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Abstract. In prior work an orbit method, due to Pukanszky and Lipsman, was
used to produce an injective mapping Ψ : ∆(K,N) → n∗/K from the space of
bounded K-spherical functions for a nilpotent Gelfand pair (K,N) into the space
of K-orbits in the dual for the Lie algebra n of N . We have conjectured that Ψ
is a topological embedding. This has been proved for all pairs (K,N) with N a
Heisenberg group. A nilpotent Gelfand pair (K,N) is said to be irreducible if K
acts irreducibly on n/[n, n]. In this paper and its sequel we will prove that Ψ is an
embedding for all such irreducible pairs. Our proof involves careful study of the non-
Heisenberg entries in Vinberg’s classification of irreducible nilpotent Gelfand pairs.
Part I concerns generalities and six related families of examples from Vinberg’s list
in which the center for n can have arbitrarily large dimension.

1. Introduction

Let N be a connected and simply connected nilpotent Lie group and K be a
compact Lie group acting smoothly on N via automorphisms. One calls (K,N) a
nilpotent Gelfand pair (n.G.p. for short) if the following equivalent conditions hold.

• The algebra L1
K(N) of integrable K-invariant functions on N commutes under

convolution.
• The algebra DK(N) of left-N and K-invariant differential operators on N is

commutative.

In this case N is necessarily two-step or abelian [BJR90]. The spherical functions for
such a n.G.p. are the smooth K-invariant functions N → C which

• are joint eigenfunctions for the operators DK(N) and
• map the identity in N to 1.

We let ∆(K,N) denote the space of all bounded K-spherical functions on N with
the topology of uniform convergence on compact sets. Integration against functions
φ ∈ ∆(K,N) gives the spectrum (or Gelfand space) for the commutative Banach
?-algebra L1

K(N). In [BJR90] it is shown that each φ ∈ ∆(K,N) is of positive type
and expressible as the K-average of a matrix coefficient for some irreducible unitary

representation π ∈ N̂ .
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Letting G = K n N one has that (K,N) is a n.G.p. if and only if (G,K) is a
Gelfand pair in the usual sense. That is if and only if the algebra of integrable K-bi-
invariant functions on G commutes under convolution. Equivalently the dimension

dim(ρK) of the space of K-fixed vectors for each irreducible representation ρ ∈ Ĝ is

at most one [Gel50]. We denote by ĜK the space

ĜK := {ρ ∈ Ĝ : dim(ρK) = 1}

of K-spherical representations of G equipped with the Fell topology. For ρ ∈ ĜK let
vρ ∈ Hρ be a unit K-fixed vector in the representation space for ρ. The function

φρ : N → C, φρ(x) = 〈ρ(x)vρ, vρ〉Hρ
is a bounded spherical function on N and the map

ĜK → ∆(K,N), ρ 7→ φρ

is a homeomorphism.
Suppose that (K,N) is a n.G.p. and let n, k and g = k n n denote the Lie algebras

for K, N and G = K nN . An orbit method due to Pukanszky [Puk78] and Lipsman

[Lip80, Lip82] associates to each ρ ∈ Ĝ a coadjoint orbit O(ρ) ⊂ g∗. The following
result is proved in [BR08].

Theorem 1.1. For each K-spherical representation ρ ∈ ĜK the set O(ρ) ∩ n∗ is a

single (non-empty) K-orbit in n∗. The map ρ 7→ O(ρ) ∩ n∗ from ĜK to n∗/K is,
moreover, injective.

Here n∗ is identified with the annihilator of k in g∗ and K acts on n∗ by the dual of
its derived action by automorphisms on n. For φ ∈ ∆(K,N) we let Oφ ∈ n∗/K be
defined as

Oφ := O(ρφ) ∩ n∗

where ρφ ∈ ĜK is the K-spherical representation for which φρφ = φ. We let

A(K,N) := {Oφ : φ ∈ ∆(K,N)}
and call this the set of K-spherical orbits in n∗, with the quotient topology inherited
from n∗/K. Thus we have a bijection

(1.1) Ψ : ∆(K,N)→ A(K,N), Ψ(φ) = Oφ.

An alternate description of the map Ψ, given below in Section 2.3, will be used for
computation in examples.

We conjectured in [BR08] that:

(O) : The bijection Ψ : ∆(K,N)→ A(K,N) is a homeomorphism.

The aim is to provide a “geometric model” for the spectrum of L1
K(N). To date

Conjecture (O) has been established for the following n.G.p.’s (K,N).

• all (K,N) with N abelian [BR08],
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• all (K,N) with N a Heisenberg group [BR13, BR15a, BR15b],
• all (K,N) with N two-step subject to two conditions, discussed below in

Section 1.4 [FGJ+19],
• (K,N) = (O(d), F (d)) where F (d) = Rd⊕Λ2(Rd) is the free two-step nilpotent

Lie group on d generators [BR08].

In Section 8 we show that the closely related pair (SO(d), F (d)) also satisfies (O).
This fact was announced without proof in [BR08].

A n.G.p. (K,N) is said to be irreducible if K acts irreducibly on n/[n, n]. In the
current paper and its sequel we will prove the following.

Theorem 1.2. Every irreducible n.G.p. satisfies conjecture (O).

The proof of Theorem 1.2 boils down to verifying (O) for certain (families of)
examples from Vinberg’s classification of irreducible n.G.p.’s [Vin03]. These are listed
below in Table 1. Several results are required to reduce the proof of Theorem 1.2
to a detailed study of the entries in this table. To begin it suffices to consider only
n.G.p.’s (K,N) with N two-step. For we know that (O) holds for all pairs with N
abelian. So we assume for the remainder of this paper that

all nilpotent groups N under consideration are two-step.

Given an irreducible n.G.p. (K,N) we necessarily have [n, n] = z, with z = z(n)
the center of n. Fix a K-invariant inner product on n and write

n = V ⊕ z

where V = z⊥. The subspaces V, z ⊂ n are K-invariant and the Lie bracket amounts
to an anti-symmetric bilinear mapping V × V → z.

1.1. Central reduction. Suppose that (K,N) is an irreducible n.G.p. and that
z◦ ⊂ z is a proper non-zero K-invariant subspace of the center of n. The pair
(K,N/ exp(z◦)) is again an (irreducible) n.G.p. called a central reduction of (K,N)
[Vin01]. A n.G.p. is said to be maximal if it cannot be obtained from another n.G.p.
via central reduction. The following result, proved in Section 3, shows that in proving
Theorem 1.2 it suffices to consider maximal irreducible n.G.p.’s.

Theorem 1.3. If a n.G.p. satisfies (O) then so does any of its central reductions.

1.2. Normal extension. Suppose that we have compact groups K ⊂ K̃ acting by

automorphisms on N . If (K,N) is a n.G.p. then so is (K̃,N). If K is a normal

subgroup of K̃ then the pair (K̃,N) is called a normal extension of (K,N). We will
prove the following theorem in Section 4.

Theorem 1.4. If a n.G.p. satisfies (O) then so does any of its normal extensions.

In view of this result it suffices, in proving Theorem 1.2, to consider irreducible
n.G.p.’s (K,N) with K minimal in the sense that (K,N) cannot be obtained via
normal extension from another pair.
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1.3. Connectivity of K. Corollary 1.5 below is an immediate consequence of The-
orem 1.4. This reduces the proof of Theorem 1.2 to consideration of irreducible
n.G.p.’s (K,N) with K connected. Letting K◦ denote the identity component in K
Proposition 2.5 in [BJR99] asserts that (K,N) is a n.G.p. if and only if (K◦, N) is a
n.G.p. .

Corollary 1.5. If (K,N) is a n.G.p. and (K◦, N) satisfies (O) then so does (K,N).

Proof. As K◦ CK the pair (K,N) is a normal extension of (K◦, N). �

1.4. List of examples. The above discussion has reduced the proof of Theorem 1.2
to the verification of (O) for maximal irreducible n.G.p.’s (K,N) with K minimal,
in particular connected. Vinberg’s classification [Vin03] gives a list of all such pairs.
In many of these N is a Heisenberg group. As (O) has been proved for all n.G.p.’s
with N a Heisenberg group [BR13, BR15a, BR15b] we can remove these cases from
Vinberg’s list. The remaining pairs are given in Table 1.

K V z condition
1 SO(d) Rd Λ2(Rd) d ≥ 3
2 SU(d) Cd Λ2(Cd)⊕ R d ≥ 2 even
3 U(d) Cd Λ2(Cd)⊕ R d ≥ 3 odd
4 SU(d) Cd Λ2(Cd) d ≥ 3 odd
5 U(d) Cd HΛ2(Cd) = u(d) d ≥ 2
6 Sp(d) Hd HS2(Hd)⊕ C d ≥ 1
7 Sp(1)× Sp(d) Hd H0 = sp(1) d ≥ 2
8 Spin(7) R8 R7

9 SU(2)× SU(d) C2 ⊗ Cd HΛ2(C2) = u(2) d ≥ 3
10 U(2)× SU(2) C2 ⊗ C2 HΛ2(C2) = u(2)
11 U(2)× Sp(d) C2 ⊗Hd HΛ2(C2) = u(2) d ≥ 1
12 Sp(2)× Sp(d) H2 ⊗Hd HΛ2(H2) = sp(2) d ≥ 1
13 G2 R7 R7

14 U(1)× Spin(7) C8 R7 ⊕ R
Table 1

The z entries in the table follow Vinberg’s notational conventions. We will discuss
the actions of K on V and z as well as the Lie bracket V × V → z (which is in fact
determined by the K-actions) as we verify conjecture (O) in each case. These can be
found in Chapter 13 of [Wol07] and in the papers [FRY12, FRY13, FRY, FRY18].

The first six entries in Table 1 contain families of examples in which dim(z) increases
without bound. The verification of conjecture (O) in each of these cases is carried out
below. The issues involved in treating these examples are similar. The first table entry
is (K,N) = (SO(d), F (d)) for which (O) was announced in [BR08]. The remaining
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table entries are exceptional cases involving a fixed center z. The result from [FGJ+19]
establishes (O) for the pairs in lines 7 and 8 of the table. In these examples K has
spherical orbits on z and the form (v, w) 7→ ([v, w], z) is non-degenerate on V for
non-zero z ∈ z. The techniques in [FGJ+19] are general and do not need a case-by-
case analysis. The verification of conjecture (O) for the last 6 entries in Table 1 will
be given in a sequel to this paper. Our approach to these exceptional examples will
parallel that applied here but technicalities must be addressed in each case. In broad
outline, the K-orbits in z fall into “layers”, each with a distinct stabilizer in K. This
fact imposes a layering on ∆(K,N) and A(K,N). In studying convergence behavior
of sequences in these spaces we need to consider sequences within various layers and
the possibilities for the layers in which their limits lie.

1.5. Motivation and related work. Harmonic analysis with n.G.p.’s is a nascent
and growing area [Wol07]. We hope that the calculations given in this paper and
its sequel are of interest in that they deepen our understanding of analysis with the
specific pairs from Table 1. The papers [FRY12, FRY13, FRY, FRY18], concerningK-
invariant Schwartz fnctions on n.G.p.’s, likewise involve detailed case-by-case analysis
with these pairs. The restriction to irreducible pairs is, of course, traditional as a first
step. But Vinberg’s classification was substantially extended by Yakimova [Yak05,
Yak06] (see also [Wol07]) to encompass many indecomposable but non-irreducible
pairs. These provide a rich family of examples that merit additional study. A proof for
Conjecture (O) that does not require case-by-case work from the classifications would,
however, obviously be desirable. Although the proof given in [FGJ+19] avoids case-
by-case work and does not require irreducibility, restrictive conditions are imposed
on the pairs involved.

Conjecture (O) is an instance of Kirillov’s conjecture which asserts, roughly speak-
ing, that the Orbit Method should topologically embed the unitary dual of a suffi-
ciently nice Lie group in the space of coadjoint orbits on the dual of its Lie algebra.
The Kirillov conjecture is known to hold for nilpotent [Bro73] and for exponential
solvable Lie groups [LL94]. For semi-direct products G = K n N of compact with
nilpotent Lie groups there is, however, to our knowledge, at present no clear under-

standing of how the topologies on Ĝ and g∗/Ad∗(G) interrelate. For motion groups
G = K n V (V a vector group) there has been recent progress on this problem
[EL10, BHR12, Rah19] and reference [EGL17] concerns the Heisenberg motion group
G = U(n) nHn. It seems, however, that a general proof for Conjecture (O) based on
this line of research would require substantial additional progress.

1.6. Outline of the remainder. The rest of this paper is organized as follows.
Section 2 summarizes background concerning spherical functions and the mapping
Ψ : ∆(K,N) → n∗/K for n.G.p.’s (K,N). The proofs for Theorems 1.3 and 1.4 are
given in Sections 3 and 4. Section 5 gives a more detailed description of the dual and
the map Ψ, and Section 6 describes how one creates K-invariant differential operators
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on N and computes their eigenvalues on spherical functions. The remaining sections
of the paper verify Conjecture (O) for the first six entries in Table 1.

2. Background results

Throughout this section we assume that (K,N) is a n.G.p. with N two-step.
Assume moreover that [n, n] = z. As remarked in Section 1 this is the case for
irreducible n.G.p.’s. Fix an Ad(K)-invariant inner product (·, ·)k on k, a K-invariant
inner product (·, ·)n on n and form the orthogonal decomposition n = V ⊕ z as in
Section 1.

2.1. The space ĜK. The group K acts on the unitary dual N̂ of N via

k · π := π ◦ k−1

and there is a unitary representation

Wπ : Kπ → U(Hπ)

of the stabilizer for (π,Hπ) ∈ N̂ intertwining k · π with π, i.e.

(k · π)(x) = Wπ(k)−1π(x)Wπ(k) for all k ∈ Kπ, x ∈ N .

Given any irreducible unitary representation σ of Kπ, Mackey theory ensures that

ρπ,σ := IndKnN
KπnN

(
(k, x) 7→ σ(k)⊗ π(x)Wπ(k)

)
is an irreducible unitary representation of G = K n N and that all irreducible uni-
tary representations of G have this form, up to unitary equivalence. Mackey theory
dictates, moreover, that ρπ,σ = ρπ′,σ′ if and only if (π, σ) and (π′, σ′) differ by the
action of K. This means

π′ = k◦ · π, σ′ = k◦ · σ
for some k◦ ∈ K where Kk◦·π = k◦Kπk

−1
◦ and (k◦ · σ)(k) := σ(k−1

◦ kk◦).
As (K,N) is a n.G.p. the intertwining representation Wπ is multiplicity free for

each π ∈ N̂ [Car87, BJR90]. An application of Frobenius reciprocity shows, moreover,
that the space of K-spherical representations is

ĜK = {ρπ,σ∗ : π ∈ N̂ , σ occurs in Wπ}
where σ∗ denotes the representation of Kπ dual to σ.

2.2. The space ∆(K,N). As explained in Section 2.1 the space of bounded K-
spherical functions on N is

∆(K,N) = {φρ : ρ ∈ ĜK} = {φρπ,σ∗ : π ∈ N̂ , σ occurs in Wπ}.

Let ON(π) ⊂ n∗ denote the Ad∗(N)-orbit associated with π ∈ N̂ via the Kirillov
correspondence. Since N is a two-step group, one has type I representations which
are non-trivial on the center Z, for which ON(π) is an affine subspace. The type
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II representations have Z in their kernel, and act as characters on N/Z. The corre-

sponding coadjoint orbit is a single point. We write N̂ = N̂ I ∪ N̂ II to distinguish the
two types of representations.

For a type I representation π ∈ N̂ I let

(2.1) Hπ =
⊕
α∈Λπ

Pπ,α

denote the (canonical) decomposition of Hπ into Wπ(Kπ)-irreducible subspaces. Here
Λπ is a countably infinite index set that depends on π. For α ∈ Λπ we write φπ,α for

the spherical function given by ρπ,σ∗ where σ ∈ K̂π is the representation of Kπ on
Pπ,α. This may be written as

φπ,α(x) =

∫
K

〈π(k · x)vπ,α, vπ,α〉 dk

where vπ,α is any unit vector in Pπ,α
For a type II point w ∈ z⊥ ⊂ n∗, one has spherical function φw given by

φw(expX) =

∫
K

eiw(k·X)dk.

Using (·, ·)n to identify n∗ with n means we can take w ∈ V .
Thus we now have

∆(K,N) = ∆I(K,N) ∪∆II(K,N) = {φπ,α : π ∈ N̂ I , α ∈ Λπ} ∪ {φw : w ∈ V }.
Note that ∆II(K,N) ∼= V/K.

2.3. The map Ψ : ∆(K,N)→ A(K,N). Here we recall, from [BR08], an alternate
definition for the orbit mapping (1.1). For type II spherical functions φw one has
simply

Ψ(φw) = K · w.
For type I spherical functions φπ,α one can compute Ψ(φπ,α) as follows.

Let π ∈ N̂ I be a type I representation with corresponding coadjoint orbit ON(π).
Choose any ` ∈ ON(π) and set

aπ := {X ∈ V : `([X, n]) = 0}, wπ := a⊥π ∩ V.
As the notation suggests, these spaces do not depend on the choice of ` ∈ ON(π).
The orbit ON(π) contains, however, a unique point

`π ∈ ON(π)

which is aligned in the sense that `π|wπ = 0. This aligned point has the property that
the stabilizer Kπ of π is the stabilizer of `π in K. The moment map τπ : ON(π)→ k∗π
for π ∈ N̂ is defined as

(2.2) τπ
(
Ad∗(expX)`π

)
(A) := −1

2
`π[X,A ·X]
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for A ∈ kπ, X ∈ n.
At this point it is useful to take as index set Λπ in (2.1) the set of highest weights

occurring in Wπ. That is, let

Λπ = {α ∈ k∗π : iα is a highest weight for the representation of Kπ on Pπ,α}.

Here α ∈ Λπ is defined on the Lie algebra tπ for a maximal torus in K◦π and extended
to kπ as zero on the orthogonal complement to tπ with respect to the Ad(K)-invariant
inner product (·, ·)k.

The moment map τπ : ON(π)→ k∗π is one-to-one on Kπ-orbits and each α ∈ Λπ lies
in the image of τπ [BR08]. Choose any point wπ,α ∈ ON(π) such that τπ(wπ,α) = α.
Such a point wπ,α is called a (π, α)-spherical point. One has

(2.3) Ψ(φπ,α) = Oπ,α := K · wπ,α.

3. Central reduction

Our goal here is to prove Theorem 1.3. Let (K,N) be a n.G.p., z◦ a K-invariant
subspace of z and let Z◦ := exp(z◦), Nr := N/Z◦. The pair (K,Nr) is a central
reduction of (K,N). Let

G := K nN, Gr := G/Z◦ = K nNr, nr := n/z◦, gr := g/z◦ = k n nr.

We can identify n∗r and g∗r with subspaces of n∗ and g∗, namely

n∗r = {` ∈ n∗ : `|z◦ = 0}, g∗r = {ψ ∈ g∗ : ψ|z◦ = 0}.

Likewise we can identify N̂r and Ĝr with subsets of N̂ and Ĝ, namely

N̂r = {π ∈ N̂ : π|Z◦ = id}, Ĝr = {ρ ∈ Ĝ : ρ|Z◦ = id}.

As (K,N) is a n.G.p. we have dim(ρK) ≤ 1 for all ρ ∈ Ĝ. Thus also dim(ρK) ≤ 1

for all ρ ∈ Ĝr since Ĝr ⊂ Ĝ and the action of K on Hρ via ρ(Gr) coincides with its
action via ρ(G). This proves Vinberg’s result that the central reduction (K,Nr) is
itself a n.G.p. [Vin01].

We note that ∆(Nr, K) is a subset of ∆(N,K), namely

∆(Nr, K) = {φπ,α : π ∈ N̂ I , π|Z◦ = id} ∪ {φw : w ∈ V }.

Let π be a type I representation in N̂r and let ` be the aligned point in ON(π).
We have the identification of n∗r as a subspace of n∗. Then, since Ad(Z) is trivial,
ONr(`) = ON(`). Since z◦ is K-invariant and `|z◦ = 0, the stabilizer K` is the same
for the action of K on both N and Nr. Thus the moment maps on ONr(`) and ON(`)
are the same, and hence the spherical points are the same. Thus A(Nr, K) is also a
subset of A(N,K), namely

A(Nr, K) = {Oπ,α : π ∈ N̂ I , π|Z◦ = id} ∪ {K · w : w ∈ V }.
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Proof of Theorem 1.3. Denote the orbit maps for the pairs (K,N), (K,Nr) via Ψ :
∆(K,N) → A(K,N) and Ψr : ∆(K,Nr) → A(K,Nr). Then if Ψ is a homeo-
morphism onto its image then so is Ψr, for Ψr amounts to the restriction of the
homeomorphism Ψ to the subspace ∆(K,Nr) ⊂ ∆(K,N). �

4. Normal extension

This section contains the proof of Theorem 1.4. Let (K,N) and (K̃,N) be n.G.p.’s

with K a normal subgroup of K̃. Letting Ψ : ∆(K,N) → A(K,N) and Ψ̃ :

∆(K̃,N) → A(K̃,N) denote the orbit mappings for (K,N) and (K̃,N) we must

show that if Ψ is a homeomorphism onto its image then so is Ψ̃. We choose the

Ad-invariant inner products on k and k̃ to ensure that (·, ·)k is the restriction of (·, ·)ek
to k.

For a type I representation π ∈ N̂ , let Λ̃π ⊂ (̃kπ)∗ be the set of highest weights for

irreducible representations occurring in the intertwining representation Wπ(K̃), and

write the canonical multiplicity free decomposition of Hπ under Wπ(K̃π) as

Hπ =
⊕
eα∈eΛπ

Pπ,eα.

For each α̃ ∈ Λ̃π let Λπ,eα ⊂ k∗π be the set of highest weights of representations

occurring in the restriction of Wπ to Kπ = K ∩ K̃π. As dim(Pπ,eα) < ∞, each Λπ,eα
is a finite set. We write the canonical multiplicity free decomposition of Hπ under
Wπ(Kπ) as

Hπ =
⊕
eα∈eΛπ

 ⊕
α∈Λπ,eα

Pπ,eα,α
 where Pπ,eα =

⊕
α∈Λπ,eα

Pπ,eα,α.

We note that K̃ acts transitively on each Λπ,eα.
Now ∆(K̃,N) = ∆I(K̃,N) ∪∆II(K̃,N) where

∆I(K̃,N) =
{
φ̃π,eα : π ∈ N̂ , α̃ ∈ Λ̃π

}
, ∆II(K̃,N) ∼= V/K̃

and ∆(K,N) = ∆I(K,N) ∪∆II(K,N) where

∆I(K,N) =
{
φπ,eα,α : π ∈ N̂ , α̃ ∈ Λ̃π, α ∈ Λπ,eα

}
, ∆II(K,N) ∼= V/K.

There are K̃-actions on ∆(K,N) and A(K,N), namely (k̃ · φ) = φ(k̃−1 · n) for

φ ∈ ∆(K,N), and k̃ · (K · w) = K · (k̃w) for K · w ∈ A(K,N).

Lemma 4.1.

∆(K̃,N) ∼= ∆(K,N)/K̃.
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Proof. As explained in Section 2.2 the spherical function φ̃π,eα is the K̃-average of
a matrix coefficient x 7→ 〈π(x)vπ,eα, vπ,eα〉 with vπ,eα a unit vector in Pπ,eα. and φπ,eα,α
the K-average of x 7→ 〈π(x)vπ,eα,α, vπ,eα,α〉 with vπ,eα,α a unit vector in Pπ,eα,α. Since

Pπ,eα,α ⊂ Pπ,eα, we can use the K̃-average of the unit vector vπ,eα,α to obtain the
spherical function φπ,eα. That is,

φ̃π,eα(n) =

∫
eK φπ,eα,α(k̃ · n) dk̃

for any α ∈ Λπ,eα. �

Lemma 4.2. The map Ψ : ∆(K,N)→ A(K,N) is K̃-equivariant.

Proof. Given φπ,α ∈ ∆I(K,N), we have Ψ(φπ,α) = K · wπ,α, where τπ(wπ,α) = α.
Then

τek·π(k̃(X · `))(k̃ · A) = τπ(X · `)(A).

Thus

τek·π(k̃ · wπ,α) = τπ(wπ,α) ◦ k̃−1 = α ◦ k̃−1 = k̃ · α,

and hence k̃ · wπ,α is a (k̃ · π, k̃ · α)-spherical point. That is,

Ψ(k̃ · φπ,α) = Ψ(φekπ,ekα) = K · (k̃ · wπ,α) = k̃ ·Oπ,α.

For φw ∈ ∆II(K,N), we have Ψ(k̃ · φw) = Ψ(φekw) = K · (k̃w) = k̃ ·Ψ(φw). �

Proof of Theorem 1.4. The two preceding lemmas show that Ψ̃ : ∆(K̃,N)→ A(K̃,N)
is topologically equivalent to the map

∆(K,N)/K̃ → A(K,N)/K̃

obtained from the K̃-equivariant map Ψ : ∆(K,N)→ n∗/K by passing to K̃-orbits.

Thus if Ψ is a homeomorphism onto its image then so is Ψ̃. �

5. a refined parametrization of ∆(K,N)

Given π ∈ N̂ I , we regard the aligned point `π as an element in n by using the K-
invariant inner product (·, ·)n to identify n with n∗. Writing `π = a◦+ z◦ with a◦ ∈ V
and z◦ ∈ z one has, in fact, a◦ ∈ aπ as `π is aligned. Noting that aπ is determined by
z◦ we write the decomposition V = aπ ⊕wπ here as

V = az◦ ⊕wz◦

and let

Λz◦,a◦ := Λπ, φz◦,a◦,α := φπ,α (α ∈ Λz◦,a◦).

We may also write πz◦,a◦ for the representation corresponding to the coadjoint orbit
through a◦ + z◦. We have established the following.
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Proposition 5.1. With notation as above

∆I(K,N) =
{
φz◦,a◦,α : z◦ ∈ z, z◦ 6= 0, a◦ ∈ az◦ , α ∈ Λz◦,a◦

}
.

Moreover one has φz◦,a◦,α = φz′◦,a′◦,α′ whenever the data (z′◦, a
′
◦, α

′), (z◦, a◦, α) differ
by the action of K.

Remark 5.2. In our subsequent treatment of pairs from Table 1 we will subsume
type II spherical functions into the notational framework of Proposition 5.1. For
z◦ = 0 one has w0 = {0} and a0 = V . In this case we adopt the convention that
Λ0,a◦ = ∅ for each a◦ ∈ V and “φ0,a◦,−” (with empty α-parameter) is the type II
spherical function φa◦ .

For the following discussion, we fix the parameters z◦ 6= 0, a◦, α with decomposition
V = az◦ ⊕wz◦ . Lemma 3.4 in [BR08] shows that the stabilizer of a◦ in Kz◦ , namely

Kz◦,a◦ := Kz◦ ∩Ka◦ ,

coincides with the stabilizer of the representation πz◦,a◦ . Let Jz◦ : V → V denote the
operator satisfying

(Jz◦(u), v)n = ([u, v], z◦)n for all u, v ∈ V .
The operator Jz◦ is skew-symmetric with respect to the inner product (·, ·)n and has

Ker(Jz◦) = az◦ , Image(Jz◦) = wz◦

Since z◦ 6= 0 and, by assumption, [n, n] = z one has wz◦ 6= {0}. The operator Jz◦
preserves wz◦ and is non-degenerate and skew-symmetric on wz◦ . In particular wz◦

is even dimensional and J2
z◦ : w◦ → wz◦ is negative definite symmetric. Letting

(5.1) σ+(z◦) := {λ > 0 : −λ2 is an eigenvalue for J2
z◦}.

we have an orthogonal direct sum decomposition for V into eigenspaces for J2
z◦ ,

(5.2) V = az◦ ⊕
⊕

λ∈σ+(z◦)

wz◦,λ,

where J2
z◦ = −λ2 on wz◦,λ. Note that if az◦ 6= 0 then 0 is an eigenvalue for J2

z◦ and
az◦ is the 0-eigenspace for J2

z◦ . For w ∈ wz◦ , we write w =
∑
wλ with wλ ∈ wz◦,λ.

The operator Jz◦ gives us a complex structure on wz◦ , namely

J̃z◦ : wz◦ → wz◦ , J̃z◦

(∑
wλ

)
=
∑ 1

λ
Jz◦(wλ).

Let w̃z◦ denote the complex vector space (wz◦ , J̃z◦) and equip this with the hermitian

inner product 〈u, v〉z◦ := (u, v)n + i(u, J̃z◦(v))n. The wz◦,λ’s are complex subspaces

of w̃z◦ , orthogonal with respect to 〈·, ·〉z◦ , and the action of Kz◦ on (w̃z◦ , 〈·, ·〉z◦) is
unitary. Moreover (Kz◦,a◦ , Hz◦) is a n.G.p. where Hz◦ is the Heisenberg group whose
Lie algebra is wz◦ ⊕ R with bracket[

(u, s), (v, t)
]

=
(
0,−Im 〈u, v〉z◦

)
=
(
0,−(u, J̃z◦(v))n

)
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(see [BJR90, BJR99, Vin01]). Equivalently Kz◦,a◦ : w̃z◦ is a multiplicity free action
of the compact group Kz◦,a◦ on the complex vector space w̃z◦ [Car87, BJR90].

The unnormalized moment map for the action Kz◦,a◦ : w̃z◦ is

η : w̃z◦ → k∗z◦,a◦ , η(w)(A) := Im 〈w,A · w〉z◦ = (w, J̃z◦(A · w))n.

The following Lemma shows how the moment map τπ from Equation 2.2 is determined
by η.

Lemma 5.3. The moment maps τπ on ON(π) = a◦ + wz◦ + z◦ and η on w̃z◦ are
related by

τπ

(
a◦,
∑

wλ, z◦

)
= η

(∑ 1√
2λ
wλ

)
.

Proof. Recall that by definition

τπ(Ad∗(exp(w))`π)(A) = −1

2
`π[w,A · w] = −1

2
([w,A · w], z◦)n

for A ∈ kz◦,a◦ and w ∈ wz◦ . We have

Ad∗(expw)`π(X) = `π(X)− `π[w,X]

= (a◦, X)n + (z◦, X)n − (z◦, [w,X])n

= (a◦, X)n + (z◦, X)n − (Jz◦w,X)n.

With our identification of n with n∗, we have Ad∗(exp(w))`π = (a◦,−Jz◦w, z◦). There-
fore

τπ(a◦, w, z◦)(A) = −1

2

(
[J−1
z◦ w,A · J

−1
z◦ w], z◦

)
n

= −1

2
(w,A · J−1

z◦ w)n.

For wλ ∈ wz◦,λ, we have Jz◦wλ = λJ̃z◦wλ, and hence J−1
z◦ wλ = − 1

λ
J̃z◦wλ. Since Jz◦

commutes with Kπ, we now have

τπ(a◦, wλ, z◦)(A) = −1

2
(wλ, J

−1
z◦ (A·wλ))n =

1

2

(
wλ,

1

λ
J̃z◦(A · wλ)

)
n

= η

(
1√
2λ
wλ

)
(A).

The result follows by noting that the wz◦,λ’s are orthogonal subspaces, invariant under
Kz◦,a◦ and Jz◦ . Thus

τπ

(
a◦,
∑

wλ, z◦

)
=
∑
λ

τπ(a◦, wλ, z◦) =
∑
λ

η

(
1√
2λ
wλ

)
= η

(∑ 1√
2λ
wλ

)
. �

Lemma 5.3 together with Equation 2.3 now yield the following.

Proposition 5.4. Let π ∈ N̂ I with aligned point `π = a◦ + z◦, z◦ 6= 0. Decompose
V with respect to Jz◦ as V = az◦ ⊕

∑
wz◦,λ. Given α ∈ Λπ = Λz◦,a◦ let wα ∈ wz◦

be any point for which η(wα) = α. Write wα =
∑
wλ with wλ ∈ wz◦,λ and let

w′α :=
∑

(2λ)1/2wλ. Then

Ψ(φz◦,a◦,α) = K · (a◦, w′α, z◦).
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6. Eigenvalues for operators D ∈ DK(N)

Recall that DK(N) denotes the set of differential operators on N that are invariant
under both the action of K and left multiplication. The spherical functions are
eigenfunctions for such operators. Given D ∈ DK(N) and φ ∈ ∆(K,N), we write

D̂(φ) for the eigenvalue of D acting on φ, so that

Dφ = D̂(φ)φ.

For D ∈ DK(N) and π ∈ N̂ , the operator π(D) commutes with the action of Kπ on
Hπ and hence preserves the subspaces Pπ,α in Decomposition 2.1. In this regard the
following fact is fundamental.

Lemma 6.1. [BR08, Lemma 5.6] π(D)|Pπ,α = D̂(φπ,α).

Let {U1, . . . , UdV } be an orthonormal basis for V and {Z1, . . . , Zdz} an orthonormal
basis for z. As the action of K on n preserves (·, ·)n, V and z the operators

(6.1) LV := −(U2
1 + · · ·+ U2

dV
), Lz := −(Z2

1 + · · ·+ Z2
dz

)

belong to DK(N). These are, moreover, independent of the chosen orthonormal bases.
The eigenvalues for LV and Lz on type II spherical functions φw (w ∈ V ) are clearly

(6.2) L̂V (φw) = |w|2, L̂z(φw) = 0.

The eigenvalues for LV and Lz on spherical functions φz◦,a◦,α with z◦ 6= 0 are given
below in Lemma 6.2.

Let (z◦, a◦, α) be spherical function parameters with z◦ 6= 0. The representation
π = πz◦,a◦ can be realized in Fock space, a Hilbert space completion Hπ of the poly-
nomial ring C[w̃z◦ ]. The subspaces wz◦,λ in the decomposition wz◦ = ⊕λ∈σ+(z◦)wz◦,λ

are complex subspaces of w̃z◦ and we let

m(λ) = dim(wz◦,λ)/2 = dimC(wz◦,λ)

for λ ∈ σ+(z◦). The stabilizerKz◦,a◦ acts onHπ as a subgroup ofO(az◦)×
∏

λ∈σ+(z◦)
U(wz◦,λ)

and hence preserves each subspace ⊗λ∈σ+(z◦)P`λ(wz◦,λ) for given non-negative integers
(`λ : λ ∈ σ+(z◦)). Here P`λ(wz◦,λ) ⊂ C[wz◦,λ] denotes the space of homogeneous
polynomials of degree `λ on wz◦,λ. As Kz◦,a◦ : w̃z◦ is a multiplicity free action it
follows that for each α ∈ Λz◦,a◦ we have

Pz◦,a◦,α ⊂
⊗

λ∈σ+(z◦)

Pα(λ)(wz◦,λ)

for some non-negative integers (α(λ) : λ ∈ σ+(z◦)).

Lemma 6.2. With notation as above one has

L̂V (φz◦,a◦,α) = |a◦|2 +
∑

λ∈σ+(z◦)

λ(2α(λ) +m(λ)), L̂z(φz◦,a◦,α) = |z◦|2.
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Proof. The formula for L̂z(φz◦,a◦,α) is clear as πz◦,a◦ has central character z 7→ ei(z,z◦)n .

To compute L̂V (φz◦,a◦,α) we reason as in the proof for [BR08, Lemma 9.1].
Let V0 := az◦ , Vλ := wz◦,λ for λ ∈ σ+(z◦) and choose an orthonormal basis

{U1, . . . , UdV } for V so as to ensure that each Ui belongs to some Vλ. This is possible
since the eigenspaces for J2

z◦ are mutually orthogonal. Thus now

LV =
∑
λ≥0

Lλ where Lλ := −

 ∑
{i : Ui∈Vλ}

U2
i

 .

For λ > 0 the operator πz◦,a◦(Lλ) acts on Pα(λ)(Vλ) via the scalar λ(2α(λ)+m(λ)) and
annihilates Pα(λ′)(Vλ′) for λ′ 6= λ. Thus πz◦,a◦(Lλ) acts on Pz◦,a◦,α ⊂ ⊗λ′>0Pα(λ′)(Vλ′)
as the scalar λ(2α(λ) + m(λ)). For a ∈ V0 the operator πz◦,a◦(a) acts on all of
C[w̃z◦ ] via the scalar ei(a,a◦)n . Hence πz◦,a◦(L0) acts by |a◦|2. We conclude that
πz◦,a◦(LV ) =

∑
λ≥0 πz◦,a◦(Lλ) acts on Pz◦,a◦,α by the scalar

|a◦|2 +
∑
λ>0

λ(2α(λ) +m(λ)).

Thus also L̂V (φz◦,a◦,α) = |a◦|2 +
∑

λ>0 λ(2α(λ) +m(λ)), in view of Lemma 6.1. �

6.1. Symmetrization. Here we explain how operators D ∈ DK(N) may be obtained
via symmetrization from K-invariant polynomials p ∈ R[n]K .

Letting S(n) denote the (complex) symmetric algebra on n the symmetrization
map

Sym : S(n)→ D(N)

is the unique vector space isomorphism satisfying Sym(Xn) = Xn for all X ∈ n
[Hel84, Chapter II, Theorem 4.3]. The algebra S(n) is canonically isomorphic to
C[n∗] and by using (·, ·)n to identify n∗ ∼= n we regard symmetrization as a map
C[n] → D(N). Letting {U1, . . . , UdV } and {Z1, . . . , Zdz} be orthonormal bases for V
and z one has for f ∈ C∞(N), p ∈ C[n], (v, z) ∈ N the formula

Sym(p)f(v, z) = p (∇t,∇s)|t=0=s f
(
(v, z) exp(t1U1+· · ·+tdV UdV +s1Z1+· · ·+sdzZdz)

)
where ∇t =

(
∂t1 , . . . , ∂tdV

)
, ∇s =

(
∂s1 , . . . , ∂sdz

)
. Following [FRY12, Section 2.2] the

modified symmetrization map

Sym′ : C[n]→ D(N)

is obtained by replacing (∇t,∇s) in this formula by
(
(1/i)∇t, (1/i)∇s

)
. This vari-

ant of symmetrization has the virtue that for any polynomial p ∈ R[n] with real
coefficients the operator Sym′(p) ∈ D(N) is formally self-adjoint.

Applying Sym′ to a set of generators for the algebra R[n]K of real K-invariant poly-
nomials on n yields a set of formally self-adjoint generators for the algebra DK(N).
For the irreducible n.G.p.’s in Table 1 explicit sets of generators for R[n]K are given
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in [FRY12, Theorem 7.5]. Each of these generating sets is bi-homogeneous. That is,
each generator p(v, z) has a fixed degree of homogeneity in the V - and z-variables.

Example 6.3. The polynomials

pV (v, z) := |v|2, pz(v, z) := |z|2,
belong to R[n]K and

Sym′(pV ) = LV , Sym′(pz) = Lz,

where LV , Lz are the sub- and central-Laplacian operators given in Equation 6.1.

Symmetrization of polynomials p ∈ R[z] which depend only on central variables in
n produces operators in the center of D(N). The calculation given for the eigenvalues
of Lz on spherical functions generalizes easily as follows.

Lemma 6.4. For p ∈ R[z]K the operator (Dp := Sym′(p)) ∈ DK(N) has eigenvalues
on spherical functions φz◦,a◦,α ((z◦ 6= 0) ∈ z, a◦ ∈ az◦ , α ∈ Λz◦,a◦) and φw (w ∈ V )
given by

D̂p(φz◦,a◦,α) = p(z◦), D̂p(φw) = 0.

Recalling the results

Ψ(φz◦,a◦,α) = K · (a◦, w′α, z◦), Ψ(φw) = K · w
together with Lemma 6.4 and using a K-invariant polynomial p on z, we obtain the
following:

Corollary 6.5. Letting Dp = Sym′(p) for p ∈ R[z]K one has D̂p(φ) = p
(
Ψ(φ)

)
for

all φ ∈ ∆(K,N).

A closely related result is the following. We will make use of both Corollary 6.5
and Lemma 6.6 in our subsequent study of the entries in Table 1.

Lemma 6.6. Let Dp = Sym′(p) where p ∈ R[n]K has p(v, z) homogeneous of degree

one in the V -variables. Then D̂p(φ) = p
(
Ψ(φ)

)
for all φ ∈ ∆(K,N).

Proof. Let φ = φz◦,a◦,α have spherical function parameters (z◦, a◦, α) with z◦ 6= 0.
Form the decomposition V = az◦ ⊕wz◦ . For X ∈ a◦ ⊕ z, we see that πz◦,a◦(X) is the
scalar i(X, a◦ + z◦)n, and hence for any polynomial q on a◦ ⊕ z,

πz◦,a◦(Dq) = q(a◦, z◦).

Let p◦ ∈ R[wz◦ ] be the polynomial p◦(w) := p(a◦, w, z◦). Then

πz◦,a◦(Dp) = πz◦,a◦(Dp◦).

Also, p◦ has degree one and is Kz◦,a◦-invariant. As Kz◦,a◦ : w̃z◦ is a multiplicity free
action, all invariants have even degree and thus p◦ is a constant polynomial. Thus

πz◦,a◦(Dp) and D̂p(φ) are equal to that constant value.
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Now Proposition 5.4 shows that the spherical orbit Ψ(φ) ∈ A(K,N) contains a
point of the form (a◦, w

′
α, z◦) with w′α ∈ wz◦ . Since p(a◦, w, z◦) is independent of

w ∈ wz◦ , we have

D̂p(φ) = p(a◦, w
′
α, z◦) = p(Ψ(φ)). �

7. Proof strategy overview

To verify (O) for pairs (K,N) from Table 1 we will proceed as follows. The spaces
∆(K,N) and n∗/K are metrizable and second countable. So convergence behavior of
sequences determines the topologies on these spaces and sequence limits are unique.
Let

(
φn
)∞
n=1

be a sequence in ∆(K,N), φ ∈ ∆(K,N) and set On := Ψ(φn), O :=
Ψ(φ). We need to show that φn → φ in ∆(K,N) if and only if On → O in n∗/K.

Let G be a finite set of generators for the algebra R[n]K of real-valued K-invariant
polynomials on n. Such generating sets are given for each example from Table 1
in an appendix to [FRY12]. We will make use of these. One can identify n ∼= n∗

by using the (fixed) K-invariant inner product on n to regard each g ∈ G as a K-
invariant polynomial on n∗. As the invariant polynomials for a compact action on a
real vector space separate orbits [OV90, Chapter 3 §4.3] we have On → O in n∗/K if
and only if g(On)→ g(O) for each g ∈ G. On the other hand, applying the modified
symmetrization map yields a set {Dg = Sym′(g) : g ∈ G} of essentially self-adjoint
generators for the algebra DK(N). A fundamental result of Ferrari Ruffino shows
that the map

∆(K,N)→ R|G|, φ 7→
(
D̂g(φ)

)
g∈G

embeds ∆(K,N) into R|G| [FR07]. Thus φn → φ in ∆(K,N) if and only if D̂g(φn)→
D̂g(φ) for each g ∈ G. So to establish (O) it suffices to show that(

D̂g(φn)→ D̂g(φ) for all g ∈ G
)
⇐⇒

(
g(On)→ g(O) for all g ∈ G

)
.

Let φ and φn be given by data (z◦, a◦, α) and (zn, an, αn), as in Proposition 5.1. To
establish (O) we will show that the conditions

• “D̂g(φn)→ D̂g(φ) for all g ∈ G” and
• “g(On)→ g(O) for all g ∈ G”

each force a common set of conditions on the behavior of the sequence ((zn, an, αn))∞n=1.
In each example the generating set G includes a set of generators for R[z]K . For

such central generators g one has D̂g(φn) = g(On) and D̂g(φ) = g(O) (Corollary
6.5 ). The same holds for generators g that are homogeneous of degree one in the
V -variables (Lemma 6.6). Let C ⊂ G be the subset consisting of central generators
together with any generators homogeneous of degree one in the V -variables. To prove
(O) one need only show that(

D̂g(φn)→ D̂g(φ) for all g ∈ G − C
)
⇐⇒

(
g(On)→ g(O) for all g ∈ G − C

)
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under the hypothesis that g(On)→ g(O) for all g ∈ C.
In the examples treated in this paper the data (zn, an, αn) is used to produce

formulas for D̂g(φn) and g(On). The eigenvalues for J2
zn intervene in these formulas.

Using the hypothesis that g(On) → g(O) for all g ∈ C we argue, after passing to a
suitable subsequence, that the eigenvalues for J2

zn , together with their multiplicities,
converge to those for J2

z◦ . This is a key technical step in showing, for each g ∈ G −C,
that D̂g(φn)→ D̂g(φ) if and only if g(On)→ g(O).

8. The pair (SO(d),Rd ⊕ Λ2(Rd)) with d ≥ 3

This section concerns the first entry in Table 1. Here n = nd = V ⊕z where V = Rd

(regarded as column vectors) and z = Λ2(Rd) is to be identified with so(d), the space
of d× d skew-symmetric matrices. The Lie bracket is given by

V × V → z, [u, v] := uvt − vut.

The group K = SO(d) acts on n via

k · (v,A) = (kv, kAkt).

The group Nd := exp(n) is the free 2-step group on d generators. Spherical functions
and aspects of analysis with the n.G.p.’s (O(d), Nd) and (SO(d), Nd) are discussed
in [Fis06] and [Str91]. We proved in [BR08] that (O(d), Np) satisfies (O). We also
asserted that (SO(d), Nd) satisfies (O) but gave no proof details. This will be done
here. In fact Corollary 1.5 shows that if (SO(d), Nd) satisfies (O) then so does
(O(d), Nd).

8.1. K-orbits in z. The action of K = SO(d) on z = so(d) is the adjoint action of
K on its Lie algebra. As is well known each element of z is conjugate via K to an
element in the standard form given by (8.2) below. Let

(8.1) J =

[
0 1
−1 0

]
, Jm = diag

(
J , . . . ,J︸ ︷︷ ︸
m times

)
, J −m = diag

(
−J ,J , . . . ,J︸ ︷︷ ︸

m− 1 times

)
.

Each K-orbit contains a unique point of the form

(8.2) B◦ = diag(Om(0), λ1J ±m(1), . . . , λpJm(p))

for some p ≥ 0, integers m(0) ≥ 0, m(1), . . . ,m(p) ≥ 1 with

m(0) + 2m(1) + · · ·+ 2m(p) = d

and some distinct positive real numbers 0 < λ1 < · · · < λp. If m(0) ≥ 1 then one can
take B◦ = diag(Om(0), λ1Jm(1), . . . , λpJm(p)).
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8.2. The space ∆(K,N). We equip n with the (positive definite) K-invariant inner
product (

(u,A), (v,B)
)

n
:= utv +

1

2
tr(AtB) = utv − 1

2
tr(AB),

with respect to which V and z are orthogonal. An easy calculation shows that for
u, v ∈ V and B ∈ z one has

([u, v], B)n = −(Bu, v)n.

Thus the map JB : V → V is simply

(8.3) JB(u) = −Bu.

So for given B◦ ∈ z eigenspace decomposition (5.2) with respect to J2
B◦ here reads

(8.4) V = aB◦ ⊕wB◦ = V0 ⊕
⊕

λ∈σ+(B◦)

Vλ

where

σ+(B◦) = {λ > 0 : −λ2 is an eigenvalue for J2
B◦ = B2

◦},
V0 = aB◦ = Ker(B◦), wB◦ = Image(B◦), and J2

B◦ = B2
◦ = −λ2 on Vλ. The stabilizer

of B◦ in K is

KB◦ = SO(V0)×
∏

λ∈σ+(B◦)

U(Vλ)

and for a◦ ∈ V0 the stabilizer of (a◦, B◦) is

KB◦,a◦ = SO(V0 ∩ a⊥◦ )×
∏

λ∈σ+(B◦)

U(Vλ).

The space C[w̃B◦ ] decomposes under the action of KB◦,a◦ as

C[w̃B◦ ] =
⊕
α

 ⊗
λ∈σ+(B◦)

Pα(λ)(Vλ)


where the parameter α = (α(λ) : λ ∈ σ+(B◦)) is a list of non-negative integers,
one for each λ ∈ σ+(B◦). According to Proposition 5.1 each bounded K-spherical
function on N has the form φB◦,a◦,α for some choice of data (B◦, a◦, α) as above.1

Moreover two such spherical functions coincide if and only if the data differ by the
action of K. So one may, in particular, assume that B◦ is of the form (8.2), in
which case σ+(B◦) = {λ1, . . . , λp}, KB◦ = SO(m(0))×U(m(1))× · · · ×U(m(p)) and
w̃B◦ = Cm(1) ⊕ · · · ⊕ Cm(p). An explicit parameterization for ∆(K,N) is given in
[Fis06], but the description given above will suffice for our purposes here.

1For B◦ = 0 we have σ+(B◦) = ∅ and the α-parameter is empty. In this case φ0,a◦,− is a spherical
function of type II. See Remark 5.2.
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8.3. The space A(K,N). The spherical orbit O(B◦, a◦, α) := Ψ(φB◦,,a◦,α) in n∗/K
corresponding to φB◦,,a◦,α ∈ ∆(K,N) is obtained using Proposition 5.4. Choosing a
unit vector eλ in each Vλ one has

(8.5) O(B◦, a◦, α) = K ·

a◦ +
∑

λ∈σ+(B◦)

(2λα(λ))1/2eλ, B◦

 .

8.4. Generators for R[n]K. Observe that for each integer ` ≥ 0 the following bi-
homogeneous polynomials on n,

p`(v, A) := vtA2`v, q`(v,A) := tr(A2`),

are K-invariant. Likewise the Pfaffian polynomial r(v,A) defined via

r(v, A) :=


Pf(A) when d is even

Pf(A|v) := Pf

[
A v
−vt 0

]
when d is odd


belongs to R[n]K . Letting d′ := bd/2c the set

G := {p0, . . . , pd′−1, q1, . . . , qd′ , r}

generates R[n]K [FRY12, Theorem 7.5]. (In fact {p0, . . . , pd′−1, q1, . . . , qd′−1, r} suf-
fices when d = 2d′ is even.) Note that p0(v, A) = |v|2 = (v, v)n and q1(v, A) =
−2|A|2 = −2(A,A)n.

8.5. Values g(B◦, a◦, α) and ĝ(B◦, a◦, α) for g ∈ G. The generators g ∈ G take the
following values g(B◦, a◦, α) := g(O(B◦, a◦, α)) on the spherical orbit O(B◦, a◦, α)
given in Equation 8.5. Taking B◦ in standard form (8.1) one obtains

(8.6)


p0(B◦, a◦, α) = |a◦|2 +

∑
λ∈σ+(B◦)

2λα(λ)

and
p`(B◦, a◦, α) = (−1)`

∑
λ∈σ+(B◦)

2λ2`+1α(λ) for ` ≥ 1

 ,

(8.7)


q`(B◦, a◦, α) = tr(B2`

◦ )
and

r(B◦, a◦, α) =

{
Pf(B◦) when d is even
Pf(B◦|a◦) when d is odd

}
 .

Applying the modified symmetrization map to each generator g ∈ G yields a set
of generators {Dg = Sym′(g) : g ∈ G} for the algebra DK(N). Let ĝ(B◦, a◦, α)
denote the eigenvalue for Dg on a spherical function φB◦,a◦,α, i.e. Dg(φB◦,a◦,α) =
ĝ(B◦, a◦, α)φB◦,a◦,α, and write

m(λ) := dim(Vλ)/2 for λ ∈ σ+(B◦).
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(For B◦ in standard form (8.2) one has m(λj) = m(j).) We have

(8.8)


p̂0(B◦, a◦, α) = |a◦|2 +

∑
λ∈σ+(B◦)

λ(2α(λ) +m(λ))

and
p̂`(B◦, a◦, α) = (−1)`

∑
λ∈σ+(B◦)

λ2`+1(2α(λ) +m(λ)) for ` ≥ 1

 ,

(8.9)

 q̂`(B◦, a◦, α) = q`(B◦, a◦, α) = tr(B2`
◦ )

and
r̂(B◦, a◦, α) = r(B◦, a◦, α)

 .

Indeed as the polynomials q` depend only on central variables we have q̂`(B◦, a◦, α) =
q`(B◦, a◦, α) by Corollary 6.5. Likewise polynomial r is central when d is even and
homogeneous of degree one in the V -variables when d is odd. So r̂`(B◦, a◦, α) =
r`(B◦, a◦, α) by Corollary 6.5 and Lemma 6.6. The operator Dp0 is the sub-Laplacian
LV with eigenvalues given in Lemma 6.2. The value for p̂`(B◦, a◦, α) with ` ≥ 1 is
given (modulo sign conventions) in [BR08, Lemma 9.1]. The calculation parallels
that given above in the proof for Lemma 6.2.

8.6. Condition (O) for (K,N). We will establish condition (O) for the example at
hand, following the proof strategy given in Section 7. This same proof will be adapted
to encompass the subsequent examples treated in this paper. The proof draws on
techniques from [BR08] while achieving some simplifications.

Proof. Let (φn = φBn,an,αn)∞n=1 be a sequence in ∆(K,N) and (φ = φB◦,a◦,α) ∈
∆(K,N). We must show that (φn)∞n=1 converges to φ in ∆(K,N) if and only if
the sequence

(
On := O(Bn, an, αn)

)∞
n=1

converges to O := O(B◦, a◦, α) in A(K,N).

As G generates R[n]K we know, by [FR07], that (φn)∞n=1 converges to φ in ∆(K,N) if
and only if ĝ(Bn, an, αn) → ĝ(B◦, a◦, α) for each g ∈ G. Likewise (On)∞n=1 converges
to O in A(K,N) if and only if g(Bn, an, αn) → g(B◦, a◦, α) for each g ∈ G. This
is the case as the invariants for a compact linear action on a finite dimensional real
vector space separate orbits.

For the generators g ∈ {q1, . . . , qd′ , r} we have ĝ(Bn, an, αn) = g(Bn, an, αn) and
ĝ(B◦, a◦, α) = g(B◦, a◦, α). Suppose that

(8.10) lim
n→∞

g(Bn, an, αn) = g(B◦, a◦, α) for each g ∈ {q1, . . . , qd′ , r}.

Under these hypotheses it now suffices to verify that

(8.11) lim
n→∞

p̂`(Bn, an, αn) = p̂`(B◦, a◦, α) ⇐⇒ lim
n→∞

p`(Bn, an, αn) = p`(B◦, a◦, α)

for ` = 0, . . . , d′ − 1.
The polynomials {q1, . . . , qd′ , r} generate R[z]K when d is even and {q1, . . . , qd′} gen-

erates R[z]K when d is odd. So for each n, the values q1(Bn, an, αn), . . . , qd′(Bn, an, αn),
r(Bn, an, αn) determine the K-orbit through Bn. As we may assume that Bn is of
the standard form (8.1) it follows that the values q1(Bn, an, αn), . . . , qd′(Bn, an, αn),
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r(Bn, an, αn) determine the eigenvalues for J2
Bn

= B2
n together with their multiplici-

ties. Thus hypothesis (8.10) implies that the eigenvalues for J2
Bn

= B2
n, together with

their multiplicities, converge to those for J2
B◦ = B2

◦ .
Let σ+(Bn) = {µ1(n), . . . , µI(n)(n)} where 0 < µ1(n) < µ2(n) < · · · < µI(n)(n) and

write the decomposition for V into eigenspaces for J2
Bn

as

V = V0(n)⊕
⊕

µ∈σ+(Bn)

Vµ(n) =

I(n)⊕
j=0

Vj(n),

where V0(n) = Ker(JBn) = Ker(J2
Bn

) = Ker(B2
n) and J2

Bn
= B2

n = −µj(n)2 on Vj(n)
for j = 1, . . . , I(n). We can partition a tail of the sequence (φn)∞n=1 into finitely many
subsequences in which the values I(n) and dim(Vj(n)) are constant in n. It suffices
to verify (8.11) for each of these subsequences. Thus we suppose henceforth that

(8.12) I = I(n), mj = m(µj(n)) :=
1

2
dim(Vj(n)) (j = 1, . . . , I),

independent of n.
Let the eigenspace decomposition for V with respect to J2

B◦ = B2
◦ be as in (8.4)

and recall that m(λ) := dim(Vλ)/2 for λ ∈ σ+(B◦) We have now the following facts.

• limn→∞ µj(n) ∈ σ+(B◦) ∪ {0} for j = 1, . . . , I.
• If λ ∈ σ+(B◦) then λ = limn→∞ µj(n) for some j ∈ {1, . . . , I}. We write
Sλ = {j ∈ {1, . . . , I} : µj(n)→ λ}.
• For each λ ∈ σ+(B◦) one has m(λ) =

∑
j∈Sλmj.

Together these imply that

(8.13) lim
n→∞

∑
µ∈σ+(Bn)

µ2`+1m(µ) =
∑

λ∈σ+(B◦)

λ2`+1m(λ) for all ` ≥ 0.

Indeed

lim
n→∞

∑
µ∈σ+(Bn)

µ2`+1m(µ) = lim
n→∞

I∑
j=1

µj(n)2`+1mj

= lim
n→∞

∑
λ∈σ+(B◦)

∑
j∈Sλ

µj(n)2`+1mj

=
∑

λ∈σ+(B◦)

λ2`+1
∑
j∈Sλ

mj

=
∑

λ∈σ+(B◦)

λ2`+1m(λ).

Recall that the parameters α and αn for the spherical functions φ = φB◦,a◦,α,
φn = φBn,an,αn are lists of non-negative integers α = (α(λ) : λ ∈ σ+(B◦)), αn =
(αn(µ) : µ ∈ σ+(Bn)). Using the first equation from (8.6) we have that
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• limn→∞ p0(Bn, an, αn) = p0(B◦, a◦, α) if and only if

(8.14) lim
n→∞

|an|2 +
∑

µ∈σ+(Bn)

2µαn(µ)

 = |a◦|2 +
∑

λ∈σ+(B◦)

2λα(λ).

On the other hand the first of Equations 8.8 gives

• limn→∞ p̂0(Bn, an, αn) = p̂0(B◦, a◦, α) if and only if

(8.15) lim
n→∞

|an|2 +
∑

µ∈σ+(Bn)

µ(2αn(µ) +m(µ))

 = |a◦|2 +
∑

λ∈σ+(B◦)

λ(2α(λ)+m(λ)).

Applying (8.13) with ` = 0 it is transparent that (8.14) holds if and only if (8.15)
holds. Likewise for ` ≥ 1 the second of Equations 8.6 shows

• limn→∞ p`(Bn, an, αn) = p`(B◦, a◦, α) if and only if

(8.16) lim
n→∞

 ∑
µ∈σ+(Bn)

2µ2`+1αn(µ)

 =
∑

λ∈σ+(B◦)

2λ2`+1α(λ),

whereas the second of Equations 8.8 yields

• limn→∞ p̂0(Bn, an, αn) = p̂0(B◦, a◦, α) if and only if

(8.17) lim
n→∞

 ∑
µ∈σ+(Bn)

µ2`+1(2αn(µ) +m(µ))

 =
∑

λ∈σ+(B◦)

λ2`+1(2α(λ) +m(λ)).

Again (8.16) and (8.17) are equivalent in view of Equation 8.13. This completes the
proof that (K,N) satisfies (O). �

9. The pair (SU(d),Cd ⊕ Λ2(Cd)) with d ≥ 2

Here n = nd = V ⊕ z where V = Cd and z = Λ2(Cd) is to be identified with the
space of d× d skew-symmetric matrices with complex entries. For d odd this is entry
4 in Table 1. For d even the example is a central reduction from table entry 2. Both
V and z are to be viewed as real vector spaces of (even) dimensions 2d and d(d− 1)
respectively. But the usual complex structure on V = Cd will also also play a role.

As in the previous example the Lie bracket is given by

V × V → z, [u, v] := uvt − vut

and K = SU(d) acts on n via

k · (v,A) = (kv, kAkt).

Our treatment of this example closely parallels that given in Section 8.
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9.1. K-orbits in z. With notation as in (8.1) each K-orbit in z contains a point of
the form

(9.1) B◦ = γ diag(O`(0), λ1J`(1) . . . , λpJ`(p))
for some p ≥ 0, scalar γ ∈ T, integers `(0) ≥ 0, `(1), . . . , `(p) ≥ 1 with

`(0) + 2`(1) + · · ·+ 2`(p) = d

and some distinct positive real numbers 0 < λ1 < · · · < λp. The values p, `(j) and λj
are uniquely determined and γ is unique up to multiplication by a d’th root of unity.
If m(0) ≥ 1 then one can take γ = 1.

9.2. The space ∆(K,N). We equip n with the K-invariant inner product(
(u,A), (v,B)

)
n

:= Re 〈u, v〉+
1

2
Re(tr(AB∗)) = Re 〈u, v〉 − 1

2
Re(tr(AB)).

Here 〈u, v〉 := v∗u is the usual hermitian inner product on V = Cd. For u, v ∈ V and
B ∈ z one has

([u, v], B)n = −(Bu, v)n

and hence JB : V → V is given by

(9.2) JB(u) = −Bu.
Note that JB is R-linear but C-conjugate linear. From (9.2) one obtains

(9.3) J2
B(u) = BBu = −BB∗u.

So for given B◦ ∈ z one has J2
B◦-eigenspace decomposition

(9.4) V = aB◦ ⊕wB◦ = V0 ⊕
⊕

λ∈σ+(B◦)

Vλ

where σ+(B◦) := {λ > 0 | −λ2 is an eigenvalue for B◦B◦}, V0 = aB◦ = Ker(B∗◦),
wB◦ = Image(B◦) and B◦B◦ = −λ2 on Vλ. The stabilizer of B◦ in K is

KB◦ = SU(V0)×
∏

λ∈σ+(B◦)

Sp(Vλ)

and for a◦ ∈ V0 the stabilizer of (a◦, B◦) is

KB◦,a◦ = SU(V0 ∩ a⊥◦ )×
∏

λ∈σ+(B◦)

Sp(Vλ).

Just as in the previous example C[w̃B◦ ] decomposes under the action of KB◦,a◦ as

C[w̃B◦ ] =
⊕
α

 ⊗
λ∈σ+(B◦)

Pα(λ)(Vλ)


where the parameter α = (α(λ) : λ ∈ σ+(B◦)) is a list of non-negative integers.
Each bounded K-spherical function on N has the form φB◦,a◦,α for some choice of
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data (B◦, a◦, α) as above. (See Proposition 5.1 and Remark 5.2). Two such spherical
functions coincide if and only if the data differ by the action of K. So one can
assume that B◦ is of the form (9.1). In this case σ+(B◦) = {λ1, . . . , λp}, KB◦ =
SU(`(0))× Sp(`(1))× · · · × Sp(`(p)) where Sp(`) = {k ∈ U(2`) : kJ`kt = J`} and
w̃B◦ = C2`(1) ⊕ · · · ⊕ C2`(p).

9.3. The space A(K,N). Proposition 5.4 yields the spherical orbit O(B◦, a◦, α) :=
Ψ(φB◦,,a◦,α) corresponding to φB◦,,a◦,α ∈ ∆(K,N). As in the previous example

(9.5) O(B◦, a◦, α) = K ·

(
a◦ +

∑
λ>0

(2λα(λ))1/2eλ, B◦

)
where eλ ∈ Vλ is any chosen unit vector.

9.4. Generators for R[n]K. For each integer ` ≥ 0 the following bi-homogeneous
polynomials on n,

p`(v, A) := vt(AA)`v, q`(v,A) := tr((AA)`),

are real valued and K-invariant. Likewise the polynomials r(v, A), s(v,A) defined as
the real and imaginary parts of Pf(A) when d is even and as the real and imaginary
parts of Pf(A|v) when d is odd belong to R[n]K . Letting d′ := bd/2c the set

G := {p0, . . . , pd′−1, q1, . . . , qd′ , r, s}

generates R[n]K [FRY12, Theorem 7.5]. (In fact {p0, . . . , pd′−1, q1, . . . , qd′−1, r, s}
suffices when d = 2d′ is even.)

9.5. Values g(B◦, a◦, α) and ĝ(B◦, a◦, α) for g ∈ G. With notation as in Section
8.5 the values g(B◦, a◦, α) := g(O(B◦, a◦, α)) and eigenvalues ĝ(B◦, a◦, α) for each
generator g ∈ G are as follows.

• The values p`(B◦, a◦, α) and p̂`(B◦, a◦, α) are given in Equations 8.6 and 8.8.
(The values m(λ) in Equation 8.8 are m(λj) = 2`(j) for B◦ of the form (9.1).)
• q̂`(B◦, a◦, α)) = q`(B◦, a◦, α)) = tr((B◦B◦)

`),

• r̂(B◦, a◦, α) = r(B◦, a◦, α) =

{
Re(Pf(B◦)) for d even
Re(Pf(B◦|a◦)) for d odd

}
,

• ŝ(B◦, a◦, α) = s(B◦, a◦, α) =

{
Im(Pf(B◦)) for d even
Im(Pf(B◦|a◦)) for d odd

}
.

9.6. Condition (O) for (K,N). The values of the central invariants q1, . . . , qd′ ∈
R[z]K , together with those for r, s ∈ R[z]K when d is even, determine the SU(d)-orbit
through any given B ∈ z and hence, in view of the standard form (9.1), determine
the eigenvalues for J2

B = BB together with their multiplicites. So the proof that
(SO(d),Rd ⊕ Λ2(Rd)) satisfies (O), given in Section 8.6, goes through essentially
verbatim in the current context. �



BOUNDED SPHERICAL FUNCTIONS 25

10. The pair ((S)U(d),Cd ⊕ (Λ2(Cd)⊕ R)) with d ≥ 2

Next consider entries 2 and 3 in Table 1. Here n = nd = V ⊕ z where V = Cd and
z = Λ2(Cd)⊕ R. The Lie bracket is given by

V × V → z, [u, v] := (uvt − vut,−Im 〈u, v〉).

The group U(d) acts as before on Cd⊕Λ2(Cd) and acts trivially on R. The notation
“K = (S)U(d)” indicates SU(d) or U(d). When d is even we can take K = SU(d)
but for d odd require the full unitary group, K = U(d), in order to have a Gelfand
pair.

10.1. The space ∆(K,N). The K-invariant inner product from Section 9 is ex-
tended in the obvious way.(

(u,A, t), (v,B, s)
)

n
:= Re 〈u, v〉+1

2
Re(tr(AB∗))+ts = Re 〈u, v〉−1

2
Re(tr(AB))+ts.

For u, v ∈ V and (B, t) ∈ z one has ([u, v], (B, t))n = (−Bu + itu, v)n and hence
JB,t : V → V satisfies

(10.1) JB,t(u) = −Bu+ itu, J2
B,t(u) = BBu− t2u.

Just as in the previous example we have, for given B◦ ∈ Λ2(Cd), decomposition

(10.2) V = aB◦ ⊕wB◦ = V0 ⊕
⊕

λ∈σ+(B◦)

Vλ.

into eigenspaces for J2
B◦,0 = J2

B◦ = B◦B◦. Moreover for any a◦ ∈ V0 the stabilizer

of (a◦, B◦, 0) in K is K(B◦,0),a◦ = (S)U(V0 ∩ a⊥◦ ) ×
∏

λ∈σ+(B◦)
Sp(Vλ) and the space

C[w̃B◦ ] decomposes under K(B◦,0),a◦ as C[w̃B◦ ] =
⊕

α

(⊗
λ∈σ+(B◦)

Pα(λ)(Vλ)
)

where

α = (α(λ) : λ ∈ σ+(B◦)) is a list of non-negative integers, one for each λ ∈ σ+(B◦).
On the other hand (10.1) shows that for t◦ ∈ R× the eigenspace decomposition for

V under J2
B◦,t◦ coincides with (10.2) but now

• the operator J2
B◦,t◦ acts on aB◦ = V0 by −t2◦ and acts on Vλ by −(λ2 + t2◦) for

each λ ∈ σ+(B◦).

That is the eigenvalues are shifted and J2
B◦,t◦ has trivial kernel. Let

σ(B◦) := {λ ≥ 0 : −λ2 is an eigenvalue for J2
B◦ = B◦B◦}

so that σ+(B◦) = {λ ∈ σ(B◦) : λ > 0}. One has wB◦,t◦ = V and C[w̃B◦,t◦ ]
decomposes under K(B◦,t◦),0 = (S)U(V0)×

∏
λ∈σ+(B◦)

Sp(Vλ) as

C[w̃B◦,t◦ ] =
⊕
α

 ⊗
λ∈σ(B◦)

Pα(λ)(Vλ)


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where Pα(λ)(Vλ) is the space of polynomials of degree α(λ) on Vλ, and so α =
(α(λ) : λ ∈ σ(B◦)) is a list of non-negative integers, one for each λ ∈ σ(B◦).

We see that spherical functions φ ∈ ∆(K,N) are determined by data “(B◦, t◦, a◦, α)”
where at most one of t◦, a◦ can be non-zero. More precisely let

Γ0 :=
{

(B◦, a◦, α) : B◦ ∈ Λ2(Cd), a◦ ∈ Ker(J2
B◦), α ∈ (Z+)|σ

+(B◦)|
}
,

Γ× :=
{

(B◦, t◦, α) : B◦ ∈ Λ2(Cd), t◦ ∈ R×, α ∈ (Z+)|σ(B◦)|
}
.

Then ∆(K,N) = ∆0 ∪∆× where

∆0 :=
{
φB◦,a◦,α : (B◦, a◦, α) ∈ Γ0

}
, ∆× :=

{
φB◦,t◦,α : (B◦, t◦, α) ∈ Γ×

}
.

10.2. The space A(K,N). The spherical orbits O(B◦, a◦, α) := Ψ(φB◦,,a◦,α) and
O(B◦, t◦, α) := Ψ(φB◦,,t◦,α) for data (B◦, a◦, α) ∈ Γ0, (B◦, t◦, α) ∈ Γ× are as follows.
Choose for each λ ∈ σ(B◦) a unit vector eλ ∈ Vλ. One has

(10.3) O(B◦, a◦, α) = K ·

a◦ +
∑

λ∈σ+(B◦)

(2λα(λ))1/2eλ, B◦, 0

 .

(10.4) O(B◦, t◦, α) = K ·

 ∑
λ∈σ(B◦)

(2(λ2 + t2◦)
1/2α(λ))1/2eλ, B◦, t◦

 .

10.3. Generators for R[n]K. As in Section 9 we consider the polynomials

p`(v, A, t) := vt(AA)`v, q`(v,A, t) := tr((AA)`),

together with

r(v,A, t) := Re(Pf(A)), s(v,A, t) := Im(Pf(A))

in the case that d is even. Letting

τ(v, A, t) := t

we have that

G :=

{
{p0, . . . , pd′−1, q1, . . . , qd′−1, r, s, τ} for d even
{p0, . . . , pd′−1, q1, . . . , qd′ , τ} for d odd

}
(d′ := bd/2c)

generates R[n]K . That is, G generates R[nd]
SU(d) when d is even and R[nd]

U(d) when
d is odd.
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10.4. Values g(B◦, a◦, α), ĝ(B◦, a◦, α), g(B◦, t◦, α), ĝ(B◦, t◦, α) for g ∈ G. Each
generator g ∈ G takes values g(B◦, a◦, α) := g(O(B◦, a◦, α)) and g(B◦, t◦, α) :=
g(O(B◦, t◦, α)) on the spherical orbits given in Equations 10.3 and 10.4. Also the
associated operator Dg ∈ DK(N) has eigenvalues ĝ(B◦, a◦, α) and ĝ(B◦, t◦, α) on the
spherical functions φB◦,a◦,α, φB◦,t◦,α ∈ ∆(K,N). For the central generators q`, τ and
r, s (when d is even) we have

q̂`(B◦, a◦, α) = tr((B◦B◦)
`) = q`(B◦, a◦, α)

q̂`(B◦, t◦, α) = tr((B◦B◦)
`) = q`(B◦, t◦, α)

r̂(B◦, a◦, α) = Re(Pf(B◦)) = r(B◦, a◦, α)
r̂(B◦, t◦, α) = Re(Pf(B◦)) = r(B◦, t◦, α)
ŝ(B◦, a◦, α) = Im(Pf(B◦)) = s(B◦, a◦, α)
ŝ(B◦, t◦, α) = Im(Pf(B◦)) = s(B◦, t◦, α)

τ̂(B◦, a◦, α) = 0 = τ(B◦, a◦, α)
τ̂(B◦, t◦, α) = t◦ = τ(B◦, t◦, α)


.

For the non-central generators p` one has

p0(B◦, a◦, α) = |a◦|2 +
∑

λ∈σ+(B◦)
2λα(λ)

p̂0(B◦, a◦, α) = |a◦|2 +
∑

λ∈σ+(B◦)
λ(2α(λ) +m(λ))

p`(B◦, a◦, α) = (−1)`
∑

λ∈σ+(B◦)
2λ2`+1α(λ) for ` ≥ 1

p̂`(B◦, a◦, α) = (−1)`
∑

λ∈σ+(B◦)
λ2`+1(2α(λ) +m(λ) for ` ≥ 1

and
p`(B◦, t◦, α) = (−1)`

∑
λ∈σ(B◦)

2((λ2 + t2◦)
1/2)2`+1α(λ) for ` ≥ 0

p̂`(B◦, t◦, α) = (−1)`
∑

λ∈σ(B◦)
((λ2 + t2◦)

1/2)2`+1(2α(λ) +m(λ)) for ` ≥ 0


,

where m(λ) := dim(Vλ)/2 for all λ ∈ σ(B◦). Note that as J2
B◦ = B◦B◦ is C-linear

on V = Cd all eigenspaces Vλ have even (real) dimension. In particular V0 is also
even dimensional when 0 ∈ σ(B◦). We also note that the invariant τ reveals that
∆◦ ⊂ ∆(K,N) is a closed subset.

10.5. Condition (O) for (K,N). We adapt the proof given in Section 8.5 to estab-
lish condition (O) for the pairs at hand. Let (φn)∞n=1 be a sequence in ∆(K,N) and
φ ∈ ∆(K,N). We will show that (g(Ψ(φn)))∞n=1 converges to g(Ψ(φ)) for each g ∈ G
if and only if (D̂g(φn))∞n=1 converges to D̂g(φ) for each g ∈ G. There are a number of
cases to consider. We have either φ ∈ ∆0 or φ ∈ ∆× and by passing to subsequences
we can assume that either (φn)∞n=1 ⊂ ∆0 or (φn)∞n=1 ⊂ ∆×.

Case 1: φ ∈ ∆0 and (φn)∞n=1 ⊂ ∆0: In this case the argument from Section 8.6 goes
though verbatim, just as in Section 9.6.

Case 2: φ ∈ ∆0 and (φn)∞n=1 ⊂ ∆×: Suppose now that (φ = φB◦,a◦,α) ∈ ∆0 and
(φn = φBn,tn,αn)∞n=1 ⊂ ∆×. Suppose moreover that for each central generator g = q`,
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τ and r, s (when d is even) the sequence
(
ĝ(Bn, tn, αn) = g(Bn, tn, αn)

)∞
n=1

con-

verges to
(
ĝ(B◦, a◦, α) = g(B◦, a◦, α)

)
. Under these assumptions it suffices to ver-

ify that limn→∞ p̂`(Bn, tn, αn) = p̂`(B◦, a◦, α) if and only if limn→∞ p`(Bn, tn, αn) =
p`(B◦, a◦, α) for ` = 0, . . . , d′ − 1.

Our hypotheses concerning the central generators g ∈ G yield the following. The
assumption that τ(Bn, tn, αn)→ τ(B◦, a◦, α) gives

lim
n→∞

tn = 0.

Moreover using the invariants q` together with r, s (when d is even) the argument
from Section 8.6 concerning behavior of eigenspace decompositions with respect to
the operators J2

Bn
applies. In particular we can assume, as in Equation 8.13, that

lim
n→∞

∑
µ∈σ+(Bn)

µ2`+1m(µ) =
∑

λ∈σ+(B◦)

λ2`+1m(λ)

for ` ≥ 0. As tn → 0 this also implies that

(10.5) lim
n→∞

∑
µ∈σ(Bn)

((µ2 + t2n)1/2)2`+1m(µ) =
∑

λ∈σ+(B◦)

λ2`+1m(λ) for ` ≥ 0.

The condition that p0(Bn, tn, αn)→ p0(B◦, a◦, α) reads

lim
n→∞

∑
µ∈σ(Bn)

2(µ2 + t2n)1/2αn(µ) = |a◦|2 +
∑

λ∈σ+(B◦)

2λα(λ).

whereas p̂0(Bn, tn, αn)→ p̂0(B◦, a◦, α) means

lim
n→∞

∑
µ∈σ(Bn)

(µ2 + t2n)1/2(2αn(µ) +m(µ)) = |a◦|2 +
∑

λ∈σ+(B◦)

λ(2α(λ) +m(λ)).

Using (10.5) with ` = 0 shows that limn→∞ p0(Bn, tn, αn) = p0(B◦, a◦, α) if and
only if limn→∞ p̂0(Bn, tn, αn) = p̂0(B◦, a◦, α). Likewise for ` ≥ 1 the condition
p`(Bn, tn, αn)→ p`(B◦, a◦, α) reads

lim
n→∞

∑
µ∈σ(Bn)

2((µ2 + t2n)1/2)2`+1αn(µ) =
∑

λ∈σ+(B◦)

2λ2`+1α(λ)

whereas p̂0(Bn, tn, αn)→ p̂0(B◦, a◦, α) means

lim
n→∞

∑
µ∈σ(Bn)

((µ2 + t2n)1/2)2`+1(2αn(µ) +m(µ)) =
∑

λ∈σ+(B◦)

λ2`+1(2α(λ) +m(λ)).

Again these are equivalent conditions in view of (10.5).

Case 3: φ ∈ ∆× and (φn)∞n=1 ⊂ ∆0: Suppose that (φ = φB◦,t◦,α) ∈ ∆× and (φn =
φBn,an,αn)∞n=1 ⊂ ∆0. As the sequence

(
τ(Bn, an, αn) = 0 = τ̂(Bn, an, αn)

)∞
n=1

fails to
converge to τ(B◦, t◦, α) = t◦ = τ̂(B◦, t◦, α) this case poses no issue.



BOUNDED SPHERICAL FUNCTIONS 29

Case 4: φ ∈ ∆× and (φn)∞n=1 ⊂ ∆×: Suppose that (φ = φB◦,t◦,α) ∈ ∆× and (φn =
φBn,tn,αn)∞n=1 ⊂ ∆×. The proof is as in Case 2 with the condition

lim
n→∞

∑
µ∈σ(Bn)

((µ2 + t2n)1/2)2`+1m(µ) =
∑

λ∈σ(B◦)

((λ2 + t2◦)
1/2)2`+1m(λ) for ` ≥ 0.

in place of Equation 10.5. �

11. The pair (U(d),Cd ⊕HΛ2(Cd)) with d ≥ 2

This is entry 5 in Table 1. One has n = nd = V ⊕ z with V = Cd and z =
HΛ2(Cd) = u(d) = {A ∈ Md(C) : A∗ = −A}, the d × d skew-hermitian matrices.
The Lie bracket is

V × V → z, [u, v] := uv∗ − vu∗

and K = U(n) acts via

k · (v,A) = (kv, kAk∗).

The K-action on z is the adjoint action of K on its Lie algebra.

11.1. K-orbits in z. Each K-orbit in z contains a unique diagonal matrix of the
form

(11.1) B◦ = diag(Om(0), iλ1Im(1) . . . , iλpIm(p))

for some p ≥ 0, integers m(0) ≥ 0, m(1), . . . ,m(p) ≥ 1 with

m(0) +m(1) + · · ·+m(p) = d

and some distinct positive real numbers 0 < λ1 < · · · < λp.

11.2. The space ∆(K,N). We put the following K-invariant inner product on n,(
(u,A), (v,B)

)
n

:= Re 〈u, v〉+
1

2
Re(tr(AB∗)) = Re(v∗u)− 1

2
Re(tr(AB)).

This gives ([u, v], B)n = −(Bu, v)n and hence JB : V → V satisfies

JB(u) = −Bu, J2
B(u) = B2u.

Given B◦ ∈ Λ2(Cd), the space V decomposes into eigenspaces for J2
B◦ = B2

◦ as
V = aB◦ ⊕ wB◦ = V0 ⊕

⊕
λ∈σ+(B◦)

Vλ, just as in previous examples. Given any

a◦ ∈ V0 the stabilizer of (a◦, B◦) in K is KB◦,a◦ = U(V0 ∩ a⊥◦ )×
∏

λ∈σ+(B◦)
U(Vλ) and

the space C[w̃B◦ ] decomposes under KB◦,a◦ as C[w̃B◦ ] =
⊕

α

(⊗
λ∈σ+(B◦)

Pα(λ)(Vλ)
)

where α = (α(λ) : λ ∈ σ+(B◦)) is a list of non-negative integers. Each bounded
K-spherical function on N has the form φB◦,a◦,α for some choice of data (B◦, a◦, α) as
above (see Proposition 5.1 and Remark 5.2). Two such spherical functions coincide if
and only if the data differ by the action of K. For B◦ in diagonal form (11.1) one has
σ+(B◦) = {λ1, . . . , λp}, KB◦ = U(m(0))×· · ·×U(m(p)) and w̃B◦ = Cm(1)⊕· · ·⊕Cm(p).
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11.3. The space A(K,N). Proposition 5.4 yields the spherical orbit O(B◦, a◦, α) :=
Ψ(φB◦,,a◦,α) corresponding to φB◦,,a◦,α ∈ ∆(K,N). As in previous examples

(11.2) O(B◦, a◦, α) = K ·

(
a◦ +

∑
λ>0

(2λα(λ))1/2eλ, B◦

)
where eλ ∈ Vλ is any chosen unit vector.

11.4. Generators for R[n]K. Letting

p`(v, A) := i`v∗A`v, q`(v,A) := i`tr(A`),

the set

G = {p0, . . . , pd−1, q1, . . . , qd}
generates R[n]K [FRY12, Theorem 7.5].

11.5. Values g(B◦, a◦, α) and ĝ(B◦, a◦, α) for g ∈ G. With notation as in Section
8.5 the values g(B◦, a◦, α) := g(O(B◦, a◦, α)) and eigenvalues ĝ(B◦, a◦, α) for each
generator g ∈ G are as follows.

q̂`(B◦, a◦, α) = i`tr(B`
◦) = q`(B◦, a◦, α)

p0(B◦, a◦, α) = |a◦|2 +
∑

λ∈σ+(B◦)
2λα(λ)

p̂0(B◦, a◦, α) = |a◦|2 +
∑

λ∈σ+(B◦)
λ(2α(λ) +m(λ))

p`(B◦, a◦, α) = (−1)`
∑

λ∈σ+(B◦)
2λ`+1α(λ) for ` ≥ 1

p̂`(B◦, a◦, α) = (−1)`
∑

λ∈σ+(B◦)
λ`+1(2α(λ) +m(λ)) for ` ≥ 1

 .

where m(λ) := dim(Vλ)/2 for all λ ∈ σ+(B◦). (For B◦ in standard form (11.1) one
has m(λj) = m(j).)

11.6. Condition (O) for (K,N). The proof that (K,N) satisfies condition (O)
using these values for g(B◦, a◦, α), ĝ(B◦, a◦, α) (g ∈ G) proceeds exactly as that given
in Section 8.6 for the pair (SO(d),Rd ⊕ Λ2(Rd)). �

12. The pair (Sp(d),Hd ⊕ (HS2(Hd)⊕ C)) with d ≥ 1

Entry 6 in Table 1 has n = nd = V ⊕ z with V = Hd and z = HS2(Hd) ⊕ C.
Here HS2(Hd) denotes the space of hermitian symmetric matrices of size d× d with
quaternion entries, HS2(Hd) = {A ∈ Md(H) : A∗ = A}. As always V and z are
regarded as real vector spaces but we will also view V as a vector space over the
division algebra H. In this regard we follow the conventions in [Wol07, Chapter 2],
letting quaternion scalars act on V from the right and d× d quaternion matrices act
from the left. Real scalars can act from either side.

For imaginary quaternions q = a i+ b j + c k let qC ∈ C be defined as

qC := b+ c i
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so that q = a i+ qCj. With this convention the Lie bracket is given by

V × V → z, [u, v] :=
(
uiv∗ − viu∗, (u∗v − v∗u)C

)
.

In this example Sp(d) = {k ∈ Md(H) : kk∗ = I} is the group of H-linear transfor-
mations V → V preserving the hermitian form 〈u, v〉 = v∗u. The group K = Sp(d)
acts on n via

k · (v, A, c) = (kv, kAk∗, c).

Remark 12.1. Note that the action of K on z is trivial on the C-factor and also
trivial on the scalar matrices {tI : t ∈ R} ⊂ HS2(Hd). A different model for the
pair (K, n) is found in [Vin03] and elsewhere, including [Wol07] and [FRY12]. In
these references the center is written as z′ = HS2

0(Hd) ⊕ Im(H) with HS2
0(Hd) =

{A ∈ HS2(Hd) : tr(A) = 0} and the Lie bracket V × V → z′ becomes

[u, v]′ :=
(
(uiv∗ − viu∗)◦, u∗v − v∗u

)
where A◦ := A− tr(A)

d
I for A ∈ HS2(Hd). The group K = Sp(d) acts on n′ = V ⊕ z′

as k · (v, A, q) = (kv, kAk∗, q). To reconcile the two models one can check that the
map

ϕ : V ⊕ z′ → V ⊕ z,
(
v,A, (q = a i+ qCj)

)
7→
(
v, A+

a

d
I, qC

)
is a K-equivariant Lie algebra isomorphism.

12.1. K-orbits in z. Each K-orbit in HS2(Hd) contains a unique diagonal matrix
of the form

(12.1) B◦ = diag(O`(0), λ1I`(1) . . . , λpI`(p))

for some p ≥ 0, integers `(0) ≥ 0, `(1), . . . , `(p) ≥ 1 with

`(0) + `(1) + · · ·+ `(p) = d

and some distinct positive real numbers 0 < λ1 < · · · < λp.

12.2. The space ∆(K,N). We equip n with the followingK-invariant inner product.(
(u,A, c), (v,B, c′)

)
n

:= Re 〈u, v〉+
1

2
Re(tr(AB∗)) +

1

2
Re(c c′)

= Re(v∗u) +
1

2
Re(tr(AB)) +

1

2
Re(c c′).

For u, v ∈ V and (B, c) ∈ z one can check that ([u, v], B)n = (Bui, v)n and ([u, v], c)n =
(u(cj), v)n. Thus JB,c : V → V is given by

JB,c(u) = Bui+ u(cj).

From this one obtains

(12.2) J2
B,c(u) = −B2u− |c|2u (where |c|2 = c c, not (c, c)n = c c/2).
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Thus for fixed B◦ ∈ HS2(Hd) the decomposition for V into eigenspaces for J2
B◦,c◦

does not depend on c◦ ∈ C. But if v ∈ V is a (−λ2)-eigenvector for J2
B◦ = J2

B◦,0 then

v becomes a −(λ2 + |c◦|2)-eigenvector for J2
B◦,c◦ . This situation parallels that for the

pairs ((S)U(d),Cd ⊕ (Λ2(Cd)⊕ R)), discussed in Section 10.
For fixed B◦ ∈ HS2(Hd) let

σ(B◦) := {λ ≥ 0 : −λ2 is an eigenvalue for J2
B◦ = −B2

◦},

σ+(B◦) := {λ ∈ σ(B◦) : λ > 0} and write V = aB◦ ⊕ wB◦ = V0 ⊕
⊕

λ∈σ+(B◦)
Vλ,

a sum of eigenspaces for J2
B◦ as usual. As J2

B◦ is H-linear all eigenspaces have real
dimension divisible by four. For any a◦ ∈ V0 the stabilizer of (a◦, B◦, 0) in K is
K(B◦,0),a◦ = Sp(V0 ∩ a⊥◦ )×

∏
λ∈σ+(B◦)

Sp(Vλ) and the space C[w̃B◦ ] decomposes under

K(B◦,0),a◦ as C[w̃B◦ ] =
⊕

α

(⊗
λ∈σ+(B◦)

Pα(λ)(Vλ)
)

where α = (α(λ) : λ ∈ σ+(B◦))

is a list of non-negative integers, one for each λ ∈ σ+(B◦). For B◦ in standard form
form (12.1) one has σ+(B◦) = {λ1, . . . , λp}, KB◦ = Sp(`(0)) × · · · × Sp(`(p)) and
w̃B◦ = H`(1) ⊕ · · · ⊕H`(p).

On the other hand for c◦ ∈ C× the operator J2
B◦,c◦ has trivial kernel, wB◦,c◦ =

V and C[w̃B◦,c◦ ] decomposes under K(B◦,c◦),0 =
∏

λ∈σ(B◦)
Sp(Vλ) as C[w̃B◦,c◦ ] =⊕

α

(⊗
λ∈σ(B◦)

Pα(λ)(Vλ)
)

where α = (α(λ) : λ ∈ σ(B◦)) is a list of non-negative

integers, one for each λ ∈ σ(B◦).
As in Section 10, spherical functions φ ∈ ∆(K,N) are determined by data “(B◦, c◦, a◦, α)”

where at most one of c◦, a◦ can be non-zero. Letting

Γ0 :=
{

(B◦, a◦, α) : B◦ ∈ HS2(Hd), a◦ ∈ Ker(J2
B◦), α ∈ (Z+)|σ

+(B◦)|
}
,

Γ× :=
{

(B◦, c◦, α) : B◦ ∈ HS2(Hd), c◦ ∈ C×, α ∈ (Z+)|σ(B◦)|
}
,

one has ∆(K,N) = ∆0 ∪∆× where

∆0 :=
{
φB◦,a◦,α : (B◦, a◦, α) ∈ Γ0

}
, ∆× :=

{
φB◦,c◦,α : (B◦, c◦, α) ∈ Γ×

}
.

12.3. The space A(K,N). The spherical orbits O(B◦, a◦, α) := Ψ(φB◦,,a◦,α) and
O(B◦, c◦, α) := Ψ(φB◦,,c◦,α) for data (B◦, a◦, α) ∈ Γ0, (B◦, c◦, α) ∈ Γ× are as follows.
Choose for each λ ∈ σ(B◦) a unit vector eλ ∈ Vλ. One has

(12.3) O(B◦, a◦, α) = K ·

a◦ +
∑

λ∈σ+(B◦)

(2λα(λ))1/2eλ, B◦, 0

 .

(12.4) O(B◦, c◦, α) = K ·

 ∑
λ∈σ(B◦)

(2(λ2 + |c◦|2)1/2α(λ))1/2eλ, B◦, c◦

 .
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12.4. Generators for R[n]K. In terms of our model for n, a generating set G for
R[n]K , given in [FRY12, Theorem 7.5], is

G = {p0, . . . , pd−1, q1, . . . , qd, r, s}
where

p`(v, A, c) := v∗A`v, q`(v, A, c) := tr(A`), r(v, A, c) = Re(c), s(v,A, c) := Im(c).

12.5. Values g(B◦, a◦, α), ĝ(B◦, a◦, α), g(B◦, c◦, α), ĝ(B◦, c◦, α) for g ∈ G. Each
generator g ∈ G takes values g(B◦, a◦, α) := g(O(B◦, a◦, α)) and g(B◦, c◦, α) :=
g(O(B◦, c◦, α)) on the spherical orbits given in Equations 12.3 and 12.4. Also the
associated operator Dg ∈ DK(N) has eigenvalues ĝ(B◦, a◦, α) and ĝ(B◦, c◦, α) on the
spherical functions φB◦,a◦,α, φB◦,c◦,α ∈ ∆(K,N). For the central generators q`, r, s we
have 

q̂`(B◦, a◦, α) = tr(B`
◦) = q`(B◦, a◦, α)

q̂`(B◦, c◦, α) = tr(B`
◦) = q`(B◦, c◦, α)

r̂(B◦, a◦, α) = 0 = r(B◦, a◦, α)
r̂(B◦, c◦, α) = Re(c◦) = r(B◦, c◦, α)
ŝ(B◦, a◦, α) = 0 = s(B◦, a◦, α)

ŝ(B◦, c◦, α) = Im(c◦) = s(B◦, c◦, α)


.

For the non-central generators p` one has

p0(B◦, a◦, α) = |a◦|2 +
∑

λ∈σ+(B◦)
2λα(λ)

p̂0(B◦, a◦, α) = |a◦|2 +
∑

λ∈σ+(B◦)
λ(2α(λ) +m(λ))

p`(B◦, a◦, α) = (−1)`
∑

λ∈σ+(B◦)
2λ`+1α(λ) for ` ≥ 1

p̂`(B◦, a◦, α) = (−1)`
∑

λ∈σ+(B◦)
λ`+1(2α(λ) +m(λ)) for ` ≥ 1

and
p`(B◦, c◦, α) = (−1)`

∑
λ∈σ(B◦)

2((λ2 + |c◦|2)1/2)`+1α(λ) for ` ≥ 0

p̂`(B◦, c◦, α) = (−1)`
∑

λ∈σ(B◦)
((λ2 + |c◦|2)1/2)`+1(2α(λ) +m(λ)) for ` ≥ 0


,

where m(λ) := dim(Vλ)/2 for all λ ∈ σ(B◦). (For B◦ in standard form (12.1) one has
m(λj) = 2`(j).)

12.6. Condition (O) for (K,N). The proof that (K,N) satisfies condition (O) us-
ing these values for g(B◦, a◦, α), ĝ(B◦, a◦, α), g(B◦, c◦, α), ĝ(B◦, c◦, α) (g ∈ G) closely
parallels that given in Section 10.5 for the pairs ((S)U(d),Cd ⊕ (Λ2(Cd)⊕ R)).

In the Case 2 portion of the proof one has a sequence (φn = φBn,cn,αn)∞n=1 ⊂ ∆× and
function (φ = φB◦,a◦,α) ∈ ∆0. One assumes that

(
g(Bn, cn, αn) = ĝ(Bn, cn, αn)

)∞
n=1

converges to g(B◦, a◦, α) = ĝ(B◦, a◦, α) for the central generators g ∈ {q1, . . . , qd, r, s}.
These assumptions imply, using invariants {r, s}, that cn → 0 and enable one to
obtain

lim
n→∞

∑
µ∈σ(Bn)

((µ2 + |cn|2)1/2)`+1m(µ) =
∑

λ∈σ+(B◦)

λ`+1m(λ) for ` ≥ 0,
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the analog for Equation 10.5 in the current context. Using this it is easy to show
that p`(Bn, cn, αn) → p`(B◦, a◦, α) if and only if p̂`(Bn, cn, αn) → p̂`(B◦, a◦, α) for
` ≥ 0. �
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