
at most 2 and the actions Gj

′ × Aj : Wj are multiplicity free for j = 1, . . . , r.

One can choose the Aj’s in Theorem 6.5.1 to be minimal, in the sense that the
action of Gj

′ × B on Wj fails to be multiplicity free for all proper subgroups B of
Aj. Some factors Aj can be trivial and A1 × · · · ×Ar need not act on W1 ⊕ · · · ⊕Wr

via a product action. That is, the Aj’s can act diagonally on the indecomposable
G′-summands Wj.

Example 6.5.2. As an example, consider G′ = SL(n)× SL(n) for n ≥ 2 acting on
V = W1 ⊕W2 = (Cn ⊕ Cn)⊕ (Cn ⊕ Cn) via

(g, h) · (x1, y1, x2, y2) = (gx1, gy1, hx2, hy2) for g, h ∈ SL(n) and xj, yj ∈ Cn.

Here G1
′ = SL(n)⊕SL(n) SL(n) = G2

′ appear in Table 5. Let A = (C×)3 act on V
via

(t1, t2, t3) · (x1, y1, x2, y2) = (t1t2x1, t
2
1t2y1, t1t2x2, t1t

2
2y2) for tj ∈ C×.

The joint action of G′ × A on V is multiplicity free. Indeed, if we let A1 = C× ×
{1}×{1} and A2 = {1}×C××{1} then we see that the actions Gj

′×Aj : Wj appear
in Table 6. Here, however, one can’t find subtori Aj as in Theorem 6.5.1 that act
independently on W1 and W2.

Theorem 6.5.1 completes the classification of multiplicity free actions because we
have exhibited all of the possibilities for the groups Gj

′ ⊂ GL(Wj) and for the actions
of the Aj’s on the Wj’s. More precisely, if G : V is multiplicity free then for each
1 ≤ j ≤ r we must have either:
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(1) Wj is Gj
′ irreducible and

(a) πj(Aj) = C× and Gj
′ appears in Table 3, or

(b) Aj = {1} and Gj
′ appears in Table 4.

(2) Wj is a sum of two Gj
′-irreducible subspaces and

(a) πj(Aj) = (C×)2 and Gj
′ appears in Table 5, or

(b) Gj
′ appears together with πj(Aj) ∼= C× in Table 6, or

(c) Aj = {1} and Gj
′ = (SL(n)⊗ SL(2))⊕SL(2) (SL(2)⊗ SL(m)) with

n,m ≥ 3.

6.6. Proof outline. The saturated indecomposable multiplicity free actions in Ta-
ble 5 are obtained from the irreducible actions in Table 3 by extensive case-by-case
analysis. Suppose that G = G′ is semisimple and that (π, V ) is an indecomposable
action with V = V1⊕ V2, a direct sum of two G-irreducible subspaces. Let πj = π|Vj

and Gj = πj(G) ⊂ GL(Vj) for j = 1, 2. If G × (C×)2 : V is multiplicity free then it
is clear that both G×C× : V1 and G×C× : V2 must be multiplicity free. Thus both
G1 and G2 appear in Table 3.

Define normal subgroups K1 and K2 of G1 and G2 by

(6.6.1) K1 := π1(Ker(π2)) and K2 := π2(Ker(π1)).

The map

(6.6.2) F : G1/K1 → G2/K2

given by F (π1(g)K1) := π2(g)K2 is a well-defined group isomorphism.
If K1 = G1 then it follows that K2 = G2 and we have π(G) = G1 × G2. In

this case, our action decomposes as a direct product of the multiplicity free actions
Gj × (C×).

Next suppose that the Kj’s are proper subgroups of the Gj’s. Note that Kj need
not be connected. We write K◦

j for the identity component in Kj. Since Kj is a
normal subgroup of Gj, so is K◦

j . As Gj appears in Table 3, Gj is either a simple
group or a product of two simple factors. Thus we can write Gj = K◦

jHj, where
either Hj = Gj (when K◦

j = {e}) or Hj is one of two simple factors in Gj. As
Hj

∼= Gj/K
◦
j covers Gj/Kj, the derivative of F yields an isomorphism between the

Lie algebras of H1 and H2. In fact, Table 3 shows that Hj is simply connected except
when Hj = SO(n). Thus, we can realize F as a group isomorphism H1

∼= H2 or as
a covering of one of the Hj’s by the other. We write F : H1 → H2 for this map after
interchanging the roles of G1 and G2 when H2 covers H1. If we define a new group
L by L = K◦

1 ×H1 ×K◦
2 and a representation σ of L on V = V1 ⊕ V2 by

σ(k1, h1, k2) := (k1h1, F (h1)k2) ∈ GL(V1)×GL(V2)

then we see that π(G) = σ(L) = G1 ⊕H1 G2. That is, H1 acts diagonally on V1 and
V2 via F .

In summary, we have shown that any saturated indecomposable multiplicity free
action with two irreducible summands is obtained from two entries in Table 3 via
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diagonalization along simple factors. Combining pairs of entries in Table 3 which
share a common simple factor yields a large number of indecomposable actions. It is
necessary to examine each of these in turn to determine which are multiplicity free.
Various techniques can be applied in each case. One can look for an open Borel orbit.
(Many candidates can be eliminated easily because the underlying vector space has
dimension greater than that of a Borel subgroup.) One can apply the Littlewood-
Richardson rules (and variants for the classical groups SO(n,C), Sp(2n,C)) or use
the recursive criterion from Section 5. Table 5 is the end result of this analysis.

If V = V1 ⊕ · · · ⊕ Vr is a sum of r irreducible subspaces, then the above reasoning
applies to each pair of groups Gi = πi(G), Gj = πj(G). For the action to be
indecomposable, at least one simple factor in each Gi must act diagonally on at least
one Vj with j 6= i. Diagonalization from Tables 3 and 5 produces indecomposable
actions with more than two irreducible summands. The analysis shows, however,
that no such actions are multiplicity free.

6.7. Section 6 notes. The articles [7] and [31] contain formulas for the fundamen-
tal highest weight vectors and further detailed information for each action in the
classification. For the irreducible actions, much of this is due to Howe and Umeda
[24].

7. Invariant polynomials and differential operators

7.1. Polynomial coefficient differential operators. For each f ∈ C[V ] we have
the multiplication operator Mf ∈ End(C[V ]),

Mf (h) = fh.

Let P(V ) = {Mf : f ∈ C[V ]}, so P(V ) ∼= C[V ]. For each v ∈ V we have the
directional derivative ∂v ∈ End(C[V ]),

(∂vh)(w) = lim
t→0

f(w + tv)− f(w)

t
.

The algebra D(V ) generated by {∂v : v ∈ V } is the algebra of constant coefficient
differential operators. The embedding V ↪→ D(V ), v 7→ ∂v extends to an isomorphism
from the symmetric algebra S(V ) to D(V ). Thus

D(V ) ∼= S(V ) ∼= C[V ∗]

as algebras.
We let PD(V ) be the subalgebra of End(C[V ]) generated by P(V ) and D(V ). This

is the algebra of polynomial coefficient differential operators. The product rule for
derivatives shows that the map

P(V )⊗D(V ) → PD(V ), p⊗ L 7→ pL
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given by multiplication is a vector space isomorphism. Composing this with the
algebra isomorphisms

C[V ⊕ V ∗] ∼= C[V ]⊗ C[V ∗] ∼= P(V )⊗D(V )

produces a vector space isomorphism

δ : C[V ⊕ V ∗] → PD(V ), p 7→ p(z, ∂).

We say that p ∈ C[V ⊕ V ∗] is the Wick symbol for the operator p(z, ∂). The inverse
map

σ : PD(V ) → C[V ⊕ V ∗]

of δ is called the polarized symbol map.
The above discussion can be made more concrete by introducing coordinates.

Let (z1, . . . , zn) be coordinates on V with respect to some basis {e1, . . . , en} and
(w1, . . . , wn) be coordinates on V ∗ with respect to the dual basis {e∗1, . . . , e∗n}. We
have

C[V ] = C[z1, . . . , zn], C[V ⊕ V ∗] = C[z1, . . . , zn, w1, . . . , wn].

The monomials

zα = zα1
1 · · · zαn

n

form a basis for C[V ] and the differential operators

∂α = ∂α1
1 · · · ∂αn

n ,

(
∂j =

∂

∂zj

)

form a basis for D(V ) as α = (α1, . . . , αn) ranges over all multi-indices α ∈ Nn. The
operator p(z, ∂) with Wick symbol

p(z, w) =
∑

α,β

cα,βzαwβ.

is

p(z, ∂) =
∑

α,β

cα,βzα∂β.

The symbol mapping is not an algebra isomorphism because C[V ⊕ V ∗] is abelian
whereas PD(V ) is not. In fact, one has the Heisenberg commutation relations

[∂i, zj] = δi,j

in PD(V ). To obtain an algebra isomorphism, one can pass to the associated graded
algebras. The algebra C[V ⊕ V ∗] is filtered by

C(k)[V ⊕ V ∗] =
∑

a+b≤k

Pa(V )⊗Pb(V
∗).

Then

PD(k)(V ) = δ(C(k)[V ⊕ V ∗])
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gives a filtration of the algebra PD(V ). That is

C = PD(0) ⊂ PD(1) ⊂ · · · ⊂ PD(k)(V ) ⊂ · · · ,

∞⋃

k=0

PD(k)(V ) = PD(V ),

and

PD(k)(V )PD(`)(V ) ⊂ PD(k+`)(V )

in view of the commutation relations. In terms of our basis,

PD(k)(V ) = Span{zα∂β : |α|+ |β| ≤ k}
where |α| = α1 + · · · + αn. The map δ : C[V ⊕ V ∗] → PD(V ) induces an algebra
isomorphism from gr(C[V ⊕ V ∗]) ∼= C[V ⊕ V ∗] to

gr(PD(V )) =
∞∑

k=0

PD(k+1)(V )/PD(k)(V ),

an abelian algebra that is canonically isomorphic to PD(V ) as a vector space.

Lemma 7.1.1. PD(V ) is strongly dense in End(C[V ]). That is,

PD(V )|X = Hom(X ,C[V ])

for any finite dimensional subspace X of C[V ].

Proof. Let X ⊂ C[V ] = C[z1, . . . , zn] be a finite dimensional subspace and T ∈
Hom(X ,C[V ]). Let {p1, . . . , pm} be a basis for X , ordered so that deg(p1) ≤ · · · ≤
deg(pm). By taking suitable linear combinations, one can ensure that pk contains a
monomial mk which

• has degree deg(pk) and
• p1, . . . , pk−1 contain no non-zero multiples of mk.

Let fj = T (pj) for 1 ≤ j ≤ m, and let m1 = zα. Then the operator

D1 = f1
1

α!
∂α

(
α! = α1! · · ·αn!

)

has D1(p1) = f1.
Assume inductively that there is some Dk ∈ PD(V ) with Dk(pj) = fj for 1 ≤ j ≤

k. Let mk+1 = zβ. Then ∂βp1 = · · · = ∂βpk = 0, and ∂βpk+1 = β! Now

Dk+1 =
(
fk+1 −Dkpk+1)

1

β!
∂β + Dk

satisfies Dk+1(pj) = fj for 1 ≤ j ≤ k + 1. By induction we conclude that there is an
operator D ∈ PD(V ) with D|X = T . ¤
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7.2. Invariants in PD(V ). Now suppose that a reductive algebraic group G is acting
linearly on V . For the moment, we do not assume that G : V is a multiplicity free
action. The group G acts on PD(V ) via conjugation:

(g ·D)(f) = g ·D(g−1 · f).

In terms of coordinates one calculates:

g ·Mzj
=

∑

`

(g−1)j`Mz`
, g · ∂j =

∑

`

(gt)j`∂`.

It follows that the polarized symbol mapping intertwines the action of G on PD(V )
with its action on C[V ⊕ V ∗] = C[z1, . . . , zn, w1, . . . , wn] via

g · p(z, w) = p(g−1z, gtw).

This formula agrees with that for the representation of G on C[V ⊕ V ∗] arising from
G : V and its contragredient G : V ∗,

g · (v, ξ) = (g · v, g · ξ) = (g · v, ξ ◦ g−1).

Thus we have shown:

Lemma 7.2.1. The G-invariants in PD(V ) are

PD(V )G = PD(V ) ∩ EndG(C[V ]) = {p(z, ∂) : p ∈ C[V ⊕ V ∗]G}.
Let K be a maximal compact connected subgroup in G. The Unitarian Trick

ensures that an operator D ∈ PD(V ) is G-invariant if and only if it is K-invariant.
Now we define the K-average of D via

D\ =

∫

K

(k ·D)dk

where dk denotes normalized Haar measure on K. The operator D belongs to a finite
dimensional subspace PD(m)(V ) for some m, and the integral converges in PD(m)(V ).
So D\ is a polynomial coefficient differential operator. A change of variables and
unimodularity of K shows that k◦ ·D\ = D\ for each k◦ ∈ K. Thus D\ ∈ PD(V )G.

Lemma 7.2.2. PD(V )G acts irreducibly on C[V ]B,λ for all dominant weights λ.

Proof. For D ∈ PD(V )G, b ∈ B and h a λ-highest weight vector, we have

b · (Dh) = D(b · h) = D(bλh) = bλDh.

Thus PD(V )G preserves the space C[V ]B,λ of λ-highest weight vectors.
Next let h1, h2 be two λ-highest weight vectors in C[V ] and consider the finite

dimensional G-invariant space

X = Span(G · h1) + Span(G · h2).
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Since Span(G · h1) and Span(G · h2) are equivalent as G-modules, there is some
T ∈ EndG(X ) with T (h1) = h2. By Lemma 7.1.1 there is an operator D ∈ PD(V )
with D|X = T . Now D\ ∈ PD(V )G and

D\h1 =

∫

K

k ·D(k−1 · h1)dk

=

∫

K

k · T (k−1 · h1)dk (as k−1 · h1 ∈ X )

=

∫

K

T (h1)dk (as T is G-invariant)

= T (h1)

= h2.

This shows that PD(V )G acts irreducibly on C[V ]B,λ. ¤
Theorem 7.2.3. G : V is a multiplicity free action if and only if PD(V )G is abelian.

Proof. Let G : V be a multiplicity free action and

C[V ] =
⊕

λ∈Λ

Pλ

be the decomposition of C[V ] into pair-wise inequivalent G-irreducibles. Schur’s
Lemma ensures that any operator D ∈ PD(V )G must preserve each Pλ and acts on
Pλ as multiplication by some scalar. It follows that any two operators in PD(V )G

commute.
Conversely, suppose that PD(V )G is abelian. As PD(V )G acts irreducibly on

C[V ]B,λ we must have dim(C[V ]B,λ) ≤ 1 for all dominant weights λ. Hence G : V is
multiplicity free. ¤

Thus when G : V is multiplicity free, both algebras C[V ⊕ V ∗]G and PD(V )G are
abelian. Although δ and σ are not algebra maps, they induce algebra isomorphisms

C[V ⊕ V ∗]G ∼= gr
(
C[V ⊕ V ∗]G

) ∼= gr
(PD(V )G

)

between the associated graded algebras. Concretely, this means that although one
generally has p(z, ∂)q(z, ∂) 6= (pq)(z, ∂), the operators p(z, ∂)q(z, ∂) and (pq)(z, ∂)
have the same top degree terms. Here “degree” in PD(V ) is defined using the filtra-
tion PD(k)(V ) from Section 7.1. In particular, zα∂β has degree |α|+ |β|.
7.3. A canonical basis for the invariants. Suppose that G : V is a (linear)
multiplicity free action. The trivial representation of G occurs in C[V ] on P0(V ) = C,
the constant polynomials. As the representation of G on C[V ] is multiplicity free, it
follows that C[V ]G = C. That is, there are no non-constant G-invariants in C[V ].
Because of the connection with G-invariant differential operators it is, however, of
interest to study the G-invariants in C[V ⊕ V ∗].
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Let

C[V ] =
⊕

λ∈Λ

Pλ

denote the multiplicity free decomposition of C[V ] under the action of G. Then

C[V ⊕ V ∗] = C[V ]⊗ C[V ]∗ =
⊕

λ,λ′∈Λ

Pλ ⊗ P ∗
λ′ ,

where the subspaces Pλ ⊗ P ∗
λ′ are G-invariant in C[V ⊕ V ∗]. Thus

C[V ⊕ V ∗]G =
⊕

λ,λ′∈Λ

(
Pλ ⊗ P ∗

λ′
)G

.

But

(
Pλ ⊗ P ∗

λ′
)G ∼=

(
Hom(Pλ′ , Pλ)

)G
= HomG(Pλ′ , Pλ) =

{
0 if λ 6= λ′

C if λ = λ′

by Schur’s Lemma. The first isomporphism is given by f ⊗ ξ 7→ (p 7→ ξ(p)f).
The element in Pλ ⊗ P ∗

λ that corresponds to IPλ
under the isomorphism Pλ ⊗ P ∗

λ
∼=

Hom(Pλ, Pλ) is

(7.3.1) p̃λ =

dλ∑
j=1

fj ⊗ f ∗j

where dλ = dim(Pλ) and {fj : 1 ≤ j ≤ dλ} is any basis for Pλ with dual basis {f ∗j }.
Thus we have shown that

C[V ⊕ V ∗]G =
⊕

λ∈Λ

(
Pλ ⊗ P ∗

λ

)G
=

⊕

λ∈Λ

Cp̃λ.

So {p̃λ | λ ∈ Λ} is a basis for C[V ⊕ V ∗]G. As Equation 7.3.1 does not depend on
the choice of basis {fj} for Pλ, the basis {p̃λ | λ ∈ Λ} for C[V ⊕ V ∗]G is canonical.
Applying Wick quantization we obtain a canonical basis for PD(V )G.

We call the polynomials p̃λ the unnormalized canonical invariants. To achieve some
simplification in formulae to be derived below, we also introduce the (normalized)
canonical invariants

pλ =
1

dλ

p̃λ, (dλ = dim(Pλ)).

In summary we have proved the following.

Proposition 7.3.1. {pλ : λ ∈ Λ} and {pλ(z, ∂) : λ ∈ Λ} are canonical vector
space bases for C[V ⊕ V ∗]G and PD(V )G respectively.
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7.4. The fundamental invariants. Now let r be the rank of the multiplicity free
action G : V and

Λ′ = {λ1, . . . , λr}
be the set of fundamental highest weights. Recall that Λ = {m1λ1 + · · ·+mrλr | m ∈
Nr}. (See Proposition 3.3.1.)

Definition 7.4.1. The fundamental invariants for G : V are {γ1, . . . , γr} where

γj = pλj
.

For λ ∈ Λ let |λ| ∈ N denote the degree of homogeneity of Pλ. That is, Pλ ⊂
P|λ|(V ). Then the canonical invariant pλ is homogeneous of degree 2|λ|.

For any weights µ, ν ∈ h∗ we will write

µ ≺ ν

when ν − µ is a sum of positive roots.

Lemma 7.4.2. For any λ, µ ∈ Λ there are values cν = cλ,µ,ν for which

pλpµ =
∑

ν

cνpν ,

where the sum is over all ν ∈ Λ with |ν| = |λ|+ |µ| and ν ¹ λ + µ. Moreover,
cλ+µ 6= 0.

Proof. The product pλpµ is G-invariant and belongs to P|λ|+|µ|(V )⊗P|λ|+|µ|(V ∗). As
the pν ’s form a homogeneous basis for C[V ⊕ V ∗]G we conclude that

pλpµ =
∑

|ν|=|λ|+|µ|
cνpν

for some values cν . Let {fj}dλ
j=1 and {hj}dµ

j=1 be bases of weight vectors for Pλ and
Pµ so that f1, h1 are highest weight vectors. We know that all other weights in an
irreducible representation space precede the highest weight in the partial ordering
defined above.

We have

pλpµ =
1

dλdµ

∑
i,j

fihj ⊗ f ∗i h∗j .

The C[V ]-components fihj in this sum are weight vectors with weights λi+µj ¹ λ+µ.
It follows that cν = 0 unless ν ≺ λ + µ. Moreover, the term f1h1⊗ f ∗1 h∗1 contains the
(λ + µ)-highest weight vector f1h1. We conclude that cλ+µ 6= 0. ¤

Theorem 7.4.3. C[V ⊕ V ∗]G = C[γ1, . . . , γr]. That is, C[V ⊕ V ∗]G is a polynomial
ring freely generated by the fundamental invariants.
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Proof. Given m ∈ Nr, let λ = m1λ1 + · · ·+ mrλr ∈ Λ. Lemma 7.4.2 shows that

γm = γm1
1 · · · γmr

r = pm1
λ1
· · · pmr

λr
= aλpλ +

∑

ν≺λ

aνpν

for some coefficients aν with aλ 6= 0. As {pλ} is a basis for C[V ⊕ V ∗]G, we conclude
that {γm | m ∈ Nr} is also a basis for C[V ⊕ V ∗]G. ¤

Corollary 7.4.4. PD(V )G is a polynomial ring freely generated by
{Dj = γj(z, ∂) : 1 ≤ j ≤ r}.
Proof. From Theorem 7.4.3 we see that {γm(z, ∂) : m ∈ Nr} is a basis for the vector
space PD(V )G. Also, given m = (m1, . . . ,mr),

Dm = Dm1
1 · · ·Dmr

r = γ1(z, ∂)m1 · · · γr(z, ∂)mr

differs from γm(z, ∂) by an element of PD(2|λ|−1)(V ), where λ = m1λ1 + · · ·mrλr. By
induction on degree in PD(V ) we conclude that {Dm : m ∈ Nr} is a vector space
basis for PD(V )G. Thus PD(V )G = C[D1, . . . , Dr]. ¤

7.5. The algebra C[VR]
K. An alternative viewpoint on C[V ⊕V ∗]G will prove useful.

Let K denote a maximal compact connected Lie subgroup of G and 〈·, ·〉 be any K-
invariant positive definite Hermitian inner product on V . The conjugate-linear vector
space isomorphism

V → V ∗, v 7→ v∗ = 〈·, v〉
is K-equivariant (but not G-equivariant). In view of the Unitarian Trick we obtain
an algebra isomorphism

(7.5.1) C[VR]
K = C[V ⊕ V ]K ∼= C[V ⊕ V ∗]K = C[V ⊕ V ∗]G.

Here V denotes V with the conjugate complex structure and VR is the underlying
real vector space for V .

Introducing coordinates (z1, . . . , zn) on V with respect to an orthonormal basis,
one has C[V ] = C[z1, . . . , zn]. This polynomial ring also carries an inner product,
namely

〈p, q〉F =
(
p(∂)q

)
(0) =

(
q(∂)p

)
(0),

the so-called Fischer inner product. Here p(∂) = p(∂1, . . . , ∂n) for p = p(z1, . . . , zn)
and for q(z) =

∑
α cαzα, q(z) =

∑
α cαzα.

Thus

〈zα, zβ〉F = δα,βα! = δα,βα1! · · ·αn!

for multi-indices α = (α1, . . . , αn), β = (β1, . . . , βn).

Lemma 7.5.1. The subspaces {Pλ : λ ∈ Λ} in C[V ] are pair-wise orthogonal with
respect to the Fischer inner product.
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Proof. This follows from the fact that K ⊂ U(V ) and U(V ) preserves 〈·, ·〉F . This
can be seen using an alternative formula for the Fisher inner product:

(7.5.2) 〈p, q〉F =
1

πn

∫
p(z)q(z)e−|z|

2

dzdz.

In (7.5.2), n = dimC(V ), |z|2 = 〈z, z〉 and “dzdz” denotes Lebesgue measure on VR
normalized using 〈·, ·〉. We see that 〈k · p, k · q〉F = 〈p, q〉F for k ∈ U(V ) via a change
of variables in (7.5.2), since both |z|2 and dzdz are U(V )-invariant.

To establish (7.5.2) it suffices to verify that
∫

zαzα′e−|z|
2

dzdz = πnδα,α′α!.

For this, use polar coordinates zj = rje
iθj to write

∫
zαzα′e−|z|

2

dzdz =
n∏

j=1

∫ ∞

0

∫ 2π

0

r
αj+α′j+1

j ei(αj−α′j)θje−r2
j dθjdrj.

The integral in θj is zero unless αj = α′j, in which case one has

2π

∫ ∞

0

r
2αj+1
j e−r2

j drj = 2π

∫ ∞

0

sαje−s ds

2
= παj!.

¤

Using isomorphism (7.5.1) we can regard the canonical invariants pλ as elements
of C[VR]

K = C[z1, . . . , zn, z1, . . . , zn]K . We have

pλ(z, z) =
1

dλ

dλ∑
j=1

ej(z)ej(z) =
1

dλ

dλ∑
j=1

|ej(z)|2

where {ej} is any orthonormal basis for Pλ (with respect to 〈·, ·〉F). Note that each
pλ ∈ C[VR]

K is real valued and non-negative.
We later require the formula

(7.5.3)
∑

|λ|=k

dλpλ =
|z|
k!

2k

.

Indeed
∑

|λ|=k dλpλ(z, z) =
∑

e |e(z)|2 where e ranges over an orthonormal basis for

Pk(V ) obtained by concatenation of orthonormal bases for {Pλ : |λ| = k}. The sum

is, however, independent of the basis and we can use {zα/
√

α! : |α| = k} to compute

∑

|λ|=k

dλpλ =
∑

|α|=k

zαzα/α! =
1

k!

∑

|α|=k

k!

α!
zαzα = |z|2k/k!

as stated.
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On C[VR] = C[z1, . . . , zn, z1, . . . , zn] we consider the Hermitian inner product

〈p, q〉∗ =
(
p(∂, ∂)q

)
(0) = (q(∂, ∂)p

)
(0).

This “doubled Fischer inner product” is determined by

〈zαzβ, zα′zβ′〉∗ = δα,α′δβ,β′α!β!.

Proposition 7.5.2. {pλ | λ ∈ Λ} is an orthogonal basis for C[VR]
K with respect to

the inner product 〈·, ·〉∗. Moreover 〈pλ, pλ〉∗ = 1/dλ.

Proof. Let {ej}, {fj} be 〈·, ·〉F -orthonormal bases for Pλ, Pµ. Using Lemma 7.5.1 we
compute

〈pλ, pµ〉∗ =
(
pλ(∂, ∂)pµ(z, z)

)
(0)

=
1

dλdµ

∑
i,j

(
ei(∂)ei(∂)f j(z)fj(z)

)
(0)

=
1

dλdµ

∑
i,j

(
ei(∂)f j(z)

)
(0)

(
ei(∂)fj(z)

)
(0)

=
1

dλdµ

∑
i,j

|〈ei, fj〉F |2

=
δλ,µdλ

dλdµ

=
δλ,µ

dλ

.

¤

7.6. Section 7 notes. Theorems 7.2.3, 7.4.3 and Corollary 7.4.4 are from [24]. An
action whose invariants form a polynomial ring is said to be coregular. The coregular
actions for simple groups are classified in [27] and [48].

The Fischer inner product is also called the Fock inner product, especially in con-
nection with Equation 7.5.2. Fock space F is the Hilbert space completion of C[V ]
with respect to 〈·, ·〉F . This can be identified as the space of holomorphic functions

on V square integrable with respect to the Gaussian measure e−|z|
2
dzdz [14]. The

inner product 〈·, ·〉∗ can be regarded as the restriction of 〈·, ·〉F ⊗〈·, ·〉F∗ from F ⊗F∗

to C[V ⊕ V ] ∼= C[V ] ⊗ C[V ]∗. One can identify F ⊗ F∗ with the space of Hilbert-
Schmidt operators on F . Now 〈·, ·〉F induces the Hilbert-Schmidt norm. There is also
a connection with the Berezin star product, as explained in [1].

8. Generalized binomial coefficients

We continue to assume that G : V is a multiplicity free action. As in the previous
section, {pλ | λ ∈ Λ} are the canonical invariants. We view these as living in C[VR]

K .
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8.1. The polynomials qλ. Let ∆ = ∂ · ∂ = ∂1∂1 + · · · + ∂n∂n and consider the
operator T : C[VR] → C[VR],

(Tp)(z, z) = (e∆p)(z,−z) = e−∆
(
p(z,−z)

)
.

Note that T is an involutive automorphism. Indeed, writing (Mp)(z, z) = p(z,−z)
one has

(8.1.1) T = M ◦ e∆ = e−∆ ◦M = T−1.

Definition 8.1.1. Let qλ = T (pλ) = (−1)|λ|e−∆pλ for each λ ∈ Λ.

The two formulas in the definition for qλ agree because pλ(z,−z) = (−1)|λ|pλ(z, z).

Lemma 8.1.2. {qλ : λ ∈ Λ} is a vector space basis for C[VR]
K.

Proof. First note that qλ ∈ C[VR] is K-invariant because pλ is K-invariant and ∆ is
a U(V )-invariant operator. Moreover

qλ = (−1)|λ|pλ + rλ

where pλ ∈ P2|λ|(VR) and rλ is of lower degree. As {pλ} is a basis for C[VR]
K , so is

{qλ}. ¤
8.2. The generalized binomial coefficients. As qλ belongs to C[VR]

K , it can be
written as a finite linear combination of the canonical invariants pν .

Definition 8.2.1. The generalized binomial coefficients
[
λ
ν

]
are defined for λ, ν ∈ Λ

via

qλ =
∑
ν∈Λ

(−1)|ν|
[
λ

ν

]
pν .

The proof of Lemma 8.1.2 shows that[
λ

λ

]
= 1,

[
λ

ν

]
= 0 when |λ| = |ν| but λ 6= ν and

[
λ

ν

]
= 0 for |ν| > |λ|.

So in fact

qλ =
∑

|ν|≤|λ|
(−1)|ν|

[
λ

ν

]
pν = (−1)|λ|pλ +

∑

|ν|<|λ|
(−1)|ν|

[
λ

ν

]
pν .

The terminology “generalized binomial coefficient” is motivated by Example 8.4.1
below. Our immediate goal is to develop some combinatorial properties of these
coefficients and to relate them to eigenvalues for operators in PD(V )G. We begin
with the following.

Proposition 8.2.2.
∑
µ∈Λ

(−1)|µ|
[
λ

µ

][
µ

ν

]
=

{
(−1)|λ| for λ = ν
0 for λ 6= ν

.
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Proof. First note that as qλ = T (pλ) and T 2 = I one has

(8.2.1) pλ = T (qλ) =
∑

ν

(−1)|ν|
[
λ

ν

]
T (pν) =

∑
ν

(−1)|ν|
[
λ

ν

]
qν ,

an interesting formula in its own right. But now

qλ =
∑

µ

(−1)|µ|
[
λ

µ

]
pµ =

∑
µ

(−1)|µ|
[
λ

µ

] (∑
ν

(−1)|ν|
[
µ

ν

]
qν

)

=
∑

ν

(−1)|ν|
(∑

µ

(−1)|µ|
[
λ

µ

][
µ

ν

])
qν

and the result follows from the linear independence of {qλ : λ ∈ Λ}. ¤

Proposition 8.2.3. For λ ∈ Λ and k ∈ N

(8.2.2)
∆

k!

k

pλ =
∑

|ν|=|λ|−k

[
λ

ν

]
pν

and

(8.2.3)
∆

k!

k

qλ = (−1)k
∑

|ν|=|λ|−k

[
λ

ν

]
qν

Proof. We have

∑
ν

(−1)|ν|
[
λ

ν

]
pν = qλ = T (pλ) = (−1)|λ|e−∆pλ

= (−1)|λ|
∑

k

(−1)k ∆

k!

k

pλ.

Equating homogeneous components of degree 2(|λ|−k) on both sides of this equation
yields (8.2.2). Applying the operator T to both sides of (8.2.2) yields (8.2.3) since

T (∆kpλ) = (−1)|λ|−ke−∆∆kpλ = (−1)k∆k
(
(−1)|λ|e−∆pλ

)
= (−1)k∆kqλ.

¤

The next theorem is the key to all subsequent results in this section.

Theorem 8.2.4 (Yan’s Pieri Formula). For ν ∈ Λ, k ∈ N,

|z|
k!

2k

dνpν =
∑

|λ|=|ν|+k

[
λ

ν

]
dλpλ.
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Proof. First note that for polynomials p, q ∈ C[VR] one has

〈zjp, q〉∗ = 〈p, ∂jq〉∗, 〈zjp, q〉∗ = 〈p, ∂jq〉∗
and hence 〈|z|2p, q〉∗ = 〈p, ∆q〉∗. Now using Proposition 7.5.2 and Equation 8.2.2,

|z|
k!

2k

pν =
∑

|λ|=|ν|+k

〈(|z|2k/k!)pν , pλ〉∗
〈pλ, pλ〉∗ pλ

=
∑

|λ|=|ν|+k

dλ〈pν , (∆
k/k!)pλ〉∗pλ

=
∑

|λ|=|ν|+k

dλ

[
λ

ν

]
〈pν , pν〉∗pλ

=
∑

|λ|=|ν|+k

dλ

dν

[
λ

ν

]
pλ.

¤

Corollary 8.2.5. For |λ| = |ν|+ k one has
[
λ

ν

]
=

1

k!

∑ [
ε1

ν

][
ε2

ε1

]
· · ·

[
εk−1

εk−2

][
λ

εk−1

]

where the sum is over all (ε1, . . . , εk−1) with |εj| = |ν|+ j.

Proposition 8.2.6. The generalized binomial coefficients are non-negative real num-
bers.

Proof. Corollary 8.2.5 shows that it suffices to prove
[
λ
ν

] ≥ 0 for |λ| = |ν| + 1. Let
{f1, . . . , fdν} be an orthonormal basis for Pν with respect to the Fischer inner product.
Since zifj ∈ P|ν|+1(V ) =

⊕
|λ|=|ν|+1 Pλ, we can write

zifj =
∑

|λ|=|ν|+1

fλ(i, j)

where fλ(i, j) ∈ Pλ. Hence also

|z|2dνpν =
n∑

i=1

dν∑
j=1

zifjzifj =
∑

|λ|=|λ′|=|ν|+1

n∑
i=1

dν∑
j=1

fλ(i, j)fλ′(i, j).

The sum
∑

|λ|=|λ′|=|ν|+1 Pλ ⊗ P λ′ is direct in C[VR] = C[V ]⊗C[V ] and each Pλ ⊗ P λ′

is a K-invariant subspace. Since |z|2dνpν is a K-invariant polynomial, it follows that

n∑
i=1

dν∑
j=1

fλ(i, j)fλ′(i, j) ∈ Pλ ⊗ P λ′
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is K-invariant for each |λ| = |ν|+ 1 = |λ′|. But

(Pλ ⊗ P λ′)
K =

{ {0} for λ 6= λ′

Cpλ for λ = λ′

via Schur’s Lemma, as in Section 7.3. We conclude that
∑n

i=1

∑dν

j=1 fλ(i, j)fλ′(i, j) =

0 for λ 6= λ′ and that
∑n

i=1

∑dν

j=1 |fλ(i, j)|2 = cλpλ for some cλ ∈ C. As pλ and∑n
i=1

∑dν

j=1 |fλ(i, j)|2 are both non-negative real valued polynomials on VR, we must
have cλ ≥ 0. Hence

|z|2dνpν =
∑

|λ|=|ν|+1

cλpλ

for some values cλ ≥ 0. Theorem 8.2.4 now implies
[
λ
ν

]
= cλ/dλ ≥ 0. ¤

8.3. Eigenvalues for operators in PD(V )G. The operators pν(z, ∂) in the canon-
ical basis for PD(V )G act by scalars on each subspace Pλ ⊂ C[V ]. This is a conse-
quence of Schur’s Lemma, G-invariance of pν(z, ∂) and the fact that the decomposi-
tion C[V ] = ⊕Pλ is multiplicity free.

Definition 8.3.1. For ν, λ ∈ Λ let p̂ν(λ) ∈ C denote the eigenvalue of pν(z, ∂) on
Pλ. That is, pν(z, ∂)|Pλ

= p̂ν(λ)IPλ
.

Proposition 8.3.2. dν p̂ν(λ) =
[
λ
ν

]
for all λ, ν ∈ Λ.

Proof. Note that
pν(z, ∂)pλ(z, z) = p̂ν(λ)pλ(z, z)

as pλ(z, z) ∈ Pλ ⊗ P λ. Now using Theorem 8.2.4,

dνpν(z, ∂)e|z|
2

= dνpν(z, z)e|z|
2

= dνpν(z, z)
∑

k

|z|
k!

2k

=
∑

k

∑

|λ|=|ν|+k

[
λ

ν

]
dλpλ(z, z)

=
∑

λ

[
λ

ν

]
dλpλ(z, z).

But we can also use Equation 7.5.3 to write

e|z|
2

=
∑

k

|z|
k!

2k

=
∑

k

∑

|λ|=k

dλpλ(z, z) =
∑

λ

dλpλ(z, z).

Thus
dνpν(z, ∂)e|z|

2

=
∑

λ

dνdλp̂ν(λ)pλ(z, z).
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Comparing these two expressions for dνpν(z, ∂)e|z|
2

gives dν p̂ν(λ) =
[
λ
ν

]
as claimed.

¤

Together Propositions 8.2.6 and 8.3.2 yield:

Corollary 8.3.3. The eigenvalues p̂ν(λ) are non-negative real numbers.

8.4. Examples. Here are two examples to illustrate the circle of ideas developed
above. Even the most basic example is of interest in this context.

Example 8.4.1. GL(n): Consider the usual action of G = GL(n,C) on V = Cn.
We have maximal compact subgroup K = U(n) and the standard inner product
〈z, z′〉 = z · z′ is K-invariant. C[V ] decomposes as

C[V ] = C[z1 . . . , zn] =
⊕

m∈N
Pm(V )

under the actions of G and of K. Using the orthonormal basis {zα/
√

α! : |α| = m}
for Pm(V ) (with respect to 〈·, ·〉F) we compute the canonical invariant pm(z, z) ∈
C[VR]

K :

pm(z, z) =
1

dm

∑

|α|=m

zαzα

α!
=

1

dm

1

m!

∑

|α|=m

(
m

α

)
|z|2α =

1

dm

1

m!
|z|2m.

Substituting

dm = dim(Pm(V )) =

(
m + n− 1

m

)

one obtains

pm(z, z) =
(n− 1)!

(m + n− 1)!
|z|2m.

The fundamental invariant is γ = p1 = |z|2/n and the above computation shows that
C[VR]

K = C[γ], illustrating Theorem 7.4.3.
Next we compute

|z|2(m−k)

(m− k)!
dkpk =

|z|2(m−k)

(m− k)!

|z|
k!

2k

=

(
m

k

) |z|
m!

2m

=

(
m

k

)
dmpm.

Now Theorem 8.2.4 implies [
m

k

]
=

(
m

k

)

for k, m ∈ N. This fact motivates the terminology “generalized binomial coefficient”.
The polynomials {qm | m ∈ N} are given by

qm(z, z) =
∑

k

(−1)k

(
m

k

)
pk(z, z) =

∑

k

(−1)k

(
m

k

)
(n− 1)!

(k + n− 1)!
|z|2k = L(n−1)

m (|z|2)
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where

L(r)
m (x) = r!

m∑

k=0

(
m

k

)
(−x)k

(k + r)!

is the generalized Laguerre polynomial of order r and degree m, normalized to have
value 1 at x = 0.

Now according to Proposition 8.3.2 the operator dkpk(z, ∂) ∈ PD(V )G has eigen-
value

dkp̂k(m) =

(
m

k

)

on Pm(V ). One can see this directly because

dkpk(z, ∂)(zm
1 ) =

∑

|α|=k

zα∂

α!

α

(zm
1 ) =

zk
1∂1

k!

k

(zm
1 ) =

zk
1

k!

m!

(m− k)!
zm−k
1 =

(
m

k

)
zm
1

for m ≥ k.
For this example Proposition 8.2.2 asserts that

(8.4.1)
m∑

k=`

(−1)k

(
m

k

)(
k

`

)
= δm,`(−1)m.

Equivalently, the lower triangular matrix A with entries Am,k = (−1)
(

m
k

)
(0 ≤ m, k ≤

N say) is self inverting: A2 = A. One can verify (8.4.1) directly as follows.

xm = (1− (1− x))m =
∑

k

(−1)k

(
m

k

)
(1− x)k =

∑

k

(−1)k

(
m

k

) ∑

`

(−1)`

(
k

`

)
x`

=
∑

`

(−1)`

[∑

k

(−1)k

(
m

k

)(
k

`

)]
x`.

Example 8.4.2. GL(n)⊗GL(n): Recall the (twisted) action (4.1.2) of
G = GL(n,C) × GL(n,C) on V = Cn ⊗ Cn ∼= Mn,n(C). Restricting to the max-
imal compact subgroup K = U(n)× U(n) we have

(k1, k2) · z = k1vk∗2

where k∗ = k
t
= k−1. The inner product 〈z, w〉 = tr(zw∗) on V is K-invariant. The

decomposition

C[Mn,n(C)] =
⊕

λ∈Λ

Pλ

under the action of K, given in Theorem 4.1.1, is indexed by partitions λ = (λ1 ≥
· · · ≥ λn ≥ 0).

Let Σ ⊂ V denote the set of matrices of the form h = diag(d1, . . . , dn) with dj ∈ R+.
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Proposition 8.4.3. ([6]) For λ ∈ Λ, pλ ∈ C[VR]
K is determined by its restriction to

Σ via the formula
pλ(h) = cλsλ(d

2
1, . . . , d

2
n)

where sλ is a Schur polynomial in n variables and cλ is a positive constant.

The Schur polynomial sλ arises as the character of the representation σλ
n of GL(n,C)

with highest weight λ,

sλ(x1, . . . , xn) = tr(σλ
n(diag(x1, . . . , xn)),

and is given explicitly by the determinantal formula

(8.4.2) sλ(x1, . . . , xn) =
det

[
x

λj+n−j
i

]

det
[
xn−j

i

] .

The Schur function s(1k) is the k’th elementary symmetric function ek. Thus the

fundamental invariants γk = p(1k) ∈ C[VR]
K are determined, up to normalization, by

γk(h) = ckek(d
2
1, . . . , d

2
n)

on the cross-section Σ.
It is useful to identify partitions λ ∈ Λ with their Young’s diagrams. Given two

diagrams λ, ν ∈ Λ, we write ν ⊂ λ when ν is a sub-diagram of λ. That is, νj ≤ λj

for all j. If |λ| = |ν|+ k then Cλν will denote the number of sequences (ε0, . . . , εk) of
Young’s diagrams such that

• ν = ε0 ⊂ ε1 ⊂ · · · ⊂ εk−1 ⊂ εk = λ, and
• |εj| = |ν|+ j for j = 1, . . . , k.

That is, εj is obtained from εj−1 by adding a single box to some row. Note that
Cλν = 0 if ν 6⊂ λ. When ν ⊂ λ, Cλν is the number of standard tableaux of shape
λ− ν. That is, the number of ways to assign the values 1, 2, . . . , k to the boxes of the
skew-diagram λ− ν so that values increase as we move along rows from left to right
and as we move down columns.

Proposition 8.4.4. The generalized binomial coefficients can be expressed as[
λ

ν

]
=

1

k!

dνcν

dλcλ

Cλν

for |λ| = |ν|+ k.

Proof. Note that the polynomial γ(z) = |z|2 = tr(zz∗) is given on Σ by

γ(h) = d2
1 + · · ·+ d2

n = s(1)(d
2
1, . . . , d

2
n).

Consider the case where |λ| = |ν|+ 1. Theorem 8.2.4 and Proposition 8.4.3 yield

dνcνs(1)sν =
∑

|λ|=|ν|+1

[
λ

ν

]
dλcλsλ.
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On the other hand, the classical Pieri formula asserts:

s(1)sν =
∑

|λ|=|ν|+1
ν⊂λ

sλ.

Comparing these expressions gives
[
λ

ν

]
=

{
dνcν

dλcλ
if ν ⊂ λ

0 if ν 6⊂ λ

}
=

dνcν

dλcλ

Cλν .

An application of Corollary 8.2.5 now yields the result for |λ| = |ν|+ k. ¤

The dimensions dµ = dim(Pµ) are dµ = dim(σµ
n)2, in view of Theorem 4.1.1. A

classical formula for these dimensions gives

dµ =

[∏
i<j

µi − µj + j − i

j − i

]2

.

Remark 8.4.5. This example motivates the name “Yan’s Pieri Formula” for Theo-
rem 8.2.4. We will return to this example below in Section 9.4. As a byproduct of this
subsequent analysis, one sees that the normalization constants cλ appearing in Propo-
sitions 8.4.3 and 8.4.4 are given by cλ = 1/H(λ), where H(λ) is as in Proposition
9.4.1.

8.5. Section 8 notes. The polynomials qλ play a role in connection with analysis
on the Heisenberg group. Let HV = V × R with product

(z, t)(z′, t′) =
(
z + z′, t + t′ − 1

2
Im〈z, z′〉).

Any compact Lie subgroup K of U(V ) act by automorphisms on HV via

k · (z, t) = (kz, t).

It is known that (K nHV , K) is a Gelfand pair if and only if K : V is a multiplicity
free action. A generic set of spherical functions for such a Gelfand pair is completely
determined by the qλ-polynomials. In particular,

φ(z, t) = qλ(z)e−|z|
2/2eit

is one such spherical function. We refer the reader to [4] concerning this connection.
One can extend the inner product 〈·, ·〉F from C[V ] to C[VR] using Equation 7.5.2.

The qλ’s are then orthogonal with respect to 〈·, ·〉F . In fact, they can be obtained via
Gram-Schmidt orthogonalization using 〈·, ·〉F from the pλ’s [4].

Generalized binomial coefficients were first introduced in the setting of Hermitian
symmetric spaces. See [12], [37] and [13]. Z. Yan subsequently defined generalized
binomial coefficients in the more general context of multiplicity free actions in his
unpublished manuscript [56]. This contains the first proofs of Theorem 8.2.4 and
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Proposition 8.3.2. Further combinatorial identities concerning the generalized bino-
mial coefficients can be found in [6]. Both [56] and [6] use representation theory for
the Heisenberg group and exploit the connection with spherical functions outlined
above. The treatment given here achieves some simplification.

In [7] it is shown that the generalized binomial coefficients are (non-negative) ra-
tional numbers. Thus the same holds for the eigenvalues p̂ν(λ). The proof involves
extensive case-by-case analysis working from the classification for multiplicity free
actions presented in Section 6.

For background on Schur functions, including the Pieri formula, we refer the reader
to Chapter I in [39].

9. Eigenvalues for operators in PD(V )G

Recall that for a multiplicity free action G : V each D ∈ PD(V )G acts by scalars
on the irreducible subspaces {Pλ : λ ∈ Λ} in the decomposition of C[V ]. For ν ∈ Λ,
p̂ν(λ) denotes the eigenvalue of pν(z, ∂) on Pλ. This is dν p̂ν(λ) =

[
λ
ν

]
. We will see

that the map p̂ν : Λ → C extends in a natural way to a polynomial function on the
subspace SpanC(Λ) of h∗.

9.1. Eigenvalue polynomials. We say that an operator D ∈ PD(V ) has order m
if

D ∈ δ
(
C[V ]⊗

∑
j≤m

Pj(V
∗)

)
.

Here δ : C[V ⊕ V ∗] → PD(V ) is the map given by Wick quantization, p 7→ p(z, ∂).
In terms of coordinates, D has order m when D ∈ Span{zα∂β : |β| ≤ m}.
Proposition 9.1.1. Let D ∈ PD(V ) and f = fa1

1 · · · far
r ∈ C[V ]. Then

Df(z) = βD(z; a1, . . . , ar)f(z)

where βD ∈ C[V ][f−1
1 , . . . , f−1

r ][a1, . . . , ar].

Proof. The proof is by induction on the order of D. For operators of order 1, it is
enough to consider D = ∂w, a directional derivative. In this case

Df(z) =
∑

j

aj(∂wfj)

(
f

fj

)
,

so βD =
∑

j aj(∂wfj)/fj in this case.

For D of order greater than 1, write D = g +
∑

i XiEi where g ∈ C[V ] and the
Xi’s have order 1. Now Eif(z) = βi(z; a1, . . . , ar)f(z) for suitable βi by the induction
hypothesis. As

XiEif(z) = Xiβif(z) + βiXif(z) =

[
Xiβi + βi

∑
j

aj
Xi(fj)

fj

]
f(z)

the result follows. ¤
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Corollary 9.1.2. (1) As a polynomial in a = (a1, . . . , ar), the degree of βD(z; a)
is order(D).

(2) As polynomials in a, the homogeneous components of highest degree in βD(z; a)
and σD(z, df

f
(z)) agree. Here σD ∈ C[V ⊕ V ∗] denotes the Wick symbol of D

and
df

f
= a1

df1

f1

+ · · ·+ ar
dfr

fr

.

Proof. (1) follows by induction from the proof of Proposition 9.1.1. For (2), we first
examine Df(z). For D = ∂w one has

σD

(
z,

df

f

)
= a1

w∗(f1)

f1

+ · · ·+ ar
w∗(fr)

fr

= a1
∂wf1

f1

+ · · ·+ ar
∂wfr

fr

= βD(z; a).

Given any polynomial b(a) in a = (a1 . . . , ar) we will write top(b) for the homo-
geneous component of highest degree. If we look closely at the induction step, with
D = g +

∑
i XiEi, we see that

top(βD) =
∑

i

top(βi)(z; a)
∑

j

aj
Xi(fj)

fj

.

By the induction hypothesis, top(βi) = top(σEi
(z, df/f)), and we have just seen

that top(σXi
)(z, df/f) =

∑
j ajXi(fj)/fj. The result now follows since top(σXiEi

) =

top(σXi
σEi

). ¤
Now suppose that G : V is a multiplicity free action with, as usual,

(1) Λ ⊂ h∗ the set of highest weights for the representations that occur in C[V ],
(2) Λ′ = {λ1, . . . , λr} the set of fundamental highest weights, and
(3) hj = hλj

(1 ≤ j ≤ r) the fundamental highest weight vectors.

Then h = ha1
1 · · ·har

r is a highest weight vector in Pλ for λ = a1λ1 + · · · + arλr ∈ Λ.
Thus for any ν ∈ Λ,

p̂ν(λ)h(z) = pν(z, ∂)h(z) = βν(z; a1, . . . , ar)h(z)

with βν = βpν(z,∂) as in Proposition 9.1.1. It follows that βν(z; a) = p̂ν(λ) for all z.
Thus βν = βν(a) is a polynomial in the parameters a, independent of z. Since

p̂ν(a1λ1 + · · ·+ arλr) = βν(a1, . . . , ar)

we see that p̂ν extends in a natural way to a polynomial function on SpanC(Λ) in h∗.
Moreover, by Corollary 9.1.2 we have

(9.1.1) top
(
p̂ν(a1λ1 + · · ·+ arλr)

)
= pν

(
z, a1

dh1

h1

+ · · ·+ ar
dhr

hr

)
.

Note that although both arguments on the right hand side of Equation 9.1.1 depend
on z, the result is independent of z, and gives a polynomial function of the parameters
a1, . . . , ar.
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9.2. A Harish-Chandra homomorphism for multiplicity free actions. Let
B = HN be a Borel subgroup in G with ∆+ ⊂ h∗ the associated set of positive roots.
Let W denote the Weyl group and

ρ =
1

2

∑

α∈∆+

α

be half the sum of the positive roots. U(g) is the universal enveloping algebra for g
with center ZU(g). The Harish-Chandra homomorphism is an algebra isomorphism

H : ZU(g) → C[h∗]W

such that

Z ∈ ZU(g) acts on Vλ by the scalar H(Z)(λ + ρ) for all highest weights λ.

Let G : V be a multiplicity free action. Knop constructs a map on PD(V )G

analogous to the Harish-Chandra homomorphism. Let

a∗ = SpanC(Λ) = SpanC{λ1, . . . , λr} ⊂ h∗, A = a∗ + ρ

and define a map

(9.2.1) h : PD(V )G → C[A], h(D)(λ + ρ) = βD(λ).

(As before, D acts on Pλ by the scalar βD(λ) when λ ∈ Λ.) Then the following
diagram commutes:

(9.2.2)

ZU(g)
H−−−→ C[h∗]Wyπ

yr

PD(V )G h−−−→ C[A]

The map π is induced by the representation of G on V , and r is the restriction map.

Theorem 9.2.1. ([31]) h : PD(V )G ∼= C[A]W◦ as algebras where W◦ ⊂ StabW (a∗+ρ)
is a finite reflection group.

The proof of Theorem 9.2.1 is given in Lemmas 9.2.2 through 9.2.6 below:

Lemma 9.2.2. Let N = StabW (A). Then Im(r) ⊂ C[A]N and these two rings have
the same field of fractions.

Proof. From (9.2.2) it is clear that Im(r) ⊂ C[A]N and r factors through Im(r):

C[h∗]W ³ Im(r) ↪→ C[A]N .

Letting h∗//W , V and A//N denote the varieties with coordinate rings C[h∗]W , Im(r)
and C[A]N respectively, we have

h∗//W ←↩ V ´ A//N.
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We see that r∗ : A//N → h∗//W fails to be one-to-one whenever σ ∈ W , σ 6∈ N but
σ(A)∩A 6= ∅. In this case, σ(A) 6= A, so σ(A)∩A is a lower-dimensional subvariety
in A. Thus r∗ fails to be one-to-one on ∪σ∈W\N(σ(A) ∩ A), whose complement is an
open set in A. Thus the map A//N → V is onto and generically one-to-one, so these
varieties have the same field of rational functions. ¤
Lemma 9.2.3. C[A]N is the integral closure of Im(r) in its field of fractions.

Proof. Since C[A] is a polynomials ring, it is integrally closed in its quotient field
C(A). Thus if f ∈ C(A)N is integral over C[A]N it is integral over C[A] and hence
f ∈ C[A] ∩ C(A)N = C[A]N . This shows that C[A]N is integrally closed in C(A)N .

It is known that C[h∗] is integral over C[h∗]W . (See Lemma 4.1.2 in [50].) Hence
the homomorphic image C[A] of C[h∗] is integral over Im(r) and in particular C[A]N

is integral over Im(r). Using Lemma 9.2.2, we conclude that C[A]N is the integral
closure of Im(r) in its quotient field. ¤
Lemma 9.2.4. C[A]N ⊂ Im(h) ⊂ C[A].

Proof. The map h is injective since each D ∈ PD(V )G is completely determined by
its eigenvalues {βD(λ) : λ ∈ Λ}. As PD(V )G is a polynomial ring (by Corollary
7.4.4), so is Im(h). We have Im(r) ⊂ Im(h) ⊂ C[A]. Given f ∈ C[A]N , we know
that f is integral over Im(r), hence over Im(h). Thus f ∈ Im(h). ¤
Lemma 9.2.5. Im(h) = C[A]W◦ for some subgroup W◦ ⊂ N .

Proof. Apply Galois theory to the fraction fields of the rings C[A]N ⊂ Im(h) ⊂
C[A]. ¤
Lemma 9.2.6. W◦ is a finite reflection group.

Proof. This follows from the fact that C[A]W◦ = Im(h) is a polynomial ring. (See
Theorem 4.2.5 in [50].) ¤
9.3. Characterizing the eigenvalue polynomials. Recall that for ν ∈ Λ, p̂ν can
be regarded as a polynomial function on a∗ = SpanC(Λ). We now shift dν p̂ν to obtain
a polynomial eν on A = a∗ + ρ:

eν(λ + ρ) = dν p̂ν(λ)

for λ ∈ a∗. Note that
eν = h

(
dνpν(z, ∂)

)

where h is given by (9.2.1). Moreover, eν(λ + ρ) =
[
λ
ν

]
when λ ∈ Λ, in view of

Proposition 8.3.2.
These polynomials have the following remarkable property.

Theorem 9.3.1. ([31]) For ν ∈ Λ the polynomial eν is the unique polynomial such
that:

(1) eν is W◦-invariant.
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(2) deg(eν) ≤ |ν|.
(3) eν(λ + ρ) = 0 for all λ ∈ Λ with |λ| ≤ |ν|, λ 6= ν.
(4) eν(ν + ρ) = 1.

Proof. Property (1) holds because eν belongs to Im(h) = C[a∗ + ρ]W◦ . Property
(2) holds by Corollary 9.1.2. Properties (3) and (4) are basic facts concerning the
generalized binomial coefficients

[
λ
ν

]
= eν(λ + ρ), as explained following Definition

8.2.1.
It remains to show uniqueness of eν . Let d = |ν| and set

Λd = {λ ∈ Λ : |λ| ≤ d}.
The map h restricts to yield an isomorphism

h : PD(d)(V )G → C(d)[a∗ + ρ]W◦

where PD(d)(V )G = PD(d)(V ) ∩ PD(V )G are the G-invariants in PD(d)(V ) and
C(d)[a∗ + ρ]W◦ = (

∑
m≤dPm(a∗ + ρ)) ∩ C[a∗ + ρ]W◦ . As {pλ(z, ∂) : λ ∈ Λd} is a

basis for PD(d)(V )G, we have that {eλ : λ ∈ Λd} is a basis for C(d)[a∗ + ρ]W◦ . Now
consider the linear map

ε : C(d)[a∗ + ρ]W◦ → CΛd , ε(f) =
(
f(λ + ρ) : λ ∈ Λd

)
.

In particular we have

ε(eν) =

([
λ

ν

]
: λ ∈ Λd

)
.

As
[
λ
λ

]
= 1 and

[
λ
ν

]
= 0 whenever |ν| > |λ| or |ν| = |λ| but ν 6= λ, we see that

{ε(eν) : ν ∈ Λd} is a basis for CΛd . Thus ε is a vector space isomorphism. Now if
f ∈ C[a∗ + ρ] satisfies properties (1)-(4) then f ∈ C(d)[a∗ + ρ]W◦ and ε(f) = ε(eν).
Hence f = eν as desired. ¤
9.4. GL(n)⊗GL(n) yet again. Recall the action of G = GL(n,C)×GL(n,C) on
V = Cn ⊗ Cn ∼= Mn,n(C). Here h = hn × hn and the Weyl group W is isomorphic
to Sn × Sn. The highest weights that occur in C[V ] have the form (λ; λ) for λ ∈ h∗n
non-negative and dominant. Thus we identify Λ with the set of all partitions λ =
(λ1 ≥ · · · ≥ λn ≥ 0) and a∗ = SpanC(Λ) = SpanC{(1k; 1k) : 1 ≤ k ≤ n} with
h∗ ∼= Cn. We can take

ρ = (n− 1, n− 2, . . . , 1, 0)

under this identification. W◦ = StabW (a∗ + ρ) is the diagonal subgroup in W which
we identify with Sn acting as usual on Cn:

σ · (z1, . . . , zn) = (zσ(1), . . . , zσ(n)).

Thus C[a∗ + ρ]W◦ is identified with

Λ∗(n) = {p ∈ C[z1, . . . , zn] : p(z + ρ) = p(σ · z + ρ) for all σ ∈ Sn},
the algebra of shifted symmetric polynomials in n variables.
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Now given ν ∈ Λ the shifted Schur polynomial s∗ν(z) is defined by

(9.4.1) s∗ν(z1, . . . , zn) =
det[(zi + n− i º νj + n− j)]

det[(zi + n− i º n− j)]
,

where (y º k) is the falling factorial

(y º k) = y(y − 1) · · · (y − k + 1).

It is shown in [42] that s∗ν is a well defined polynomial function. The reader should
compare Equation (9.4.1) with the determinantal formula (8.4.2) for Schur polyno-
mials.

Recall that the canonical invariants pν for this example are given, up to nor-
malization, by the Schur polynomials sν . (See Proposition 8.4.3.) The eigenvalue
polynomials eν , which interpolate the generalized binomial coefficients, are, up to
normalization, the shifted Schur polynomials.

Proposition 9.4.1. The eigenvalue polynomial eν for partition ν is given by

eν(λ + ρ) =
1

H(ν)
s∗ν(λ)

where

H(ν) =

∏
i(νi + n− i)!∏

i<j(νi − νj − i + j)

is the product of the hook-lengths for ν.

Proof. We apply the characterization Theorem 9.3.1. The definition of s∗ν shows that
s∗ν is shifted symmetric with degree |ν|.

Suppose that λ 6= ν is a partition with |λ| ≤ |ν|. We have s∗ν(λ) = 0 as required by
property (3) in Theorem 9.3.1. Indeed, λ` < ν` for some `. Thus for all j ≤ ` ≤ i one
has λi ≤ λ` < ν` ≤ νj and hence (λi + n − i º νj + n − j) = 0. That is, the (i, j)’th
entry in the determinant from the numerator in (9.4.1) vanishes for j ≤ ` ≤ i. It
follows that s∗ν(λ) = 0 as claimed.

Finally we check that s∗ν(ν) = H(ν). First note that (νi + n− i º νj + n− j) = 0
for i > j. Hence

det[(νi + n− i º νj + n− j)] =
∏

i

(νi + n− i)!

The denominator in s∗ν(ν) is the Vandermonde determinant in the variables ν + ρ.
This gives

det[(νi + n− i º n− j)] =
∏
i<j

(νi − νj − i + j),

so s∗ν(ν) = H(ν) as claimed. ¤
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9.5. Section 9 notes. The Harish-Chandra isomorphism first appeared in [19]. The
reader can find a modern treatment in Secion V.5 of [29]. One reference for facts
concerning integrality and integral closures, used in the proof of Theorem 9.2.1, is
the text [2] by Atiyah and Macdonald.

The results in this section are due to Knop. A considerably more general version
Theorem 9.2.1 was proved in [30]. This asserts that the center of the ring of invariant
differential operators for any smooth affine G-variety is a polynomial ring, canonically
isomorphic to the ring of invariants for a finite reflection group.

Knop calls W◦ the little Weyl group. This group is given explicitly in [31] for each
saturated indecomposable multiplicity free action in the classification from Section
6. In most cases, W◦ coincides with N = StabW (A).

Theorem 9.3.1 was conjectured by Sahi, who proved a special case in [46]. Shifted
Schur polynomials are due to Okounkov and Olshanski [42, 43]. The proof of van-
ishing is taken from [42], which includes many remarkable properties for these func-
tions. Recent work of Knop yields the eigenvalue polynomials eν for many other
multiplicity free actions. For the actions GL(n,C) : S2(Cn), GL(n,C) : Λ2(Cn),
SO(n,C) × C× : Cn and E6 × C× : C27 this results in shifted Jack polynomials with
various parameters. See [32, 33].

A multiplicity free action G : V is said to be a Capelli action when the map
π : ZU(g) → PD(V )G in (9.2.2) is surjective. In [24] it is shown that the irreducible
multiplicity free actions G′ × C× : V in Table 3 are all Capelli actions except for

G′ = Sp(2n)⊗ SL(3),Spin(9),E6.
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1989.
[10] M. Brion, D. Luna, and T. Vust, Espaces homogènes shpériques, Invent. Math. 84 (1986),
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