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Abstract. This work concerns linear multiplicity free actions of the complex
groups GC = GL(n,C), GL(n,C) × GL(n,C) and GL(2n,C) on the vector spaces
V = Sym(n,C), Mn(C) and Skew(2n,C). We relate the canonical invariants in
C[V ⊕ V ∗] to spherical functions for Riemannian symmetric pairs (G,K) where
G = GL(n,R), GL(n,C) or GL(n,H) respectively. These in turn can be expressed
using three families of classical zonal polynomials. We use this fact to derive a com-
binatorial algorithm for the generalized binomial coefficients in each case. Many of
these results were obtained previously by Knop and Sahi using different methods.
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1. Introduction

Suppose that V is a finite dimensional complex vector space and that GC is a re-
ductive complex algebraic group acting linearly on V by some rational representation

GC × V → V, (g, z) 7→ g · z.
One obtains an associated representation ρ of GC in the algebra C[V ] of holomorphic
polynomials on V via

ρ(g)p(z) = (g · p)(z) = p(g−1 · z).
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When ρ is a multiplicity free representation one says that the action GC : V is
multiplicity free. In this case we have a canonical decomposition

(1.1) C[V ] =
⊕

λ∈Λ

Pλ

of C[V ] into GC-irreducible subspaces Pλ. Here Λ denotes a countable index set,
appropriate to the example at hand. For background on multiplicity free actions we
refer the reader to the survey articles [How95] and [BR04].

When GC : V is multiplicity free the product action GC : (V ⊕ V ∗) is of particular
interest. Here GC acts on V ∗ by the contragredient of GC : V . One can construct a
canonical basis for the space C[V ⊕ V ∗]GC of GC-invariant polynomials on V ⊕ V ∗,
with one basis element from each subspace Pλ ⊗ P ∗

λ . Equivalently, one can look at
the action of the maximal compact subgroup of GC on polynomials on the underlying
real vector space.

There are no (non-constant) GC-invariant holomorphic polynomials on V . If U is
the maximal compact subgroup of GC, there are, however, U−invariant polynomials
on the real vector space VR. We can describe a canonical set of invariants as follows:
Let {fj : j = 1, . . . dλ} be an orthonormal basis for Pλ with respect to some U -
invariant inner product. The polynomial

(1.2) pλ(z) =

dλ∑
j=1

fj(z)fj(z)

is a non-zero U -invariant. In fact, {pλ : λ ∈ Λ} is a canonical basis for the space
P(VR)

U of U -invariant polynomials on VR. Equation 1.2 does not depend on the basis
{fj} used. The pλ’s are called the canonical invariants. In some works, including
[BR04], the pλ’s are normalized via division by dλ = dim(Pλ). For our purposes,
however, it seems preferable to use the un-normalized pλ’s given by (1.2). One can
identify C[V ⊕ V ∗] with P(VR) in such a way that the canonical GC-invariants and
U -invariants coincide.

It is often quite difficult to obtain explicit formulas for the canonical invariants in
the context of specific examples. In this paper we examine three classical multiplicity
free actions. In each case, V is a space of complex matrices. Letting Mn(C) denote
the set of all n× n complex matrices, these are the following:

(i) GC = GL(n,C) acts on the space V = Sym(n,C) = {z ∈ Mn(C) : zt = z}
of n× n symmetric matrices via

g · z = g−tzg−1.

(Here g−t is shorthand for (g−1)t.) The associated representation in C[V ]
becomes

(g · p)(z) = p(gtzg).
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(ii) GC = GL(n,C)×GL(n,C) acts on V = Mn(C) and C[V ] as

g · z = g−t
1 zg−1

2 , (g · p)(z) = p(gt
1zg2)

for g = (g1, g2).
(iii) GC = GL(2n,C) acts on V = Skew(2n,C) = {z ∈ M2n(C) : zt = −z}, the

space of (2n)× (2n) skew symmetric matrices, by the formula in (i).

For each of the actions (i)-(iii), the multiplicity free decomposition (1.1) can be
described using highest weights and indexed by the partitions with at most n parts:

(1.3) Λ = {λ = (λ1, λ1, . . . , λn) ∈ Zn : λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0}.
These decompositions are well known (see [How89, How95, GW98, BR04]) and dis-
cussed below in Section 2.

Some further notation is required in order to state our main theorem. Let U denote
the usual maximal compact subgroup in GC, namely

U = U(n) or U(n)× U(n) or U(2n)

in cases (i),(ii),(iii) respectively. Using a U -invariant hermitian inner product on V
one can identify V ∗ with V and C[V ⊕V ∗]GC = C[V ⊕V ∗]U with P(V ⊕V )U = P(VR)

U ,
the complex-valued U -invariant polynomials on the underlying real space VR for V .
Moreover, for t = (t1, . . . , tn) ∈ Rn let xt ∈ V denote the point

(1.4) xt =

{
diag(t1, . . . , tn) in cases (i) and (ii)
diag(t1J, . . . , tnJ) in case (iii)

where J =

[
0 1

−1 0

]
as usual. It is known that

(1.5) X = {xt : tj ≥ 0 for 1 ≤ j ≤ n}
is a cross-section to the U -orbits in V . (See Section 7 in [BJLR97].) Thus our
canonical invariants pλ ∈ P(VR)

U are completely determined by their values pλ(xt)
on X . We will see that pλ(xt) is a symmetric function in t = (t1, . . . , tn).

We show that the pλ’s are related to the zonal polynomials Zλ for certain Riemann-
ian symmetric pairs (G,K), namely [Mac95, Mac87, Sta89]:(

G = GL(n,F), K = {k ∈ G : k∗k = I}
)

with F = R,C,H.

(Here k∗ = k
t

is the conjugate transpose.) The subgroup K is maximal compact
in the real Lie group G. For our purposes, it is essential to observe that G is a
non-compact real form for the complex group GC in each case.

Theorem 1.1. For the multiplicity free actions GC : V given by (i)-(iii) the canonical
invariants pλ ∈ P(VR)

U are completely determined by their values pλ(xt) on the cross
section X . The maps t 7→ pλ(xt) are symmetric functions in t satisfying

pλ(xt) = cλZλ(t
2).
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Here Zλ is a zonal polynomial for the pair (G,K) in each case, t2 = (t21, ..., t
2
n) and

cλ is a non-zero constant given by Equation 1.6 below.

Our approach is strongly influenced by [GR87], which treats these three cases in
parallel. A version of Theorem 1.1 was first proved by Knop and Sahi in [KS96]. They
showed that, up to a multiplicative factor, pλ(xt) is is given by Jλ(t

2; α), where Jλ(·; α)
is a Jack polynomial with parameter α = 2, 1, 1/2 in cases (i),(ii),(iii) respectively.
We will provide a new proof and viewpoint on this result. A brief discussion of the
methods used by Knop and Sahi appears at the end of this paper.

The literature contains assorted conventions regarding normalization for zonal and
Jack polynomials. In this paper we adopt the convention from [Sta89] and [Mac87]
for normalization of the Jack polynomial Jλ(·; α). (The convention just fixes the
coefficient for a specified term in Jλ. It is equivalent to Lemma 3.2 below.) The
zonal polynomials in Theorem 1.1 are then Zλ = J(·; α) with parameter α = 2, 1, 1/2
for actions (i)-(iii). For action (i) this normalization agrees with that from [Jam61].
Section 2 includes a brief summary of the background material we require concerning
zonal polynomials. We refer the reader to [Mac95, Mac87] and [GR87] for further
details.

In Section 3 we prove that

(1.6) cλ =





2|λ|/(H∗(λ; 2)H∗(λ; 2)) for action (i)
1/H(λ)2 for action (ii)

1/(H∗(λ; 1/2)H∗(λ; 1/2)) for action (iii)
.

Here |λ| = λ1 + · · · + λn, H(λ) is the product of hook lengths for λ, and H∗(λ; α),
H∗(λ; α) are the products of the lower and upper hook lengths weighted by α. These
factors are defined below in Section 3 following [Sta89].

For action (ii), our normalization implies Zλ = H(λ)sλ where sλ is a Schur poly-
nomial. In this case Theorem 1.1 says

pλ(xt) =
1

H(λ)
sλ(t

2),

a result that was also derived, up to the normalization factor, in [BR98] using different
methods.

The canonical invariant pµ ∈ P(VR)
U yields a GC-invariant polynomial coefficient

differential operator pµ(z, ∂) =
∑dµ

j=1 fj(z)fj(∂) on C[V ]. Schur’s Lemma ensures
that pµ(z, ∂) acts by a scalar on each irreducible subspace Pλ in decomposition (1.1):

(1.7) pµ(z, ∂)|Pλ
=

[
λ

µ

]
IPλ

.

The eigenvalue
[
λ
µ

]
is called a generalized binomial coefficient for the action. As in

the case of the canonical invariants, explicit formulas for the generalized binomial
coefficients are difficult to obtain.
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A more detailed definition of the operators pλ(z, ∂) appeared in [BR04] together
with some interesting properties of the generalized binomial coefficients. These in-
clude a Pieri formula, originally due to Z. Yan [Yan92]. In Section 4 we reconcile
Yan’s Pieri formula with Stanley’s Pieri formula for Jack polynomials [Sta89]. This
results in a combinatorial algorithm, Theorem 4.2 below, to evaluate the generalized
binomial coefficients for actions (i)-(iii) working from the Young’s diagrams for λ and
µ.

2. The canonical invariants as zonal polynomials

Throughout GC : V will denote one of the multiplicity free actions (i)-(iii). Table
1 lists the groups that play a role in our story, along with the space V on which GC
acts. The groups U and G are compact and non-compact real forms in GC. They are
real Lie groups. The complexification KC of K is a subgroup of the complex group
GC.

GC U G K KC V
(i) GL(n,C) U(n) GL(n,R) O(n,R) O(n,C) Sym(n,C)
(ii) GL(n,C)×GL(n,C) U(n)× U(n) GL(n,C) U(n) GL(n,C) Mn(C)
(iii) GL(2n,C) U(2n) GL(n,H) Sp(n) Sp(n,C) Skew(2n,C)

Table 1

In each case the inclusions U ⊂ GC and K ⊂ KC are clear. The inclusions K ⊂
G ⊂ GC and KC ⊂ GC are equally clear in case (i) but require some explanation in
the remaining cases.

• Case (ii): Here G = GL(n,C) is viewed as a real Lie group embedded diago-
nally in GC = GL(n,C) × GL(n,C). That is G = {(g, g) : g ∈ GL(n,C)}.
The group KC = GL(n,C) is then embedded in GC via KC = {(g, g−t) : g ∈
GL(n,C)}.

• Case (iii): The quaternions H are to be viewed as 2× 2 complex matrices of
the form [

z w
−w z

]
.

The group G = GL(n,H) embeds in GC = GL(2n,C) as the subgroup of
matrices consisting of 2×2 blocks of the above sort. It is a real Lie group whose
elements are certain (2n)× (2n) complex matrices. The group KC = Sp(n,C)
embeds in GC = GL(2n,C) as the subgroup preserving the bilinear form with
matrix

(2.1) J = diag(J, . . . , J︸ ︷︷ ︸
n

).
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That is Sp(n,C) = {g ∈ GL(2n,C) : gtJ g = J }. The compact symplectic
group K = Sp(n) then embeds in G as K = Sp(n,C) ∩ U(2n).

Recall from (1.5) that the set X = {xt : t ∈ Rn, tj ≥ 0} is a cross-section to the
U -orbits in V . This is not hard to prove for action (ii). For actions (i) and (iii) the
assertion amounts to the fact that any symmetric (resp. skew symmetric) bilinear
form over C can be diagonalized by a unitary transformation.

We let z◦ denote the point in X given by

(2.2) z◦ =

{
I in cases (i) and (ii)
J in case (iii).

This base point will play an important role throughout this section. Note that

KC is the stabilizer of z◦ under the action of GC and(2.3)

the GC-orbit through z◦ is a Zariski-open dense set in V .(2.4)

As regards (2.4), it suffices to observe that

GC · z◦ = {z ∈ V : det(z) 6= 0}.
In fact, given z ∈ V with det(z) 6= 0 we know that for some u ∈ U one has u · z =
xt ∈ X . As det(xt) 6= 0 we must have tj > 0 for 1 ≤ j ≤ n. Now let

d =

{
diag(t

−1/2
1 , . . . , t

−1/2
n ) in cases (i), (iii)(

diag(t
−1/2
1 , . . . , t

−1/2
n ), diag(t

−1/2
1 , . . . , t

−1/2
n )

)
in case (ii)

and set g = du. Then g · z = z◦.

2.1. U-invariant polynomials as symmetric functions. Let p ∈ P(VR)
U . The

polynomial p is determined by its restriction to the cross section X . We claim that

t 7→ p(xt)

is symmetric in (t1, . . . , tn). To prove this, it suffices to show that for any permutation
σ ∈ Sn, one has xσ(t) = u · xt for some u ∈ U .

• Case (i): Let uσ ∈ U(n) be the permutation matrix for σ−1. That is

uσ




z1
...
zn


 =




zσ−1(1)
...

zσ−1(n)


 .

Then u = uσ satisfies

u · xt = u−txtu
−1 = uxtu

t = xσ(t).

• Case (ii): Let uσ be as in case (i). Then u = (uσ, uσ) ∈ (U = U(n) × U(n))
has u · xt = xσ(t).
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• Case (iii): Let σ̃ ∈ S2n be the permutation for which

σ̃(2j − 1) = 2σ(j)− 1 and σ̃(2j) = 2σ(j)

for j = 1, . . . , n. That is, apply σ simultaneously to the subsets {1, 3, . . . , 2n−
1} and {2, 4, . . . , 2n} of odd and even indices. Let uσ̃ ∈ (U = U(2n)) be the
permutation matrix for σ̃−1. Then u = uσ̃ satisfies u · xt = xσ(t).

Note that the elements u ∈ U , constructed above so that u · xt = xσ(t), in fact
belong to the subgroup K = U ∩ G of U . That is, u belongs to O(n,R), U(n) or
Sp(n) in each cases (i)-(iii). This observation has the following consequence, which
will be used below in our proof of Proposition 2.2.

Lemma 2.1. If p ∈ P(VR)
K then t 7→ p(xt) is a symmetric function.

2.2. Multiplicity free decompositions. We recall the decomposition for C[V ] un-
der the action of GC. For details see [How89, How95, GW98, BR04]. As in (1.3), Λ
is the set of partitions with at most n parts.

Let An
∼= (C×)n denote the diagonal matrices in GL(n,C) and Bn the set of n×n

upper-triangular matrices. The standard maximal torus A and Borel subgroup B in
GC are then

(2.5) A =





An in case (i)
An × An in case (ii)

A2n in case (iii)
, B =





Bn in case (i)
Bn ×Bn in case (ii)

B2n in case (iii)
.

We use torus A and Borel subgroup B when describing weights and their ordering
for (finite dimensional) rational representations of GC. For actions (i)-(iii) all weights
that occur in C[V ] are non-negative and the highest weights that appear are precisely

(2.6) 2λ =





(2λ1, . . . , 2λn) in case (i)
(λ; λ) in case (ii)

(λ1, λ1, . . . , λn, λn) in case (iii)

for each λ ∈ Λ. That is, we have

(2.7) C[V ] =
⊕

λ∈Λ

Pλ

where GC acts on Pλ by a copy of the representation with highest weight 2λ. Note
that the subspaces Pλ are also irreducible for the action of U on C[V ]. A (2λ)-highest
weight vector in Pλ is given by

(2.8) ξλ = ξλ1−λ2
1 ξλ2−λ3

2 · · · ξλn−1−λn

n−1 ξλn
n
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where ξj ∈ C[V ] denotes

ξj(z) =





det




z1,1 · · · z1,j
...

...
zj,1 · · · zj,j


 in cases (i) and (ii)

Pf




z1,1 · · · z1,2j
...

...
z2j,1 · · · z2j,2j


 in case (iii)

.

Here Pf(z) is the Pfaffian of the complex skew-symmetric matrix z.
Note that the action of GC on C[V ] preserves the subspace Pm(V ) of polynomials

homogeneous of degree m. As ξλ is homogeneous of degree |λ| = λ1 + · · · + λn, it
follows that Pλ ⊂ P|λ|(V ).

Next consider the space C[GC] of holomorphic polynomials on the complex group
GC. (These are the restrictions to GC of polynomials on the complex vector spaces
Mn(C), Mn(C)×Mn(C) or M2n(C) in cases (i)-(iii) respectively.) We let

C[KC\GC] = {p ∈ C[G] : p(kg) = p(g) for all k ∈ KC}
denote the subspace of left KC-invariant polynomials. Using (2.3) and (2.4), one sees
that C[V ] and C[KC\GC] are isomorphic as algebras via

C[V ] → C[KC\GC], p 7→ p̃

where

(2.9) p̃(g) = p(g−1 · z◦).
One checks easily that p 7→ p̃ intertwines the representation ρ of GC on C[V ] with its
right-quasi-regular representation

r(g)p(h) = p(hg)

in C[KC\GC]. In view of (2.7) we conclude that C[KC\GC] admits a multiplicity free
decomposition

(2.10) C[KC\GC] =
⊕

λ∈Λ

P̃λ, P̃λ = {p̃ | p ∈ Pλ}

under the right-quasi-regular representation. As in (2.7), the irreducible GC-module

P̃λ has highest weight 2λ.
We require one further fact concerning the representations that occur in C[V ] and

C[KC\GC].

Proposition 2.2. Let σ : GC → GL(W ) be an irreducible rational representation
with highest weight 2λ. Then (σ,W ) is KC-spherical. That is, the space of KC-fixed
vectors in W is one-dimensional. Likewise, irreducible representations of the real
form G with highest weight 2λ are K-spherical.
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Proof. Our argument is adapted from the proof of Theorem 4.8 in [GR87]. The
assertion in Proposition 2.2 does not depend on the model for the representation
(σ,W ) since all representations with a given highest weight are equivalent. We will
use (ρ, Pλ).

One can obtain a KC-invariant fλ in Pλ by averaging the highest weight vector
(2.8) over K:

fλ =

∫

K

k · ξλdk

where dk denotes normalized Haar measure on the compact group K. Using the
inclusions K ⊂ KC ⊂ GC described above, this gives

fλ(z) =

∫

K

ξλ(kzkt)dk in cases (i), (iii) and fλ(z) =

∫

K

ξλ(kzk−1)dk in case (ii)

where K = O(n,R), U(n) or Sp(n). Evaluating fλ at the point z◦ ∈ V given by
(2.2), we see that fλ(z◦) = 1. Indeed, K stabilizes z◦ in each case and ξλ(z◦) = 1. In
particular, fλ is a non-zero KC-invariant in Pλ.

Fix λ ∈ Λ and let m = |λ|. Recall that we have a direct sum decomposition

Pm(V ) =
⊕

|µ|=m

Pµ.

Thus the polynomials {fµ : |µ| = m} are necessarily linearly independent. By re-
striction to X we obtain a linearly independent set of polynomials {t 7→ fµ(xt) : |µ| =
m} of degree m in t = (t1, . . . , tm). Lemma 2.1 shows that these are symmetric
functions. But the space Pm(t1, . . . , tn)Sn of symmetric polynomials homogeneous
of degree m in n variables has dimension #({µ ∈ Λ : |µ| = m}), the number of
partitions of m with at most n parts. It follows that the space Pλ cannot contain any
K-invariant elements linearly independent of fλ. ¤

2.3. Zonal Polynomials. In [GR87], the pairs (G = GL(n,F), K) with F = R,C,H
are treated in parallel. In each case, the authors realize the zonal polynomials Zλ

(λ ∈ Λ) as functions on the space

H = Herm(n,F) = {x ∈ Mn(F) : x∗ = x}
of n × n hermitian matrices over the real division algebra F. (For F = R, we have
x∗ = xt and H = Sym(n,R).)

There are several identifications that enhance our point of view. The real group G
acts on H and P(H) via

(2.11) g · x = g−∗xg−1, (g · p)(x) = p(g−1 · x) = p(g∗xg).

We have a G-equivariant embedding of K\G into H via ϕ : G → H, ϕ(g) = g∗g
with image HPD, the cone of positive definite hermitian matrices. As HPD is open
in H, the polynomials on H are determined by their restrictions to HPD. Thus we
can identify the polynomial spaces P(K\G) = KP(G) and P(H) as G-modules.
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The space C[KC\GC] can be identified with P(K\G) via restriction of holomor-
phic polynomials on GC to the real form G. Analytic continuation gives the inverse
isomorphism. Thus (2.10) can also be viewed as a multiplicity free decomposition of
P(K\G) and P(H):

P(H) ∼= P(K\G) =
⊕

λ∈Λ

P̃λ.

Proposition 2.2 ensures that the subspace P̃λ of P(H) contains a non-zero K-fixed
element Zλ, unique up to scalar multiples. This defines the zonal polynomial Zλ,
modulo normalization, as a function on H. In fact, however, Zλ is determined by its
values on the (necessarily real) diagonal matrices in H and is symmetric as a function
of the diagonal entries. (This follows from the fact that hermitian matrices over F
are diagonalizable by matrices in K.) Thus, as we do in the statement of Theorem
1.1, the Zλ’s can be thought of as symmetric polynomials in n variables.

The zonal polynomials Zλ also determine the spherical functions for the Gelfand
pair (G, K), as well as its complexification (GC, KC) and compact dual (U,K). Indeed
the isomorphism P(H) ∼= P(K\G) enables us to regard Zλ as a function on G. We
can be more explicit about this connection: Using the map ϕ : G → H to lift Zλ to
G, we obtain the K-bi-invariant spherical function

(2.12) Ωλ(g) =
1

Zλ(I)
Zλ(g

∗g)

for (G,K). (By convention one normalizes Ωλ to ensure Ωλ(I) = 1.)

2.4. GC-invariant Polynomials. By the multiplicity-free condition, we have (up to
multiples) a single GC-fixed (equivalently U -fixed) vector in each product Pλ ⊗ P ∗

λ .
By the same reasoning, there is a single GC-fixed vector in each product Pλ⊗C[V ∗].

Let rλ be any non-zero GC-fixed vector in Pλ ⊗C[V ∗]. Using KC-fixed base points
z◦ ∈ V and ξ◦ ∈ V ∗ in Borel-open orbits, define

r̃λ(g) = rλ(g
−1 · z◦, ξ◦)

for g ∈ GC. (At present we do not require specific base points. Later we will use (2.2)
for z◦ and specify a choice for ξ◦.)

Lemma 2.3. The function r̃λ is a KC-bi-invariant polynomial on GC.

Proof. Left invariance follows from the choice of the KC-invariant base point z◦.
Recalling that rλ is GC-invariant, we see that

r̃λ(gk) = rλ(k
−1g−1 · z◦, ξ◦) = rλ(g

−1 · z◦, k · ξ◦) = rλ(g
−1 · z◦, ξ◦) = r̃λ(g). ¤

As we saw in (2.10), the right quasi-regular representation of GC on C[KC\GC] has
the multiplicity-free decomposition

(2.13) C[KC\GC] =
⊕

λ∈Λ

P̃λ,
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where λ ranges over the set Λ described in (1.3) and P̃λ is an irreducible subspace
with highest weight 2λ as defined in (2.6).

Since rλ ∈ Pλ ⊗ C[V ∗], we have r̃λ(g) =
∑d

i=1 cifi(g
−1 · z◦), where {f1, ..., fd} is

a basis for Pλ. The functions g 7→ fi(g
−1 · z◦) span a subspace of C[GC] in which

the right GC-action coincides with the GC-action on Pλ. Since the function r̃λ is left

KC-invariant, it can be regarded as an element of the irreducible subspace P̃λ of
C[KC\GC].

We can also view (2.13), via restriction, as a G-decomposition for P(K\G). Propo-

sition 2.2 implies that P̃λ contains a non-zero K-invariant element,

Ωλ ∈ P̃K
λ

which is the analytic continuation of the K-spherical function (2.12) on G.
Thus we have

r̃λ ∼ Ωλ,

where the symbol “∼” indicates proportionality.

2.5. Proof of Theorem 1.1 modulo normalization. The canonical invariant pλ ∈
P(VR)

U is given by Equation 1.2. In this subsection we will prove that for xt ∈ X
(2.14) pλ(xt) = cλZλ(t

2)

for some constant cλ. Later in Section 3 we will compute cλ to complete the proof of
Theorem 1.1.

The complex vector space V carries a standard hermitian inner product

〈z, w〉 = tr(zw∗),

invariant under the action of U . For g ∈ GC, we have

(2.15) 〈g · z, w〉 = 〈z, g∗ · w〉.
For z ∈ V , let z# ∈ V ∗ be defined by

(2.16) z#(w) = 〈w, z〉.
Thus z 7→ z# is an isomorphism V → V ∗ of complex vector spaces. Using (2.16) we
obtain

(2.17) (g · z)# = g−t · z#

because

(g · z)#(w) = 〈w, g · z〉 = 〈g∗ · w, z〉 = z#(gt · w) = (g−t · z#)(w).

We let ξ◦ ∈ V ∗ denote the base point given by

ξ◦ = z#
◦ .

Note that ξ◦ is KC-invariant, in view of (2.3) and (2.17).
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The space C[V ] carries a hermitian inner product compatible with the inner prod-
uct 〈·, ·〉 on V . This is the Fock (or Fischer) inner product 〈·, ·〉F defined as

(2.18) 〈f1, f2〉F =
1

πd

∫
f1(z)f2(z)e−〈z,z〉dzdz

where d = dimC(V ) (that is n(n+1)/2, n2 or n(2n− 1) in cases (i)-(iii)) and dzdz is
Lebesgue measure on VR normalized using 〈·, ·〉. The formula (2.18) shows that 〈·, ·〉F
is U -invariant.

Let {fj : j = 1, . . . dλ} be an orthonormal basis for the irreducible subspace Pλ of

C[V ] and fj denote the holomorphic polynomial on V obtained by conjugating the
coefficients in fj. The polynomial

(z, w#) 7→
∑

fj(z)fj(w).

is a U -invariant element of Pλ⊗C[V ∗], and hence it is a multiple of the GC-invariant
polynomial rλ defined in Section 2.4.

Recall that A is the standard maximal torus in GC given by (2.5). For t ∈ (R+)n

let at ∈ A denote the point

at =





diag(t1, . . . , tn) in case (i)(
diag(t1, . . . , tn), diag(t1, . . . , tn)

)
in case (ii)

diag(t1, t1, . . . , tn, tn) in case (iii)
.

In each case at lies in the real form G and one has

(2.19) a−1
t · z◦ = atz◦at = xt2

where xt is given by (1.4) and tk = (tk1, . . . , t
k
n).

When we restrict the canonical invariant pλ to “diagonal” elements, we find:

pλ(x
2
t ) =

∑
fj(x

2
t )fj(x2

t )

∼ rλ(x
2
t , (x

2
t )

#)

= rλ(a
−1
t · z◦, at · ξ◦)

= rλ(a
−2
t · z◦, ξ◦)

= r̃λ(a
2
t )

∼ Ωλ(a
2
t ).

Thus we see that

pλ(xt) ∼ Ωλ(at).

Recall that the spherical function Ωλ and zonal polynomial Zλ are related by the
equation Ωλ(g) = Zλ(g

∗g)/Zλ(I). As at belongs to G and a∗t at = diag(t21, . . . , t
2
n) we

can now write

pλ(xt) ∼ Zλ(t
2).
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3. Normalization constants

For partitions µ ∈ Λ, the monomial symmetric function mµ is given by

mµ(s1, . . . , sn) =
∑

α

sα1
1 · · · sαn

n

where the sum is over all distinct permutations (α1, . . . , αn) of µ = (µ1, . . . , µn). The
mµ’s form a basis for the symmetric polynomials in n variables. Hence both pλ(xt)
and Zλ(t

2) can be expressed uniquely as linear combinations of {mµ(t2) : |µ| = |λ|}.
To evaluate the constant cλ in Equation 2.14 we will compare the coefficient of mλ(t

2)
in pλ(xt) with its coefficient in Zλ(t

2).

3.1. Coefficient of mλ(t
2) in pλ(xt). Recall that ξλ denotes the highest weight

vector in Pλ given by (2.8).

Lemma 3.1. The coefficient of mλ(t
2) in pλ(xt) is 1/||ξλ||2F .

Proof. We seek the coefficient of t2λ1
1 · · · t2λn

n in pλ(xt). Let {fj : 1 ≤ j ≤ dλ} be
an orthonormal basis for Pλ (with respect to the inner product 〈·, ·〉F) consisting of
weight vectors for the maximal torus A. We have say a · fj = χj(a)fj for a ∈ A.
Using equations (1.2) and (2.19) one has

(3.1) pλ(xt) =
∑

j

fj(a
−1√

t
· z◦)fj(a

−1√
t
· z◦) =

∑
j

|χj(a√t)|2|fj(z◦)|2.

We can suppose that f1 = ξλ/||ξλ||F . For each of actions (i)-(iii) we have χ1(at) =
t2λ1
1 · · · t2λn

n since ξλ has weight 2λ, as in (2.6). Moreover ξλ(z◦) = 1 so that equation
(3.1) becomes

(3.2) pλ(xt) =
1

||ξλ||2F
t2λ1
1 · · · t2λn

n +
∑
j≥2

|fj(z◦)|2|χj(a√t)|2.

Each factor |χj(a√t)|2 in the preceding sum is a monomial in (t1, . . . , tn). To complete

the proof we need only show that |χj(a√t)|2 6= t2λ1
1 · · · t2λn

n for j ≥ 2.

• Case (i). Let µj = (µj
1, . . . , µ

j
n) ∈ Zn

≥0 be the weight for fj on A ∼= (C×)n.
Equation (3.2) now reads

pλ(xt) =
1

||ξλ||2F
t2λ1
1 · · · t2λn

n +
∑
j≥2

|fj(z◦)|2tµ
j
1

1 · · · tµj
n

n .

Highest weight theory guarantees that the highest weight 2λ occurs with mul-
tiplicity one in the irreducible subspace Pλ. So none of the exponents µj

(j ≥ 2) coincides with 2λ.
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• Case (ii). Let (µj; νj) ∈ Zn
≥0×Zn

≥0 be the weight for fj on A ∼= (C×)n×(C×)n.
Now

pλ(xt) =
1

||ξλ||2F
t2λ1
1 · · · t2λn

n +
∑
j≥2

|fj(z◦)|2tµ
j
1+νj

1
1 · · · tµj

n+νj
n

n .

Highest weight theory ensures that the highest weight 2λ = (λ; λ) dominates
all of the weights (µj, νj). That is

λ1 + · · ·+ λk ≥ µj
1 + · · ·+ µj

k and λ1 + · · ·+ λk ≥ νj
1 + · · ·+ νj

k

for 1 ≤ k ≤ n. Using these conditions, one sees that if µj
k + νj

k = 2λk holds
for each k = 1, . . . , n then we must have µj = λ = νj. But this is not possible
as the highest weight (λ; λ) occurs with multiplicity one.

• Case (iii). Let (µj
1, ν

j
1, . . . , µ

j
n, ν

j
n) ∈ Z2n

≥0 be the weight for fj on A ∼= (C×)2n.
As in case (ii) we have

pλ(xt) =
1

||ξλ||2F
t2λ1
1 · · · t2λn

n +
∑
j≥2

|fj(z◦)|2tµ
j
1+νj

1
1 · · · tµj

n+νj
n

n

and 2λ = (λ1, λ1, . . . , λn, λn) dominates each (µj
1, ν

j
1, . . . , µ

j
n, ν

j
n). This means

{
2(λ1 + · · ·+ λk−1) + λk ≥ (µj

1 + · · ·+ µj
k) + (νj

1 + · · ·+ νj
k−1)

2(λ1 + · · ·+ λk) ≥ (µj
1 + · · ·+ µj

k) + (νj
1 + · · ·+ νj

k)

}

for k = 1, . . . , n. As in case (ii) these conditions force µj = λ = νj when
µj

k + νj
k = 2λk for each k. ¤

3.2. Coefficient of mλ in Zλ. We now identify partitions λ with their Young’s
diagrams. Let λ′ denote the conjugate partition, obtained by transposing the diagram
for λ. Each box s = (i, j) in λ has hook length

`(s) + a(s) + 1

where

`(s) = λ′j − i, a(s) = λi − j

are the leg and arm lengths for s. For fixed α > 0, Stanley defines two weighted
versions of the hook length in [Sta89]. The lower hook length and upper hook length
for s = (i, j) are

`(s) + αa(s) + 1, `(s) + αa(s) + α.
1 α · · · α
1
...
1

α α · · · α
1
...
1
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For ease of notation, we write hλ(s; α) = `(s) + αa(s). Let

(3.3) H∗(λ; α) =
∏

s∈λ

(hλ(s; α) + 1), H∗(λ; α) =
∏

s∈λ

(hλ(s; α) + α)

denote the products of the lower and upper hook lengths for λ. Note that

H∗(λ; 1) = H∗(λ; 1) = H(λ) =
∏

s∈λ

(`(s) + a(s) + 1),

the standard product of hook lengths.
For actions (i)-(iii) one has zonal polynomials Zλ = Jλ(· ; α) with α = 2, 1, 1/2

respectively. As explained in Section 1, we follow the convention from [Sta89] and
[Mac87] regarding normalization for these polynomials. This ensures:

Lemma 3.2. ([Sta89] Theorem 5.6) The coefficient of mλ in Jλ(· ; α) is H∗(λ; α).

3.3. A norm calculation. To reconcile Lemma 3.1 with Lemma 3.2 we must com-
pute ||ξλ||2F , the square of the norm for the highest weight vector ξλ in Pλ.

Suppose that we express polynomials f ∈ C[V ] using coordinates wj with respect
to an orthonormal basis for V . It is well known that the Fock inner product (2.18)
can be evaluated using the rule

〈f1, f2〉F =
(
f1(∂)f 2

)
(0),

where “f(∂)” is the operator obtained by substituting ∂j = ∂/∂wj for wj in the
expression for f . (See Section 7.5 in [BR04] for a proof.)

For z ∈ Mn(C) the (i, j)’th entry zij is a coordinate with respect to the orthonormal

basis {Eij : 1 ≤ i, j ≤ n}. Thus in case (ii) we have 〈f1, f2〉F = (f1(∂)f 2)(0) where
∂ denotes the n× n matrix [∂ij = ∂/∂zij]. In case (i){

Eii,
1√
2
(Eij + Eji)

}

is an orthonormal basis for V = Sym(n,C). The coordinate functions with respect
to this basis are

wii = zii and wij =
√

2zij for i < j.

In this case, the inner product on C[V ] can be expressed using zij variables as

〈f1, f2〉F = f1(∂
S)f 2(0)

where

∂S =




∂11
1
2
∂12 · · · 1

2
∂1n

1
2
∂21 ∂22 · · · 1

2
∂2n

...
. . .

...
1
2
∂n1

1
2
∂n2 · · · ∂nn




subject to the convention: zij = zji and ∂ij = ∂ji. Similar considerations apply in
case (iii) to yield

〈f1, f2〉F = f1(∂
∧)f 2(0)
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where

∂∧ =




0 1
2
∂1,2 · · · 1

2
∂1,2n

1
2
∂2,1 0 · · · 1

2
∂2,2n

...
. . .

...
1
2
∂2n,1

1
2
∂2n,2 · · · 0




with zij = −zji and ∂ij = −∂ji.
Now let λ = (λ1, . . . , λn) be a partition with λn > 0. We have

(3.4) ||ξλ||2F = 〈ξλ, ξλ1−λ2
1 · · · ξλn−1−λn

n−1 ξλn
n 〉F = 〈ξn(∂̃)ξλ, ξλ−(1n)〉F

where (1n) = (1, . . . , 1) and

∂̃ = ∂S, ∂ or ∂∧ for actions (i)-(iii) respectively.

Lemma 3.3. ξn(∂̃)ξλ = aλξλ−(1n) where

aλ =





(1/2n)
∏n

i=1(2λi + n− i) = (1/2n)
∏

s=(i,1)(hλ(s; 2) + 2) for action (i)∏n
i=1(λi + n− i) =

∏
s=(i,1)(hλ(s; 1) + 1) for action (ii)∏n

i=1(λi/2 + n− i) =
∏

s=(i,1)(hλ(s; 1/2) + 1/2) for action (iii)
.

Proof. These are known equations. They can be derived by applying a Capelli identity
in each case, as outlined below.

Case (i). The symmetric Capelli identity asserts that the GL(n,C)-invariant operator

ξn(z)ξn(∂̃) = det(z)det(∂S) on C[Sym(n,C)] can be rewritten as

det(z)det(∂S) =
1

2n
det(Ẽij + δij(n− j)).

See [Tur47] and Section 11.2 in [HU91]. Here

Ẽij =
∑

k

(zik∂jk + zki∂kj)

gives the derived action of Eij ∈ gl(n,C) on C[V ]. To apply this expression correctly

one must regard zij, zji as independent variables and expand det(Ẽij + δij(n − j))
in column order. One can argue that only the diagonal terms in this expansion can
yield a non-zero result when applied to ξλ. So in fact

ξn(z)ξn(∂̃)(ξλ) =
1

2n

n∏
i=1

(2zii∂ii + n− i)ξλ.

The result for action (i) now follows since

zii∂ii(ξλ) = (λi − λi+1)ξλ + · · ·+ (λn−1 − λn)ξλ + λnξλ = λiξλ.

Case (ii). For action (ii) the value of aλ is given by formula (11.1.15) in [HU91]. This
is an application of the classical Capelli identity, analogous to the symmetric case
discussed above.
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Case (iii). A skew Capelli identity is given in general form in [HU91] and explicitly
in [KW02]. The result is that 2nξn(z)ξn(∂∧) = Pf(z)Pz(∂) acts on Pλ by the scalar

n∏
i=1

(λi + 2(n− i)).

See (11.3.6) in [HU91] and (3.11) in [KW02]. Thus ξn(z)ξn(∂∧) acts on Pλ by the
scalar

aλ =
1

2n

n∏
i=1

(λi + 2(n− i)) =
n∏

i=1

(
λi

2
+ n− i).

¤

Applying Lemma 3.3 to Equation 3.4 and proceeding inductively one obtains:

Lemma 3.4.

||ξλ||2F =





H∗(λ; 2)/2|λ| for action (i)
H(λ) for action (ii)

H∗(λ; 1/2) for action (iii)
.

3.4. The constant cλ. In view of Lemmas 3.1 and 3.2 we have pλ(xt) = cλZλ(t
2)

where

cλ =
1

H∗(λ; α)||ξλ||2F
with α = 2, 1, 1/2 for actions (i)-(iii) respectively. Substituting the value for ||ξλ||2F
from Lemma 3.4 yields

cλ =





2|λ|/(H∗(λ; 2)H∗(λ; 2)) for action (i)
1/H(λ)2 for action (ii)

1/(H∗(λ; 1/2)H∗(λ; 1/2)) for action (iii)
.

This establishes (1.6), completing the proof of Theorem 1.1.

4. Generalized binomial coefficients

Let GC : V be a multiplicity free action with associated decomposition C[V ] =
⊕λ∈ΛPλ The generalized binomial coefficient

[
λ
µ

]
gives the eigenvalue for the GC-

invariant operator pµ(z, ∂) on Pλ. As explained in [BR98, BR04], these values admit
alternate interpretations and have a rich combinatorial theory. Key to this theory is
a Pieri type formula due to Z. Yan [Yan92].
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4.1. Yan’s Pieri formula. Recall that U denotes a maximal compact subgroup in
GC and 〈·, ·〉 is a U -invariant hermitian inner product on V . We regard our canonical
invariants pλ as living in P(VR)

U . Let |λ| denote the degree of homogeneity for Pλ.
For actions (i)-(iii) this coincides with the number of parts in partition λ. Clearly[
λ
µ

]
= 0 unless |µ| ≤ |λ|. As the polynomial

γ(z) =
1

2
〈z, z〉

also belongs to P(VR)
U , the product γkpµ can be expressed as a linear combination

of invariants pλ with |λ| = |µ|+ k. In fact

(4.1)
γkpµ

k!
=

∑

|λ|=|µ|+k

[
λ

µ

]
pλ.

Proofs for (4.1) can be found in [Yan92] and [BR98, BR04].
Using Equation 4.1 iteratively, one obtains a contraction formula for the generalized

binomial coefficients
[
λ
µ

]
with |λ| = |µ|+ k. Namely

(4.2)

[
λ

µ

]
=

1

k!

∑ [
ε1

µ

][
ε2

ε1

]
· · ·

[
εk−1

εk−2

][
λ

εk−1

]

where the sum is over all (ε1, . . . , εk−1) with |εj| = |µ|+ j.

4.2. Stanley’s Pieri formula. Let Jλ denote the Jack polynomial Jλ(·; α) with
some fixed parameter α > 0. In [Sta89], R. Stanley expresses the product J(k)Jµ in
terms of Jλ’s with |λ| = |µ|+ k. For k = 1 the result is Equation 4.4 below.

Suppose that λ, µ are two diagrams which differ by a single box s◦ = (i◦, j◦). For
any box s = (i, j) in λ let

h↑µ(λ, s) =

{
hλ(s; α) + α if j = j◦
hλ(s; α) + 1 if j 6= j◦

, h↓µ(λ, s) =

{
hλ(s; α) + 1 if j = j◦
hλ(s; α) + α if j 6= j◦

For h↑µ(λ, s), this means: Use the upper hook length for s in λ when s and s◦ lie
in the same column, otherwise use the lower hook length. (We have momentarily
suppressed the dependence on α.)

Now set
H↑

µ(λ; α) =
∏

s∈λ

h↑µ(λ, s), H↓
µ(λ; α) =

∏
s∈σ

h↓µ(λ, s).

Note that h↑µ(λ, s)h↓µ(λ, s) = (hλ(s; α) + α)(hλ(s; α) + 1) and hence

(4.3) H↑
µ(λ; α)H↓

µ(λ; α) = H∗(λ; α)H∗(λ; α).

Stanley’s Pieri formula with k = 1 and fixed parameter α > 0 now reads:

(4.4) J(1)Jµ = α
∑

λ⊃µ
|λ|=|µ|+1

H↑
λ(µ; α)

H↑
µ(λ; α)

Jλ.
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The polynomial J(1) in (4.4) is just

J(1)(t1, . . . , tn) = m(1)(t1, . . . , tn) = t1 + · · ·+ tn

= e1(t1, . . . , tn),

the first elementary symmetric polynomial, independent of α.

4.3. The generalized binomial coefficients for actions (i)-(iii). Now let GC : V
be one of actions (i)-(iii). On the cross section X = {xt : t ≥ 0} we have

γ(xt) =
〈xt, xt〉

2
=

t21 + · · ·+ t2n
2

=
1

2
e1(t

2).

Using Theorem 1.1 together with Pieri formulas (4.1) and (4.4) we can now write

∑

|λ|=|µ|+1

[
λ

µ

]
pλ(xt) = γ(xt)pµ(xt)

=
1

2
e1(t

2)cµZµ(t2)

=
α

2

∑

λ⊃µ
|λ|=|µ|+1

cµ
H↑

λ(µ; α)

H↑
µ(λ; α)

Zλ(t
2)

=
α

2

∑

λ⊃µ
|λ|=|µ|+1

cµ

cλ

H↑
λ(µ; α)

H↑
µ(λ; α)

pλ(xt),

with α = 2, 1 or 1/2 for actions (i)-(iii) respectively. Thus

(4.5)

[
λ

µ

]
=

α

2

cµ

cλ

H↑
λ(µ; α)

H↑
µ(λ; α)

.

Substituting the values for the normalization constants cµ, cλ from (1.6) into (4.5)
and applying (4.3) yields the following.

Lemma 4.1. For |λ| = |µ|+ 1 one has
[
λ
µ

]
= 0 unless λ ⊃ µ in which case

[
λ

µ

]
=





1
2
H↓

µ(λ; 2)/H↓
λ(µ; 2) for action (i)

1
2
H(λ)/H(µ) for action (ii) and

1
4
H↓

µ(λ; 1/2)/H↓
λ(µ; 1/2) for action (iii)

.

Suppose that λ is obtained from µ by adding a single box s◦ = (i◦, j◦). For each

box s = (i, j) in µ one has h↓µ(λ, s) = h↓λ(µ, s) unless s is in the same row or column
as s◦. So the hook quotients in Lemma 4.1 are:

H↓
µ(λ; α)

H↓
λ(µ; α)

=
∏
j<j◦

hµ((i◦, j); α) + α

hµ((i◦, j); α)
×

∏
i<i◦

hµ((i, j◦); α) + 1

hµ((i, j◦); α)
.
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The generalized binomial coefficients
[
λ
µ

]
with |λ| ≥ |µ| are determined by Lemma

4.1 together with the contraction formula 4.2.

Theorem 4.2. For |λ| = |µ| + k one has
[
λ
µ

]
= 0 unless λ ⊃ µ. When λ ⊃ µ the

generalized binomial coefficient is determined as follows.

• Action (i):
[
λ

µ

]
=

1

2kk!

∑ k∏
j=1

H↓
λ(j−1)(λ

(j); 2)

H↓
λ(j)(λ(j−1); 2)

where the sum is over all standard tableaux µ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(k) = λ
of shape λ− µ.

• Action (ii): [
λ

µ

]
=
Cλ,µ

2kk!

H(λ)

H(µ)

where Cλ,µ is the number of standard tableaux of shape λ− µ.
• Action (iii):

[
λ

µ

]
=

1

4kk!

∑ k∏
j=1

H↓
λ(j−1)(λ

(j); 1/2)

H↓
λ(j)(λ(j−1); 1/2)

where the sum is over all standard tableaux µ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(k) = λ
of shape λ− µ.

For action (ii) factors H(λ(j)) cancel for j = 1, . . . , k − 1 using any tableau µ =
λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(k) = λ. This accounts for the simpler formula for the generalized
binomial coefficients in this case. Such cancellation does not occur with the weighted
hook products H↓

λ(j−1)(λ
(j); α) that appear in connection with actions (i) and (iii).

4.4. An example. To illustrate Theorem 4.2 we will calculate
[
(4, 2, 2)

(3, 1, 1)

]

for actions (i)-(iii) and any n ≥ 3. The diagram λ = (4, 2, 2) can be obtained from
µ = (3, 1, 1) by adding three boxes in three different ways. These are indicated by
the tableaux Ti listed in the first column of Table 2. Each corresponds to a sequence
of diagrams

µ = λ(0) ⊂ λ(1) ⊂ λ(2) ⊂ λ(3) = λ,

where λ(i) is obtained from λ(i−1) by addition of the box labelled i.
As Cλ,µ = 3 we obtain

[
(4, 2, 2)

(3, 1, 1)

]
=

3

233!

H((4, 2, 2))

H((3, 1, 1))
=

3

233!

6 · 5 · 2 · 1 · 3 · 2 · 2 · 1
5 · 2 · 1 · 2 · 1 =

9

4
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Tableau λ(0) ⊂ λ(1) λ(1) ⊂ λ(2) λ(2) ⊂ λ(3)

T1 =
1

2
3

2+4α
2+3α

3α
2α

2α
α

1
(?)

2+2α
1+2α

1+2α
1+α

1
(?)

3+2α
2+2α

2
1

2α
α

1
(?)

T2 =
2

1
3

2+α
1+α

1+2α
1+α

1
(?)

2+4α
2+3α

1+3α
1+2α

2α
α

1
(?)

3+2α
2+2α

2
1

2α
α

1
(?)

T3 =
3

1
2

2+α
1+α

1+2α
1+α

1
(?)

3+α
2+α

2
1

2α
α

1
(?)

2+4α
2+3α

2+3α
2+2α

2α
α

1
(?)

Table 2

for action (ii). For actions (i) and (iii) Table 2 gives a weighted hook length for boxes
in λ(j) and λ(j−1) that lie in the same row or column as the new box (?) added at
each stage. These are lower hook lengths for boxes in the same column as (?) and
upper hook lengths for the boxes in the same row. The products

πi =
3∏

j=1

H↓
λ(j−1)(λ

(j), α)

H↓
λ(j−1)(λ(j−1); α)

using tableau Ti are

π1 =
2 + 4α

2 + 3α
· 3α

2α
· 2α

α
× 2 + 2α

1 + 2α
· 1 + 2α

1 + α
× 3 + 2α

2 + 2α
· 2

1
· 2α

α
,

π2 =
2 + α

1 + α
· 1 + 2α

1 + α
× 2 + 4α

2 + 3α
· 1 + 3α

1 + 2α
· 2α

α
× 3 + 2α

2 + 2α
· 2

1
· 2α

α
,

π3 =
2 + α

1 + α
· 1 + 2α

1 + α
× 3 + α

2 + α
· 2

1
· 2α

α
× 2 + 4α

2 + 3α
· 2 + 3α

2 + 2α
· 2α

α
.

For action (i) one sets α = 2 and obtains
[
(4, 2, 2)

(3, 1, 1)

]
=

1

233!

(
π1 + π2 + π3

)
=

325

144
.

For action (iii) we take α = 1/2 to obtain
[
(4, 2, 2)

(3, 1, 1)

]
=

1

433!

(
π1 + π2 + π3

)
=

17

63
.
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5. Some related actions

In this section we extend our results for actions (ii) and (iii) to encompass two
closely related actions:

(ii)′ GC = GL(n,C)×GL(m,C) acts on the space V = Mn,m(C) of n×m matrices
via g · z = g−t

1 zg−1
2 . Without loss of generality, we assume below that n ≤ m.

(iii)′ GC = GL(2n + 1,C) acts on V = Skew(2n + 1,C) via g · z = g−tzg−1.

As is well known, actions (ii)′ and (iii)′ are multiplicity free and the decomposition
of C[V ] into GC-irreducible components parallels that for (ii) and (iii) [How89, How95,
GW98, BR04]. That is, C[V ] = ⊕λ∈ΛPλ where, as before,

• Λ is the set of partitions λ = (λ1, . . . , λn) with at most n parts,
• the irreducible representation GC : Pλ has highest weight

2λ =

{
(λ; λ) in case (ii)′

(λ1, λ1, . . . , λn, λn) in case (iii)′

• and ξλ, given by Equation 2.8, is a highest weight vector in Pλ.

The usual maximal compact subgroup of GC is

U = U(n)× U(m) or U(2n + 1) in cases (ii)′ and (iii)′ respectively.

One obtains a canonical invariant pλ ∈ P(VR)
U ∼= C[V ⊕ V ∗]GC for each λ ∈ Λ.

Let

V◦ =

{
Mn(C) in case (ii)′

Skew(2n,C) in case (iii)′ ,

G◦
C =

{
GL(n,C)×GL(n,C)

or GL(2n,C)
, U◦ =

{
U(n)× U(n)

or U(2n)
,

and consider the obvious embeddings

V◦ ⊂ V, G◦
C ⊂ GC, U◦ ⊂ U.

It is clear that each U -orbit in V meets V◦. Hence the invariant pλ ∈ P(VR)
U is

determined by its restriction to V◦. Moreover pλ|V◦ belongs to P((V◦)R)U◦ because
U◦ ⊂ U preserves V◦.

Proposition 5.1. The restrictions pλ|V◦ of the canonical invariants for actions (ii)′

and (iii)′ to V◦ coincide with the canonical invariants for actions (ii) and (iii).

In view of Theorems 1.1 and 4.2, Proposition 5.1 has an immediate corollary:

Corollary 5.2. The canonical invariants pλ ∈ P(VR)
U for actions (ii)′ and (iii)′ are

determined by their restrictions to the cross-section X ⊂ V◦ given by (1.5). These
are precisely the symmetric functions pλ(xt) = cλZλ(t

2) from cases (ii) and (iii) in
Theorem 1.1. Moreover the generalized binomial coefficients for actions (ii)′ and (iii)′

coincide with those for (ii) and (iii), obtained above in Theorem 4.2.
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Proof of Proposition 5.1. We write the decomposition for C[V◦] under the action of
G◦
C as

C[V◦] =
⊕

λ∈Λ

P ◦
λ ,

let ξ◦λ ∈ P ◦
λ denote highest weight vector (2.8) and p◦λ ∈ P(VR)

U◦ the associated
canonical invariant. Let

r : C[V ] → C[V◦]

be the restriction map. We will prove that

(5.1) r(Pλ) = P ◦
λ .

• Case (ii)′: By induction we can assume here that m = n + 1. The (GC =
Gl(n,C) × GL(n + 1,C))-irreducible space Pλ decomposes under the action
of G◦

C = GL(n,C)×GL(n,C) as

Pλ =
⊕

ν

Pλ,ν

where the sum is over all partitions ν = (ν1, . . . , νn) that interlace (λ1, . . . , λn, 0):

λ1 ≥ ν1 ≥ λ2 ≥ ν2 ≥ · · · ≥ νn−1 ≥ λn ≥ νn ≥ 0

and the irreducible representation G◦
C : Pλ,ν has highest weight (λ; ν). This is

an immediate consequence of the branching rules for GL(n,C) ⊂ GL(n+1,C)
([GW98], Theorem 8.1.1). As r is G◦

C-equivariant,

Kλ,ν = Ker(r|Pλ,ν
)

is G◦
C-invariant. Thus Kλ,ν = {0} or Kλ,ν = Pλ,ν . If Kλ,ν = {0} then

the highest weight (λ; ν) occurs in C[V◦] on the subspace r(Pλ,ν). But we
know that only highest weights of the form 2λ = (λ; λ) occur in C[V◦]. So
r(Pλ,ν) = {0} unless ν = λ. On the other hand ξλ ∈ Pλ,λ has r(ξλ) = ξ◦λ. So
r|Pλ,λ

is injective and r(Pλ,λ) is a copy of the irreducible representation for G◦
C

with highest weight 2λ. Thus

r(Pλ) = r(Pλ,λ) = P ◦
λ .

• Case (iii)′: The (GC = GL(2n+1,C))-irreducible space Pλ has highest weight
(λ1, λ1, . . . , λn, λn, 0). This decomposes under the action of G◦

C = GL(n,C)
as

Pλ =
⊕

ν

Pλ,ν

where, as in case (ii)′, the sum is over all partitions ν = (ν1, . . . , νn) with

λ1 ≥ ν1 ≥ λ2 ≥ ν2 ≥ · · · ≥ νn−1 ≥ λn ≥ νn ≥ 0.

Here Pλ,ν has highest weight (λ1, ν1, · · · , λn, νn). From this one argues, as in
the preceding case, that r(Pλ,ν) = {0} for ν 6= λ and that r(Pλ,λ) = P ◦

λ .
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Since pλ ∈ (Pλ ⊗ P λ)
U , Equation 5.1 now implies

pλ|V◦ ∈
[
(r(Pλ)⊗ r(Pλ))

U◦ = (P ◦
λ ⊗ P ◦

λ )U◦ = Cp◦λ
]
.

Thus pλ|V◦ is a scalar multiple of p◦λ. To show that, in fact, pλ|V◦ = p◦λ, we note
that, as in Lemma 3.1, the coefficients of mλ(t

2) in pλ(xt) and p◦λ(xt) are 1/||ξλ||2F
and 1/||ξ◦λ||2F respectively. (Here || · ||F denotes the Fock norm on both C[V ] and
C[V◦].) But ||ξλ||F = ||ξ◦λ||F . Indeed, the derivation given for Lemma 3.4 in cases
(ii) and (iii) also encompasses actions (ii)′ and (iii)′. In particular, the Capelli and
skew-Capelli identities from [HU91] and [KW02] apply in these cases, just as in the
proof of Lemma 3.3. ¤

6. Related work

We conclude with some remarks concerning [KS96] and related work. For each
fixed partition µ ∈ Λ, Knop and Sahi show that the function

eµ : Λ → C, eµ(λ) =

[
λ

µ

]

extends in a natural way to a polynomial function on Cn. This is non-homogeneous
of degree |µ| and is uniquely determined by conditions of vanishing and shifted sym-
metry. Working from this characterization, it is shown that the eµ’s satisfy a system
of difference equations. The canonical invariant pµ can, moreover, be obtained from
the terms of highest degree in eµ. The difference equations for eµ imply that pµ is an
eigenfunction for certain differential operators. These are the differential operators of
Debiard [Deb83] and Sekiguchi [Sek77], which can be used to define Jack polynomials
[Mac87]. Thus, up to normalization, pµ is a Jack polynomial and eµ a shifted Jack
polynomial. Combinatorial properties of shifted Jack functions were subsequently
developed by Okounkov and Olshanski in [OO97]. See also [OO98a, OO98b] for the
important special case of shifted Shur functions, with relevance for action (ii). More
recent work of Knop [Kno00, Kno01, Kno03] provides far reaching extensions of the
techniques outlined above, encompassing many further examples of multiplicity free
actions.
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