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Abstract. This paper concerns G-invariant systems of second order differential
operators on irreducible Hermitian symmetric spaces G/K. The systems of type
(1, 1) are obtained from K-invariant subspaces of p+ ⊗ p−. We show that all such
systems can be derived from a decomposition p+ ⊗ p− = H′ ⊕ L ⊕ Hc. Here L
gives the Laplace-Beltrami operator and H = H′⊕L is the celebrated Hua system,
which has been extensively studied elsewhere. Our main result asserts that for
G/K of rank at least two, a bounded real-valued function is annihilated by the
system L ⊕Hc if and only if it is the real part of a holomorphic function. In view
of previous work, one obtains a complete characterization of the bounded functions
that are solutions for any system of type (1, 1) which contains the Laplace-Beltrami
operator.
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1. Introduction

Let G/K be a non-compact irreducible Hermitian symmetric space of rank r. The
algebra D(G/K) of left-G-invariant differential operators on G/K has r algebraically
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independent generators. D(G/K) contains no first degree operators and has only
one second degree generator, the Laplace-Beltrami operator. In order to fully exploit
the virtues of G-invariance in low degrees, one is lead naturally to consider invariant
systems of differential operators.

An abstract formalism for such systems (on any homogeneous space) can be found
in [BV]. (See also Chapter V, Section 4 in [H3].) Following [BV], a G-invariant
system is determined by a representation of K in some vector space V together with
a K-equivariant map d : V ∗ → D(G) from V ∗ to the algebra of left-G-invariant
differential operators on G. The associated system maps smooth functions on G/K
to smooth sections in the vector bundle G×K V over G/K. We loose no generality by
assuming that d is injective and can replace the data (V, d) by the image W = d(V ∗),
a K-invariant subspace in D(G). The corresponding system becomes a map DW

from C∞(G/K) to Γ(G×K W ∗). We will describe this construction in greater detail
below in Section 2.

In the present context, there is a natural notion of type for systems DW . Roughly
speaking, we say that DW has type (a, b) if each operator in W has the form

∑

|α|=a,|β|=b

cα,β∂α∂
β

at the identity, where α, β are multi-indices and “∂” denotes derivatives with respect
to holomorphic coordinates in directions tangent to G/K. This will be made precise
below.

The holomorphic (type (a, 0)) and anti-holomorphic (type (0, b)) systems on irre-
ducible Hermitian symmetric spaces are completely classified in view of results of
Johnson [J]. In general, the classification of all systems of specified type (a, b) on a
given G/K reduces to a problem in Invariant Theory. Our focus here is the systems
of type (1, 1), determined by K-invariant subspaces in p+ ⊗ p−. To our knowledge,
such systems have not been the subject of any systematic study.

Proposition 4.2, formulated below, classifies the systems of type (1, 1) on any non-
compact irreducible Hermitian symmetric space. In general, the possibilities are quite
limited. Apart from the Laplace-Beltrami operator, these include the so-called Hua
system. This system, which we denote by DH, is given by a canonical K-invariant
subspace H in p+⊗p−. The action of K on H is equivalent to its complexified adjoint
representation on kC. The space H further decomposes under the action of K as

H = L ⊕H′

where L corresponds to the (necessarily one dimensional) center in kC and H′ to the
(semi-simple) derived algebra k′C. If G/K has type A III and rank at least two then
k′C has two simple factors and H′ = H′

1⊕H′
2 is the sum of two irreducible subspaces.

In all other cases k′C is simple and hence H′ is irreducible. The one dimensional space
L consists of all multiples of the Laplace-Beltrami operator, which we also denote by
L, the meaning being clear from the context.



SYSTEMS ON HERMITIAN SYMMETRIC SPACES 3

One can also consider the subspace Hc orthogonal to H in p+ ⊗ p−. This is
necessarily K-invariant and we call DHc the complementary Hua system. When G/K
has rank one, Hc = 0. We will show that for rank(G/K) ≥ 2, Hc is always non-zero
and K-irreducible. We will provide two additional abstract characterizations of Hc:

• Hc is the kernel of the linear map p+ ⊗ p− → kC given by the Lie bracket.
• Hc is the Cartan component in the tensor product p+ ⊗ p− of the irreducible

K-modules p±.

These facts support the viewpoint that the complementary Hua system is a natural
object for study. For the classical families of non-compact irreducible Hermitian
symmetric spaces, concrete descriptions are given in Section 3 for the spaces H and
Hc.

The solutions for a G-invariant system DW are of particular interest. We say that a
smooth function f on G/K is W -harmonic when DW f = 0. The aim of this paper is
to characterize such functions for each invariant system of type (1, 1) which contains
the Laplace-Beltrami operator L.

In [JK] it is shown that for G/K of tube type, a smooth bounded function is
H-harmonic if and only if it is a Poisson-Szegö integral over the Shilov boundary.
It was previously known (see [Hua]) that for G/K = SU(n, n)/S(U(n) × U(n)),
Poisson-Szegö integrals f necessarily satisfy DHf = 0. Hua harmonicity on tube
domains is also the subject of [L]. The Hua system for non-tube domains has been
studied in [BBDHPT] and [B]. In this context, the real valued functions f on G/K
satisfying DHf = 0 are the pluriharmonic functions [B]. That is, f is the real part
of a holomorphic function on G/K. To describe Poisson-Szegö integrals on general
non-tube domains a third order system BV of type (2, 1) is needed [BV].

Our principal object of study is the system D eHc , where

H̃c = L ⊕Hc.

That is, we augment the complementary Hua system to include the Laplace-Beltrami

operator. This ensures that H̃c-harmonic functions are harmonic in the usual sense.
Theorem 5.3 below asserts that for rank(G/K) ≥ 2 a bounded real valued function

on G/K is H̃c-harmonic if and only if it is pluriharmonic. This is the main result in
the current work.

Our proof of Theorem 5.3 is based essentially on an interplay between the “G/K”-
picture and “S” - picture of a Hermitian symmetric space, S being a solvable Lie
group acting simply transitively on the corresponding Siegel domain cD. In Section
6 we use classical structure theory for Hermitian symmetric spaces to exhibit some
operators on G/K that belong to the system L ⊕ Hc. In Section 7 we leave the
“G/K-picture” and express these operators in terms of S. This allows us to apply
techniques and results from [BBDHPT] and [B] to the proof of Theorem 5.3 in Section
8. We show, in particular, that a bounded function f annihilated by L ⊕ Hc is a
Poisson-Szegö integral. In the tube case, it follows from [JK] that f is H-harmonic
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and we immediately conclude that f is pluriharmonic, since H′⊕L⊕Hc = p+⊗ p−.
In the non-tube case, in view of [BV], f is annihilated by the third order system BV .
We use this fact and a technique from [B] to complete the proof for non-tube spaces.

As explained in Section 5, Theorem 5.3 together with previously known results con-
cerning the Hua system yields a complete characterization for the bounded solutions
of all possible type (1, 1) systems which contain the Laplace-Beltrami operator.

Acknowledgement: The authors would like to express their deep gratitude to Jacques
Faraut for a fruitful conversation that originated this paper.

2. Invariant systems of differential operators

Given a Lie group G, we let D(G) (∼= U(gC)) denote the algebra of left-G-invariant
differential operators on G. The group G acts on D(G) via the adjoint representation:

Ad(g)X(f) = X(f ◦ rg−1) ◦ rg for g ∈ G, X ∈ D(G), f ∈ C∞(G),

where rg : G → G denotes right multiplication. We recall that the symmetrization
map

λ : S(gC) → D(G)

is a canonical Ad(G)-equivariant vector space isomorphism from the symmetric alge-
bra on the complexified Lie algebra gC of G to D(G). We refer the reader to §4 in
Chapter II of [H2] for details.

Now suppose K is a closed Lie subgroup of G. For f ∈ C∞(G/K), we let f̃ ∈
C∞(G) denote the map

f̃(g) = f(gK).

If X ∈ D(G) is Ad(K)-invariant then X yields a left-G- invariant differential operator
on G/K (also denoted X) via the rule

(Xf )̃ = Xf̃.

More generally, an Ad(K)-invariant subspace W of D(G) yields a left-G-invariant
system DW of differential operators on G/K as explained below.

To describe DW , one forms the (complex) vector bundle G ×K W ∗ associated
to the principle bundle G → G/K via the representation Ad∗ : K → GL(W ∗)
contragredient to Ad|K on W (Ad∗(k)α = α ◦ Ad(k−1)). The total space is

G×K W ∗ = (G×W ∗)/ ∼
where ∼ is the equivalence relation on G×W ∗ given by

(gk, α) ∼ (g, Ad∗(k)α)

for all k ∈ K.
The projection map π : G×K W ∗ → G/K is just

π
(
[g, α]

)
= gK,



SYSTEMS ON HERMITIAN SYMMETRIC SPACES 5

where [g, α] ∈ G ×K W ∗ denotes the equivalence class of (g, α) ∈ G × W ∗. We let
Γ(G ×K W ∗) denote the space of smooth sections in the bundle G ×K W ∗. Smooth
sections s ∈ Γ(G ×K W ∗) are in one-to-one correspondence with smooth maps s̃ :
G → W ∗ satisfying

(2.1) s̃(gk) = Ad∗(k−1)s̃(g) = s̃(g) ◦ Ad(k),

for g ∈ G, k ∈ K. The correspondence s ↔ s̃ is given by

s(gK) = [g, s̃(g)].

Definition 2.2. The system DW of differential operators on G/K determined by an
Ad(K)-invariant subspace W ⊂ D(G) is the map

DW : C∞(G/K) → Γ(G×K W ∗)

defined via
(DW f )̃ (g)(X) = X(f̃)(g),

for f ∈ C∞(G/K), g ∈ G, X ∈ W .

To justify Definition 2.2 one verifies (easily) that the map (DW f )̃ satisfies the K-
equivariance property (2.1). The Ad(K)-invariance of W is needed here. When W is
finite dimensional we can write

(DW f )̃ (g) =
n∑

j=1

Xj(f̃)(g)X∗
j ,

where {Xj : j = 1, . . . , n} is any basis for W and {X∗
j } is the dual basis for W ∗.

There is a natural left action of G on Γ(G×K W ∗):

(s ◦ Lg )̃ (h) = s̃(gh).

The system DW is left-G-invariant in the sense that

(DW f) ◦ Lg = DW (f ◦ `g),

where `g is left multiplication by g on G/K. This follows immediately from the fact
that each operator X ∈ W is left-G-invariant.

It is of interest to study zeros for systems of the form DW . Observe that f ∈
C∞(G/K) satisfies DW f = 0 if and only if Xf̃ = 0 for all X ∈ W . In this case,
we will say that f is a W -harmonic function and often write W (f) = 0 in place of
DW f = 0.

2.1. Invariant systems on symmetric spaces. Now suppose that G/K is a sym-
metric space of non-compact type and let

g = k⊕ p

denote the Cartan decomposition for the Lie algebra g of G. Since p is Ad(K)-
invariant, we have

D(G) = D(G)k⊕ λ(S(pC)),
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where λ : S(gC) → D(G) is the symmetrization map. (See Lemma 4.7 in Chapter II
of [H2].) Both D(G)k and λ(S(pC)) are Ad(K)-invariant subspaces of D(G), because

λ is Ad(G)-equivariant. For f ∈ C∞(G/K) one has Xf̃ = 0 for all X ∈ D(G)k. Thus
we obtain:

Lemma 2.3. Let W be an Ad(K)-invariant subspace of D(G) and W ′ be the projec-
tion of W onto λ(S(pC)) with respect to the decomposition D(G) = D(G)k⊕λ(S(pC)).
Then W ′ is Ad(K)-invariant, and for any f ∈ C∞(G/K):

f is W -harmonic if and only if f is W ′-harmonic.

Lemma 2.3 shows that if we wish to study the zeros of invariant systems of differ-
ential operators on G/K, we can restrict attention to systems obtained from Ad(K)-
invariant subspaces W of λ(S(pC)).

2.2. Invariant systems on Hermitian symmetric spaces. Next suppose that
G/K is a Hermitian symmetric space of non-compact type. The complex structure
on G/K yields an almost complex structure J on TeK(G/K) ∼= p. This extends to a
complex linear map J : pC → pC and one has

pC = p+ ⊕ p−

where p± are the (±i)-eigenspaces for J . The spaces p± are Ad(K)-invariant abelian
subalgebras of gC.

In this context, the canonical algebra isomorphism S(pC) ∼= S(p+)⊗S(p−) is also an
isomorphism of K-modules. (The group K acts on S(pC) and S(p±) by symmetric
powers of the Adjoint representation.) It will here be convenient to replace the
symmetrization map λ : S(pC) → D(G) by

λ⊗ : S(p+)⊗ S(p−) → D(G), λ⊗ = λ⊗ λ.

Explicitly,

λ⊗
(
(X1 · · ·Xa)⊗ (Y 1 · · ·Y b)

)
=

1

a!b!

∑

σ∈Sa,σ′∈Sb

Xσ(1) · · ·Xσ(a)Y σ′(1) · · ·Y σ′(b),

for (X1 · · ·Xa)⊗ (Y 1 · · ·Y b) in Sa(p+)⊗ Sb(p−). The map λ⊗ is Ad(K)-equivariant
and Lemma 2.3 remains true if we replace λ(S(pC)) by λ⊗(S(p+)⊗ S(p−)).

Definition 2.4. If W is a K-invariant subspace of λ⊗(Sa(p+)⊗Sb(p−)) then we say
that DW is a system of type (a, b) on G/K.

Thus if DW has type (a, b) then each element of W is a linear combination of terms
of the form X1 · · ·XaY 1 · · ·Y b where Xi ∈ p+ and Y j ∈ p−.
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3. Preliminaries on Hermitian symmetric spaces and Siegel domains

For the remainder of this paper, G/K will denote a Hermitian symmetric space
of non-compact type. For our purposes we can assume, moreover, that G/K is
irreducible, since any Hermitian symmetric space is a direct product of irreducible
factors. Thus G is a connected non-compact simple Lie group with trivial center and
K is a maximal compact subgroup of G with center analytically isomorphic to T.
(See Theorem 6.1 and Proposition 6.2 of Chapter VIII in [H1].)

In this section we collect notation and background material concerning the struc-
ture of G/K and its realizations as bounded and unbounded domains. For details we
refer the reader to any of the standard references. See for example, [H1] , [KW] and
[W].

3.1. Algebraic preliminaries. As in the preceding section, g = k ⊕ p denotes the
Cartan decomposition for the Lie algebra of G and pC = p+ ⊕ p− is the eigenspace
decomposition determined by the complex structure. We have

[kC, pC] ⊂ pC, [p+, p+] = 0 = [p−, p−], [p+, p−] = kC.

The Lie algebra u = k ⊕ ip is a compact real form of gC. For Z ∈ gC we let Z and
τ(Z) denote the complex conjugates for Z with respect to the real forms g and u.
The two conjugation operators are related via

τ(θ(Z)) = Z = θ(τ(Z))

where θ is the complexified Cartan involution. If B is the Killing form on gC, then
the bilinear form defined by

Bτ (X, Y ) = −B(X, τY )

is a positive definite Hermiian inner product on gC. Recall that J denotes the almost
complex structure on the tangent space p to G/K at eK and its complexification
pC → pC. Let c denote the (one dimensional) center of k. It is a key fact that there
exists an element Z0 ∈ c with

J = ad(Z0)|pC.
Choose a Cartan subalgebra h in k. Then hC is a Cartan subalgebra of gC. Define

∆ to be the system of roots of gC with respect to hC. Then each root α ∈ ∆ is real
valued on ih. We specify an ordering on ∆ as follows: for two roots α, β we say that
α is bigger than β when −i(α − β)(Z0) > 0. In this way we obtain the sets ∆+ and
∆− of positive and negative roots.

Each root space gα is contained either in kC or in pC. In the first case α is called
compact and in the second case noncompact. We write

∆ = C ∪Q

where C is the set of compact roots and Q is the set of noncompact roots and let
Q± = ∆± ∩Q denote the sets of positive and negative noncompact roots.
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For each α ∈ ∆ we associate elements Hα, Eα and E−α which span a subalgebra of
gC, isomorphic to sl(2,C). We do this in a standard way as follows. The Killing form

B is positive definite on ih. Thus for each α ∈ ∆ there is a unique element H̃α ∈ ih
for which

α(H) = B(H, H̃α).

For roots α, β ∈ ∆ let

(α, β) = B(H̃α, H̃β)

and set

Hα =
2

(α, α)
H̃α,

so that α(Hα) = 2.
Now for α ∈ ∆+ choose Eα ∈ gα with Bτ (Eα, Eα) = 2/(α, α) and set E−α =

−τ(Eα). With these conventions, we have

[Eα, E−α] = Hα, [Hα, Ea] = 2Eα, [Hα, E−α] = −2E−α,

Eα = E−α for α ∈ Q, Eα = −E−α for α ∈ C,

and

p+ =
∑

α∈Q+

gα =
∑

α∈Q+

CEα,

p− =
∑

α∈Q+

g−α =
∑

α∈Q+

CE−α.
(3.1)

For α ∈ Q+, let

Xα = Eα + E−α,

Yα = i(Eα − E−α).
(3.2)

Then the set {Xα, Yα}α∈Q+ is a basis for the real vector space p. One has

JXα = Yα,

J Yα = −Xα,

Eα =
1

2
(Xα − iYα),

E−α =
1

2
(Xα + iYα).

(3.3)

3.2. Restricted roots. Two roots α, β ∈ ∆ are called strongly orthogonal if neither
α + β nor α− β are roots. This implies orthogonality in the usual sense: (α, β) = 0.
Let

(3.4) Γ = {γ1, . . . , γr} ⊂ Q+
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be a maximal set of strongly orthogonal positive noncompact roots. Then

a =
∑
γ∈Γ

RXγ,(3.5)

is a maximal abelian subalgebra of p and r = dim(a) is the rank of G/K.
Take h− to be the real span of the elements iHγ (γ ∈ Γ), and h+ to be the

orthogonal complement of h− in h via the Killing form B:

h− =
∑
γ∈Γ

RiHγ,

h = h− ⊕B h+.

(3.6)

For α, β ∈ ∆ write α ∼ β if and only if α|h− = β|h− and define:

(3.7)

Ci = { α ∈ C: α ∼ −1
2
γi} for i = 1, . . . , r,

Cij = { α ∈ C: α ∼ 1
2
(γj − γi)} for 1 ≤ i < j ≤ r,

Qi = { α ∈ Q: α ∼ 1
2
γi} for i = 1, . . . , r,

Qij = { α ∈ Q: α ∼ 1
2
(γi + γj)} for 1 ≤ i < j ≤ r.

Some important properties of the above sets are contained in the following theorem:

Theorem 3.8 (Restricted Roots Theorem, [H3]). The map α 7→ γi +α is a bijection
of Ci onto Qi (for 1 ≤ i ≤ r) and Cij onto Qij (for 1 ≤ i < j ≤ r). Q+ is the disjoint
union of the sets Γ, Qi, Qij.

In addition, we will need these facts:

• All elements α ∈ Q+ have a common length (α, α)
1
2 .

• For α, β in Q+,

(3.9) α(Hβ) = β(Hα).

• The sets Qij have a common cardinality for 1 ≤ i < j ≤ r. Likewise, the
sets Q1, . . . , Qr have a common cardinality. We let q1 denote the common
cardinality of the Qi’s and q2 the common cardinality of the Qij’s.

• For α ∈ Qij set

(3.10) α̃ = γi + γj − α.

Proposition 8 in [L] shows that α̃ is a noncompact positive root. So clearly
α̃ ∈ Qij.

3.3. Harish-Chandra realization. Let GC denote the adjoint group for gC and
KC be the analytic subgroup corresponding to kC. The analytic subgroups of GC
corresponding to subalgebras p+, p− will be denoted by P+ and P− respectively.
They are abelian. The exponential map from p± to P± is biholomorphic, so P± is
biholomorphically equivalent with Cn for some n.
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The mapping (p1, k, p2) 7→ p1kp2 is a diffeomorphism of P+ × KC × P− onto an
open submanifold of GC containing G. For g ∈ G let p+(g) denote the unique
element in p+ such that g ∈ exp(p+(g))KCP−. Then p+(g) = p+(gk) and p+ is a
diffeomorphism of G/K onto a bounded domain D ⊂ p+. G acts biholomorphically
on D by g · p+(g̃) = p+(gg̃). Let o = p+(e), then D is the G-orbit of o and the group
K is the stabilizer of the point o. This is the Harish–Chandra embedding and in fact
realizes G/K as a bounded symmetric domain.

3.4. Siegel domains. Let D denote the bounded realization of G/K described
above. Set XΓ =

∑
γ∈Γ Xγ =

∑
γ∈Γ(Eγ + E−γ), EΓ =

∑
γ∈Γ Eγ and define an

element of GC called the Cayley transform:

(3.11) c = exp(
π

4
iXΓ).

Let

cG = Ad(c)G,
cK = Ad(c)K,
cg = Ad(c)g.

For g ∈ G, c exp(p+(g)) ∈ P+
cKCP− and by [KW], the mapping x 7→ c · x, where

c · p+(g) = p+(c exp p+(g)),

defines a biholomorphism of D onto a domain cD ⊂ p+. Clearly, cD is the orbit of
the point c · o = iEΓ under the action of the group cG and cK is the isotropy group
of iEΓ.

It was proved in [KW] that cD is a Siegel domain. We briefly recall the definition
and notation of Siegel domains. The reader is referred to the book of J. Faraut and
A. Koranyi [FK] for more details.

Let V be a Euclidean Jordan algebra and Ω be an irreducible symmetric cone
contained in V . We denote by L(x) the self-adjoint endomorphism of V given by left
multiplication by x, i.e. L(x)y = xy. We fix a Jordan frame {c1, . . . , cr} in V . The
Peirce decomposition of V related to the Jordan frame {c1, . . . , cr} ([FK], Theorem
IV.2.1) may be written as

(3.12) V =
⊕

1≤i≤j≤r

Vij .

It is given by the common diagonalization of the self-adjoint endomorphisms L(cj)
with respect to their only eigenvalues 0, 1

2
, 1. In particular Vjj = Rcj is the eigenspace

of L(cj) related to 1, and, for i < j, Vij is the intersection of the eigenspaces of L(ci)
and L(cj) related to 1

2
. All Vij, for i < j, have the same dimension d.
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Suppose that we are given a complex vector space Z and a Hermitian symmetric
bilinear mapping

Φ : Z × Z 7→ V C.

We assume that

Φ(ζ, ζ) ∈ Ω, ζ ∈ Z ,

and Φ(ζ, ζ) = 0 implies ζ = 0.

The associated Siegel domain is then

(3.13) D̃ = {(ζ, z) ∈ Z × V C : =z − Φ(ζ, ζ) ∈ Ω}.
One says that D̃ is of type I (or has tube type) when Z = {0}. Otherwise, D̃ is said
to be of type II (non-tube type).

The data V, Z and Φ can be defined in terms of some subspaces of gC so that

p+ = Z × V C and D̃ = cD.

(For details we refer to [KW], [B]). Moreover it is known that cD has tube type if
and only if the sets Qi in (3.7) are all empty.

3.5. Iwasawa decomposition of cG. Consider the Iwasawa decomposition of cG =

NÃ cK and denote by S its solvable part: S = NÃ. Let n, ã, s be the corresponding
Lie algebras. Then ã can be chosen as a subalgebra of cg consisting of elements
H = L(a), where

a =
r∑

j=1

ajcj.

We let λj denote the linear form on ã given by λj(H) = aj. All endomorphisms of
s having the form: adH for H ∈ ã admit joint diagonalization. Therefore s can be
decomposed as a direct sum of corresponding root spaces. The forms of all roots are
well-known:

(3.14) s =

( ⊕
j

nλj
2

)
⊕

( ⊕
1≤i≤j≤r

nλi+λj
2

)
⊕

( ⊕
1≤i<j≤r

nλj−λi
2

)
⊕ ã

To simplify our notation put

Zj = nλj
2

,

nij = nλj−λi
2

,

Vij = nλi+λj
2

.

Then it is known that

Z =
⊕

j

Zj, V =
⊕
i,j

Vij,
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and we set

n0 =
⊕

1≤i<j≤r

nij.

Denote by N(Φ) and N0 the subgroups of S corresponding to the subalgebras Z ⊕V

and n0 of s. Then S = N(Φ)N0Ã, N(Φ) is two-step nilpotent with center V and each
of N(Φ), N0 and N = N(Φ)N0 is normal in S. Since S acts simply transitively on
the domain cD, we may identify S and cD:

(3.15) S 3 s ∼ s · (c · o) ∈ cD.

Now we describe an orthonormal basis of s corresponding to the decomposition
(3.14). This will be the same basis as in [DHMP], [BDH] and [B]. By Qij we shall
denote a subset of Qij that contains exactly one from each pair of roots (α, α̃ =
γi + γj − α) when α̃ 6= α. Let us define

(3.16)

Xi = Eγi
for γi ∈ Γ,

X1
α = 1√

2
(Eα − εαEeα) for α ∈ Qij and α 6= α̃,

X2
α = i√

2
(Eα + εαEeα) for α ∈ Qij and α 6= α̃,

Xα = 1√
2
ψ(Eα) for α ∈ Qi,

where ψ = I + Ad(c2)τ , and εα = ±1 (the precise value was determined in [B]). If
α = α̃ then instead of X1

α, X2
α we define X1

α = Eα.

In the rest of the paper we will use the notation Xk
α without specifying the set

of indices k’s. In particular, the summation over α ∈ Qij will always denote the
summation over α and k together.

Then by [B]

Vii = span{Xi},
Vij = span{Xk

α}α∈Qij
,

Zj = (span{Xα}α∈Qj
)C.

Next we transport the complex structure J from cD to s and define:

Hj = J (Xj),

Y k
α = J (Xk

α),

Yα = J (Xα).

(3.17)

It was proved in [B] that

Xj, X
k
α,Xα, Hj, Y

k
α ,Yα

form an orthonormal basis of s with respect to the Hermitian product Bτ .
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Finally,

Zj = Xj − iHj, (1 ≤ j ≤ r, )

Zk
α = Xk

α − iY k
α , (α ∈

⋃
Qij, k = 1, 2),

Zα = Xα − iYα (α ∈
⋃
j

Qj)

(3.18)

is a basis of S-invariant holomorphic vector fields.

4. Systems of type (1, 1)

We suppose here, as in the previous section, that G/K is an irreducible Hermitian
symmetric space of non-compact type. To determine all systems DW of a given type
(a, b) on G/K, one needs to find all K-invariant subspaces W of Sa(p+) ⊗ Sb(p−)
(and apply the modified symmetrization map λ⊗). Recall that K acts on S(p±)
by symmetric powers of the adjoint representation. Since G/K is irreducible, p±
are irreducible K-modules. Moreover, it is known that the representations of K
on S(p±) are multiplicity free. The decompositions for S(p±) under the action of
K are described in [J] on a case-by-case basis using the classification of irreducible
Hermitian symmetric spaces. Thus, in principle, all systems of types (a, 0) and (0, b)
are known.

The current work concerns systems of type (1, 1). Thus, we must describe the
K-invariant subspaces of p+ ⊗ p−. We begin with some observations concerning the
adjoint representations of K on p±, which we now denote by σ±:

σ+(k) = Ad(k)|p+, σ−(k) = Ad(k)|p−.

These representations are unitary with respect to the positive definite Hermitian
inner product Bτ on p±. The conjugation map Z 7→ Z (with respect to the real form
g ⊂ gC) interchanges p+ with p−, as shown by Equations 3.1. Since

σ−(k)(Z) = σ+(k)(Z)

for k ∈ K, Z ∈ p+, we see that σ− is (unitarily) equivalent to σ+, the conjugate repre-
sentation for σ+. (Recall that the conjugate for a complex representation is obtained
by replacing the complex structure on the representation space by its conjugate. The
conjugate for a matrix representation is obtained by conjugation of matrix entries.)
The Hermitian inner product Bτ on p+ yields a further isomorphism of complex
vector spaces:

p+ → p∗+, Z 7→ Bτ (·, Z),

establishing a unitary equivalence of σ+ with σ∗+, the contragredient representation
for σ+. In summary, we have canonical unitary equivalences

σ− ' σ+ ' σ∗+.
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We will denote elements of p− as “Z” for Z ∈ p+. One can choose to interpret
this literally, as the result of applying the conjugation map on gC = g + ig to Z, or
as simply a notation for Z itself, but viewed as an element of p+ with the conjugate
complex structure.

The representation σ+ ⊗ σ− always contains a copy of

AdK : K → U(kC),

the complexified adjoint representation of K on kC. Indeed, the linear map ϕ :
p+ ⊗ p− → kC determined by

ϕ(X ⊗ Y ) = [X, Y ]

intertwines σ+ ⊗ σ− with AdK and is surjective. Thus, the dual map

ϕ∗ : k∗C → (p+ ⊗ p−)∗ u p∗+ ⊗ p∗− u p− ⊗ p+ u p+ ⊗ p−

is injective and intertwines the contragredient representation Ad∗K for AdK with σ+⊗
σ−. In fact, Ad∗K and AdK are equivalent representations, since K is compact. So

H = ϕ∗(k∗C)

is a K-invariant subspace of p+ ⊗ p− and (σ+ ⊗ σ−)|H is equivalent to AdK .
As explained in the Introduction, DH is the Hua system. It is the subject of works

including [Hua], [JK], [BV], [L] and [BBDHPT]. The Hua system is not irreducible.
Indeed, the Lie algebra kC decomposes as

kC = k′C ⊕ cC

where c is the (one-dimensional) center of k and the derived algebra k′C is semi-simple.
Thus, the K-invariant subspace H = ϕ∗(k∗C) in p+ ⊗ p− further decomposes under
σ+ ⊗ σ− as

H = ϕ∗((k′C)
∗)⊕ ϕ∗(c∗C) = H′ ⊕ L

The group K acts trivially on the one-dimensional space L = ϕ∗(c∗C) and H′ =
ϕ∗((k′C)

∗) contains one K-irreducible subspace for each simple factor in k′C. The clas-
sification of irreducible Hermitian symmetric spaces of non-compact type, discussed
below, shows that k′C has at most two simple factors. The elements of L yield scalar
multiples of the Laplace-Beltrami operator on G/K. These are the only second order
left-G-invariant differential operators on G/K, so p+⊗ p− contains no further copies
of the trivial representation.

We now have p+ ⊗ p− = H⊕Hc, where

(4.1) Hc = H⊥ = Ker(ϕ)

is the orthogonal complement to H in p+⊗p− and also the kernel of ϕ : p+⊗p− → kC.
The space Hc is K-invariant and, as will be shown below, is non-zero except when
G/K has rank one. (The rank one cases are the complex hyperbolic spaces, up to
isomorphism.) DHc is the complementary Hua system. We will show that Hc is
K-irreducible and inequivalent to any of the irreducible constituents of H.
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Moreover, we will show that Hc is the Cartan component in σ+ ⊗ σ−. That is,
a highest weight vector in Hc is obtained as the tensor product of highest weight
vectors in p+ and p−. If X, Y ∈ p+ are highest and lowest weight vectors for σ+

then Hc = Span{(σ+ ⊗ σ−)(K)(X ⊗ Y )} and X ⊗ Y is a highest weight vector for
(σ+ ⊗ σ−)|Hc. This provides another characterization of Hc. We summarize the
preceding discussion as follows:

Proposition 4.2. Let G/K be an irreducible Hermitian symmetric space of non-
compact type. Then:

• The representation σ+ ⊗ σ− of K on p+ ⊗ p− is multiplicity free, with a
canonical decomposition

p+ ⊗ p− = H⊕Hc

as an orthogonal direct sum of K-invariant subspaces. (The space H yields
the Hua system and Hc the complementary Hua system.)

• The representation (σ+⊗σ−)|H is equivalent to AdK, the complexified adjoint
representation of K on kC and decomposes as

H = H′ ⊕ L,

where L is a copy of the trivial representation of K on C and H′ contains an
irreducible subspace for each simple factor in k′C;

• The space Hc is Hc = Ker(ϕ) where ϕ : p+ ⊗ p− → kC is the linear map with
ϕ(X ⊗ Y ) = [X, Y ].

• If G/K has rank at least two then Hc is non-zero, (σ+⊗σ−)|Hc is irreducible
and is the Cartan component in σ+ ⊗ σ−.

Note that since σ+ ⊗ σ− is multiplicity free, any K-invariant subspace of p+ ⊗ p−
is a sum of the irreducibles described above. Thus, Proposition 4.2 determines all
systems of type (1, 1) on G/K.

To complete the proof of Proposition 4.2 we employ case-by-case analysis using the
classification for irreducible Hermitian symmetric spaces of non-compact type. We
refer the reader to [H1], Chapter X, for details concerning this classification and for
definitions of the Lie groups that arise. The spaces in question fall into 4 classical
families (types A III, C I, D III, BD I) and two exceptional cases (types E III, E
VII). For the classical families, we will exhibit the spaces H and Hc in Proposition
4.2 explicitly.

4.1. Type A III. Here G/K = SU(n,m)/S(U(n) × U(m)) with 1 ≤ n ≤ m. The
rank of G/K is n. One can realize p+ as p+ = Mn,m(C) with Hermitian inner product
〈X, Y 〉 = tr(XY ∗), where Y ∗ denotes conjugate-transpose. The bounded realization
for G/K as a domain in p+ is

D = {Z ∈ p+ : ZtZ < Im} = {Z ∈ p+ : ZZ∗ < In}.
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(Here the inequality ZZ∗ < In, for example, means that In−ZZ∗ is positive definite.)
D is a tube domain if and only if n = m

The group K = S(U(n)× U(m)) acts on p+ via

σ+(k1, k2)Z = k1Zk∗2,

(k1 ∈ U(n), k2 ∈ U(m), det(k1)det(k2) = 1). Writing elements of p− = p+ as Z for
Z ∈ p+, one has

(σ+ ⊗ σ−)(k1, k2)(X ⊗ Y ) = (k1Xk∗2)⊗ (k1Y kt
2).

Let Ea,b (1 ≤ a ≤ n, 1 ≤ b ≤ m) denote the (n ×m)-matrix with a one in position
(a, b) and set

Li,j =
m∑

`=1

Ei,` ⊗ Ej,` (1 ≤ i, j ≤ n)

Ri′,j′ =
n∑

`=1

E`,i′ ⊗ E`,j′ (1 ≤ i′, j′ ≤ m).

One verifies that

(σ+ ⊗ σ−)(k1, k2)Li,j = (k1Lk∗1)i,j, (σ+ ⊗ σ−)(k1, k2)Ri′,j′ = (k2Rk∗2)i′,j′ ,

where “k1Lk∗1” and “k2Lk∗2” mean formal matrix multiplication. Hence

H = Span{Li,j, Ri′,j′ : 1 ≤ i, j ≤ n, 1 ≤ i′, j′ ≤ m}
is K-invariant and K acts on H by a copy of AdK .

The space H decomposes under K as H = L⊕H′
1 ⊕H′

2. Here K acts trivially on
L of dimension 1 and H′

1, H′
2 correspond to the simple factors sl(n,C), sl(m,C) in

k′C = sl(n,C)⊕ sl(m,C). Explicitly:

L = C

(
n∑

i=1

Li,i

)
= C

(
m∑

i′=1

Ri′,i′

)
,

H′
1 =

{
n∑

i,j=1

ci,jLi,j :
∑

i

ci,i = 0

}
,

H′
2 =

{
m∑

i′,j′=1

ci′,j′Ri′,j′ :
∑

i′
ci′,i′ = 0

}
.

The space H′
1 = 0 whenever n = 1 and H′

2 = 0 when n = m = 1. Note that for
n = m = 1, D u SU(1, 1)/S(U(1) × U(1)) is the unit ball in C. When n = 1 and
m ≥ 2, SU(1,m)/S(U(1) × U(m)), is a complex hyperbolic space of dimension m.
These are the rank one cases.

One can easily exhibit bases for the spaces H′
1, H′

2. For example,

{Li,j : i 6= j} ∪ {Li,i − Li+1,i+1 : 1 ≤ i ≤ n− 1}
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is a basis for H′
1.

From above, we see that Hc can be written as

Hc =

{
n∑

i,j=1

m∑

i′,j′=1

ci,i′,j,j′Ei,i′ ⊗ Ej,j′ :
n∑

i=1

ci,i′,i,j′ = 0 =
m∑

i′=1

ci,i′,j,i′

}
.

Note that Hc = 0 when n = 1. That is, when G/K has rank one. The action
of K ′ = SU(n) × SU(m) on Hc is equivalent to the (exterior) tensor product of
the complexified adjoint representations for SU(n), SU(m) on sl(n,C), sl(m,C). In
particular, Hc is K-irreducible. Highest weight vectors in p± are given by E1,1 and
En,m. As E1,1 ⊗ En,m belongs to Hc, we see that Hc is the Cartan component in
p+⊗ p−. The space Hc has dimension (n2− 1)(m2− 1). The following elements form
a basis:

• Ei,i′ ⊗ Ej,j′ with i 6= j; i′ 6= j′,
• Ei,i′ ⊗ Ej,i′ − Ei,i′+1 ⊗ Ej,i′+1 with i 6= j; 1 ≤ i′ ≤ m− 1,
• Ei,i′ ⊗ Ei,j′ − Ei+1,i′ ⊗ Ei+1,j′ with i′ 6= j′; 1 ≤ i ≤ n− 1,
• E1,1⊗E1,1−Ei,1⊗Ei,1−E1,j′⊗E1,j′+Ei,j′⊗Ei,j′ with 2 ≤ i ≤ n; 2 ≤ j′ ≤ m.

4.2. Type C I. These are the spaces G/K = Sp(n,R)/U(n). Since Sp(1,R)/U(1) u
U(1, 1)/S(U(1) × U(1)), we can assume that n ≥ 2. The rank of G/K is n. The
space p+ is realized as the space of n× n symmetric matrices:

p+ = {Z ∈ Mn,n(C) : Zt = Z}
with Hermitian inner product 〈X,Y 〉 = tr(XY ∗) = tr(XY ). The bounded realization
for G/K as a domain in p+ is

D = {Z ∈ p+ : ZZ < In}.
This is a tube domain.

The group K acts on p+ via

σ+(k)Z = kZkt,

and on p+ ⊗ p− = p+ ⊗ p+ by

(σ+ ⊗ σ−)(k)(X ⊗ Y ) = (kXkt)⊗ (kY k∗).

Define elements Fi,j ∈ p+ (1 ≤ i, j ≤ n) as

Fi,j = Ei,j + Ej,i.

Note that Fi,j = Fj,i and that the Fi,j’s are pair-wise orthogonal with

〈Fi,j, Fi,j〉 =

{
4 for i = j
2 for i 6= j

.
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Define

Ti,j =
n∑

`=1

Fi,` ⊗ F `,j, (1 ≤ i, j ≤ n).

Then one has
(σ+ ⊗ σ−)(k)Ti,j = (kTk∗)i,j.

Thus
H = Span{Ti,j : 1 ≤ i, j ≤ n}

is K-invariant and K acts on H by a copy of AdK . The space H contains two
irreducible components, corresponding to the decomposition kC = C⊕ sl(n,C). This
can be written as H = L ⊕H′ where

L = C

(
n∑

i=1

Ti,i

)
= C

(∑

i,`

Fi,` ⊗ F `,i

)
,

H′ =

{
n∑

i,j=1

ci,jTi,j :
n∑

i=1

ci,i = 0

}
.

A basis for H′ is given by

{Ti,j : i 6= j} ∪ {Ti,i − Ti+1,i+1 : 1 ≤ i ≤ n− 1}.
Let Hc denote the orthogonal complement to H in p+ ⊗ p−. As representations

of SU(n), σ± have highest weights (2, 0, . . . , 0) and (2, 2, . . . , 2, 0), and F1,1, F n,n

are highest weight vectors. An easy application of the Littlewood-Richardson rules
(see [FH], Appendix A) shows that σ+ ⊗ σ− has exactly three irreducible compo-
nents. Thus Hc is necessarily irreducible. The highest weight for (σ+ ⊗ σ−)|Hc is
(4, 2, . . . , 2, 0). Since F1,1 ⊗ F n,n belongs to Hc (it is orthogonal to H), Hc is the
Cartan component in p+ ⊗ p−.

The dimension of Hc is [n(n + 1)/2]2 − n2 = n2(n − 1)(n + 3)/4. Working from
the above description of H and using the fact that the Fi,j ⊗ F k,`’s are pair-wise
orthogonal in p+ ⊗ p−, we see that the following vectors form a basis for Hc:

• Fi,i ⊗ F j,j with i 6= j,
• Fi,i ⊗ F j,k with i 6= j, k; j < k,
• Fi,j ⊗ F k,k with k 6= i, j; i < j,
• Fi,j ⊗ F k,` with {i, j} ∩ {k, `} = ∅; i < j; k < `,
• ||Fi,k||2||Fk,j||2Fi,1 ⊗ F 1,j − ||Fi,1||2||F 1,j||2Fi,k ⊗ F k,j with i 6= j; 2 ≤ k ≤ n,
• Fi,i ⊗ F i,i + Fj,j ⊗ F j,j − 4Fi,j ⊗ F j,i with i < j.

4.3. Type D III. Here G/K = SO∗(2n)/U(n). Since SO∗(4)/U(2) is non-irreduci-
ble and SO∗(6)/U(3) u SU(1, 3)/S(U(1)×U(3)), we can take n ≥ 4 here. Thus G/K
has rank bn/2c ≥ 2. The space p+ can be realized as the space of skew-symmetric
n× n-matrices:

p+ = {Z ∈ Mn,n(C) : Zt = −Z}
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with Hermitian inner product 〈X, Y 〉 = tr(XY ∗) = −tr(XY ). The bounded realiza-
tion of G/K is

D = {Z ∈ p+ : ZtZ < In}.
D is a tube domain if and only if n is even.

As in the preceding case, K = U(n) acts on p+ via σ+(k)Z = kZkt. The description
of H ⊂ p+ ⊗ p− = p+ ⊗ p+ parallels that for type C I. We set

F ′
i,j = Ei,j − Ej,i

and note that F ′
i,j = −F ′

j,i, F ′
i,i = 0. The F ′

i,j’s are pair-wise orthogonal with
〈F ′

i,j, F
′
i,j〉 = 2 for i 6= j. Letting

T ′
i,j =

n∑

`=1

F ′
i` ⊗ F

′
`,j,

and
H = Span{T ′

i,j : 1 ≤ i, j ≤ n},
we see that (σ+⊗ σ−)|H is a copy of AdK . The space H decomposes as H = L⊕H′,
were L, H′ are defined as for type C I.

An application of the Littlewood-Richardson rules shows that the orthogonal com-
plement Hc to H in p+⊗ p− must be irreducible with highest weight (2, 2, 1, . . . , 1, 0)
and dimension [n(n− 1)/2]2 − n2 = n2(n + 1)(n− 3)/4. The space Hc contains the

tensor product F ′
1,2 ⊗ F

′
n−1,n of highest weight vectors in p±. Thus Hc is the Cartan

component in p+ ⊗ p−. Working from the description of H one obtains the following
spanning set for Hc:

• F ′
i,j ⊗ F

′
k,` with {i, j} ∩ {k, `} = ∅; i < j; k < `,

• F ′
i,1 ⊗ F

′
1,j − F ′

i,k ⊗ F
′
k,j with k, i, j > 1; i 6= j; k 6= i, j,

• F ′
i,j ⊗ F

′
j,i + 1

(n−1)(n−2)

∑n
`=1 T ′

`,` − 1
n−2

(T ′
i,i + T ′

j,j) with i < j.

This spanning set forHc is not, however, linearly independent. For example, summing
the elements of the third kind over j 6= i for fixed i gives zero.

4.4. Type BD I. Here G/K = SO◦(2, n)/(SO(2) × SO(n)). We can take n ≥
5, in view of isomorphisms in low dimensions. (SO◦(2, 2)/(SO(2) × SO(2)) is not
irreducible, SO◦(2, 3)/(SO(2) × SO(3)) u Sp(2,R)/U(2), and SO◦(2, 4)/(SO(2) ×
SO(4)) u SU(2, 2)/S(U(2) × U(2)).) The rank of G/K is 2. In this case, p+ is
realized as p+ = M2,n(R) with complex structure

J

[
y
x

]
=

[
x
−y

]
,

for row vectors x, y ∈ Rn. The map T : M2,n(R) → Cn defined as

T (Z) = xt + iyt, for Z =

[
y
x

]
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is an isomorphism from the complex vector space (p+, J) to Cn (column vectors).
The bounded realization for G/K is

D = {Z ∈ p+ : ZZt < I2}.
This is a tube domain.

The group K = SO(2)× SO(n) acts on p+ via

σ+(k1, k)Z = k1Zkt, (k1 ∈ SO(2), k ∈ SO(n)).

For k1 =

[
cos θ sin θ
− sin θ cos θ

]
one computes

T
(
(σ+ ⊗ σ−)(k1, k)Z

)
= eiθkT (Z).

That is, the action of K on p+ coincides, via T , with the standard action of T×SO(n)
on Cn. In particular, SO(2) acts on p+ by (complex) scalars, so the irreducible
subspaces in p+ ⊗ p− under the actions of K and K ′ = SO(n) agree. Thus, we
need to decompose Cn ⊗ (Cn)∗, or equivalently Cn ⊗ Cn, under the diagonal action
of SO(n). Identifying Cn ⊗ Cn with Mn,n(C), SO(n) acts via

k · A = kAkt, (k ∈ SO(n), A ∈ Mn,n(C)).

From this viewpoint, the decomposition into SO(n)-irreducible subspaces is trans-
parent:

Mn,n(C) = CIn ⊕ {A : At = −A} ⊕ {A : At = A, tr(A) = 0}.
One can use the above isomorphism p+⊗p− uMn,n(C) to obtain the corresponding

decomposition for our original model. Letting Xj = E2,j ∈ (p+ = M2,n(R)),

p+ ⊗ p− = L ⊕H′ ⊕Hc

where

L = C

(
n∑

j=1

Xj ⊗Xj

)
,

H′ =

{
n∑

i,j=1

ci,jXi ⊗Xj : ci,j = −cj,i

}
,

Hc =

{
n∑

i,j=1

ci,jXi ⊗Xj : ci,j = cj,i,
∑

i

ci,i = 0

}
.

H = L ⊕H′ yields the Hua system. A highest weight vector in p+ is given by

X1 + iX2 =

[
0 1 · · · 0
1 0 · · · 0

]
.

Since (X1 + iX2)⊗ (X1 + iX2) = X1⊗X1−X2⊗X2 + iX1⊗X2 + iX2⊗X1 belongs
to Hc, we see that Hc is the Cartan component in p+ ⊗ p−.
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4.5. Type E III. In this case K = Spin(10) × T and G has Lie algebra ε6(−14), a
certain real form for the complex Lie algebra ε6. The space G/K has rank 2 and is
of non-tube type.

One can identify p+ with Λeven(C5) u C16 and σ+ is the positive half-spin repre-
sentation. The contragredient representation σ∗+ ' σ− is equivalent to the negative
half-spin representation on Λodd(C5) u C16.

As kC = so(10,C) ⊕ C, the subspace H = ϕ∗(k∗C) of p+ ⊗ p− has two irreducible
components:

H = L ⊕H′ = ϕ∗(C∗)⊕ ϕ∗(so(10,C)∗).

The highest weights for σ± are (1/2)(L1 + L2 + L3 + L4 ± L5) in the notation of
[FH]. (See [FH], Proposition 20.15.). Thus, the Cartan component W in p+ ⊗ p−
has highest weight L1 + L2 + L3 + L4. A application of the Weyl dimension formula
shows that dim(W ) = 210. (The Weyl dimension formula for SO(2m) is Equation
(24.41) in [FH].) Since

dim(H) + dim(W ) = dim(kC) + 210 = 46 + 210 = 256 = 162 = dim(p+ ⊗ p−),

we conclude that W = Hc, the orthogonal complement to H in p+⊗ p−. This proves
that Hc is irreducible and is the Cartan component in p+ ⊗ p−.

4.6. Type E VII. Finally, we consider the exceptional case where K = E6 × T and
G has Lie algebra ε7(−25), a real form of ε7. The space G/K has rank 3 and is a tube
domain.

In this case p+ can be identified with an exceptional Jordan algebra J of dimension
27. The representation of E6 on J is described in [CS]. We have the decomposition

p+ ⊗ p− = L ⊕H′ ⊕Hc = ϕ∗(C∗)⊕ ϕ∗(ε∗6)⊕Ker(ϕ)

as usual. It remains to show that Hc is irreducible and is the Cartan component in
p+ ⊗ p−.

The fundamental weights for the complex simple Lie algebra ε6 are usually denoted
ω1 . . . , ω6. (See, for example, the tables in [Bou].) The representation σ+ has highest
weight ω1 and its contragredient σ∗+ ' σ− has highest weight ω6. Hence ω1 + ω6

is the highest weight for the Cartan component W in p+ ⊗ p−. One can use the
Weyl dimension formula to show that dim(W ) = 650. In fact, this dimension can be
obtained from a table in [GS]. We now see that

dim(H) + dim(W ) = dim(kC) + 650 = 79 + 650 = 729 = 272 = dim(p+ ⊗ p−).

Hence W = Hc, completing the proof for Proposition 4.2.

5. The main theorem

The aim of this paper is to characterize functions on G/K which are annihilated
by a system of type (1,1) containing the Laplace-Beltrami operator. Proposition 4.2
shows that, apart from the systems L and p+⊗p−, we have the Hua systemH = L⊕H′
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and the complementary system L⊕Hc . For G/K = SU(n,m)/S(U(n)×U(m)), the
Hua system can be decomposed: H = L⊕H′

1⊕H′
2 and one can consider two further

systems of type (1,1): L ⊕H′
1 and L ⊕H′

2. These exhaust the possibilities.
Theorems 5.1 through 5.5 below characterize the functions annihilated by each of

these systems. The first two results concern zeros of the Hua system.

Theorem 5.1 ([JK]). A function f on a Hermitian symmetric space of tube type
satisfies H(f) = 0 if and only if it is the Poisson-Szegö integral of a hyperfunction
supported on the Shilov boundary of G/K.

Theorem 5.2 ([BBDHPT],[B]). Let G/K be an irreducible Hermitian symmetric
space of non-tube type and let f be a real-valued function on G/K. Then H(f) = 0
if and only if f is pluriharmonic.

Let us recall that f defined on D ⊂ Cn is pluriharmonic if it is the real part
of a holomorphic function. Equivalently, f is annihilated by all operators ∂zj

∂zk

(1 ≤ j, k ≤ n). That is, the pluriharmonic functions are those annihilated by the
system p+ ⊗ p−. The main result of this paper is the following.

Main Theorem 5.3. Let G/K be an irreducible Hermitian symmetric space of rank
r ≥ 2 and let f be a bounded real-valued function on G/K. Then f is L⊕Hc-harmonic
if and only if f is pluriharmonic.

In the statement of Theorem 5.3, we require r ≥ 2, because Hc = 0 for the rank
one Hermitian symmetric spaces. It seems likely that the boundedness hypothesis on
f can be removed from Theorem 5.3, as in the statement of Theorem 5.2, but we are
not able to show this using the methods of this paper. This is one problem for future
research.

For G/K = S(n,m)/S(U(n) × U(m)) we must also consider the systems L ⊕ H′
1

and L ⊕H′
2. As in Section 4.1 we assume that 1 ≤ n ≤ m and have H′

1
∼= sl(n,C),

H′
2
∼= sl(m,C). The following result is due to N. Berline and M. Vergne.

Theorem 5.4 ([BV]). Let G/K = SU(n,m)/S(U(n) × U(m)) with 1 ≤ n ≤ m. A
function f on G/K satisfies L ⊕ H′

1(f) = 0 if and only if it is the Poisson-Szegö
integral of a hyperfunction supported on the Shilov boundary.

By symmetry, when n = m the L ⊕ H′
2 system also characterizes Poisson-Szegö

integrals. These are tube domains. On the other hand, when n < m we have a
non-tube domain and the following result.

Theorem 5.5. Let G/K = SU(n,m)/S(U(n) × U(m)) with 1 ≤ n < m. A real-
valued function f on G/K satisfies L ⊕H′

2(f) = 0 if and only if f is pluriharmonic.

Proof. Let f be L⊕H′
2-harmonic. Note that the system H′

2 contains a copy of H′
1 via

the obvious inclusion sl(n,C) ↪→ sl(m,C). Thus Theorem 5.4 implies that f is the
Poisson-Szegö integral of a hyperfunction. But now, Theorem 5.4 also shows that f
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is L⊕H′
1-harmonic. Thus in fact f is annihilated by all of H′

1⊕L⊕H′
2 = H. Finally

as n < m, G/K is of non-tube type, so Theorem 5.2 shows f is pluriharmonic. ¤

The rest of this paper concerns the proof of Theorem 5.3. Our strategy can be
outlined as follows. Let G/K have rank at least two and f be a bounded real-valued
function on G/K. First note that if f is pluriharmonic then L ⊕Hc(f) = 0 because
pluriharmonic functions are annihilated by all of p+ ⊗ p−. Hence we need only show
that L⊕Hc(f) = 0 implies f is pluriharmonic. Having the boundedness assumption
(which is invariant under biholomorphic mappings), we transfer our problem to the
group S acting simply transitively on the Siegel domain cD. We show that f is
annihilated by some S-invariant operators derived from the L ⊕ Hc system. Using
two of these operators and a technique from [BBDHPT], we show that f ◦ c−1 is a
Poisson-Szegö integral. In the tube case, Theorem 5.1 now implies that f is Hua-
harmonic. So f is in fact annihilated by all of p+ ⊗ p− = H′ ⊕ L ⊕ Hc, hence
pluriharmonic. In the non-tube case, according to [BV], Poisson-Szegö integrals are
annihilated by a certain system of third order operators. We will use this fact and
methods described in [BDH] and [B] to obtain pluriharmonicity of f in the non-tube
case.

6. The L ⊕Hc system and Berline-Vergne operators

6.1. The L ⊕Hc system. Below we introduce some operators which belong to the
L⊕Hc system. We make extensive use of the notation and results from Section 3.2.
As before, r always denotes the rank of G/K. We assume throughout that r ≥ 2,
since Hc = 0 when r = 1. (Most formulas to be derived below are vacuous when
r = 1.)

For α ∈ Qij, put

(6.1) ∆α = EαE−α + EeαE−eα − Eγi
E−γi

− Eγj
E−γj

,

regarded as an operator arising from p+ ⊗ p−.
Recall that the system Hc is the kernel of the map ϕ : p+ ⊗ p− → kC given by

ϕ(X, Y ) = [X, Y ].

Lemma 6.2. For α ∈ Qij the operator ∆α belongs to the system Hc.

Proof. Recall from (3.10) that we have α̃ = γi + γj − α, also in Qij. Thus

(6.3) H̃α + H̃eα − H̃γi
− H̃γj

= 0,

and hence

(6.4)
(α, α)

2
Hα +

(α̃, α̃)

2
Heα − (γi, γi)

2
Hγi

− (γj, γj)

2
Hγj

= 0.

But all elements of Q+ have a common length, so (α, α) = (α̃, α̃) = (γi, γi) = (γj, γj)
and hence Hα + Heα −Hγi

−Hγj
= 0.
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Now we have

ϕ(∆α) = [Eα, E−α] + [Eeα, E−eα]− [Eγi
, E−γi

]− [Eγj
, E−γj

]

= Hα + Heα −Hγi
−Hγj

= 0,

which yields the lemma. ¤
Proposition 6.5. The operator

∆1 =
∑

α∈Si Qi

EαE−α + c
∑

Eγi
E−γi

is an element of L ⊕Hc for some positive constant c.

Proof. As L is the unique K-invariant operator in p+ ⊗ p− ∼= p+ ⊗ (p+)∗, we have

L =
∑

α∈Q+

EαE−α =
( ∑

α∈Si Qi

+
∑

α∈Si<j Qij

+
∑
α∈Γ

)
EαE−α.

The operator L − 1
2

∑
α∈Si<j Qij

∆α belongs to L ⊕ Hc in view of Lemma 6.2. Let

q2 = |Qij| denote the common cardinality of the sets Qij. Then we can write

L − 1

2

∑

α∈Si<j Qij

∆α =
∑

α∈Si Qi

EαE−α +
r∑

k=1

Eγk
E−γk

+
q2

2

∑
i<j

(Eγi
E−γi

+ Eγj
E−γj

)

=
∑

α∈Si Qi

EαE−α +

(
1 +

(r − 1)q2

2

) r∑

k=1

Eγk
E−γk

.

So ∆1 =
∑

α∈Si Qi
EαE−α+c

∑
Eγi

E−γi
belongs to L⊕Hc for c = 1+(r−1)q2/2. ¤

Definition 6.6. Q̃r = Qr ∪
⋃

i Qir.

Lemma 6.7. If α ∈ Qij ∪Qi and i, j < r then there exist β, δ ∈ Q̃r such that

∆′
α = EαE−α + EγrE−γr − EβE−β − EδE−δ ∈ Hc.

Proof. Since α 6∈ Q̃r, we see that α ± γr is not a root, and so α and γr are strongly
orthogonal. Let Γ′ be a maximal set of strongly orthogonal roots containing α and
γr. Take any root β ∼Γ′

α+γr

2
and put δ = α + γr − β. Then by (3.10) δ is a root,

and δ ∼Γ′
α+γr

2
. Since (β, γr) 6= 0, (δ, γr) 6= 0 and neither is equal to γr, we have

β, δ ∈ Qr ∪
⋃

i Qir. Now Lemma 6.2 concludes the proof. ¤
Proposition 6.8. The operator

∆2 =
∑

α∈Qr∪
S

Qir

cαEαE−α − cγrEγrE−γr

is an element of L ⊕Hc for some positive constants cα.
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Proof. Take

L − 1

c
∆1 − (1− 1

c
)

∑

α∈Si<r Qi

∆′
α −

∑

α∈Si<j<r Qij

∆′
α

with c as in Proposition 6.5. ¤
6.2. Berline-Vergne operators. In this subsection we restrict our attention to non-
tube spaces. In Section 8 we will prove that any bounded function annihilated by
the L ⊕Hc system is a Poisson-Szegö integral from the Shilov boundary. This class
of functions is characterized by operators due to N. Berline and M. Vergne.

Theorem 6.9 ([BV]). Let G/K be a Hermitian symmetric non-tube space and let
f ∈ C∞(G/K). Then f is a Poisson-Szegö integral if and only if f is G-harmonic
and

(6.10) BV(f) =
∑

α,β,δ∈Q+

EαE−βEδf̃ [E−α, [Eβ, E−δ]] = 0.

The phrase “f is G-harmonic” means Df = 0 for all operators D ∈ D(G/K)
with no constant term. (In [BV] and other works, G-harmonic functions are simply
referred to as “harmonic”.)

Note that [E−α, [Eβ, E−δ]] in the expression above is an element of p−. We will
compute the projection of BV(f) onto the one-dimensional space spanned by E−γr . So

we need to understand the effect of the operators EαE−βEδ on f̃ when α−β+δ = γr.
We get a non-zero contribution to the sum only when β−δ = α−γr. We consider the
possibilities, assuming throughout that f ∈ C∞(G/K) is annihilated by the L ⊕Hc

system.
To simplify our notation put

(6.11) Uα = EαE−αEγr .

Since [p+, p−] ⊂ kC and p+ is abelian , we have

EαE−δEγ f̃ = EαEγE−δf̃ = EγEαE−δf̃ = EγE−δEαf̃

for all α, β, γ in Q+. In particular, Uα = EαE−αEγr = EγrE−αEα.

Case 1. α = β = γr, then δ = −α + β + γr = γr and

[E−γr , [Eγr , E−γr ]] = [E−γr , Hγr ] = 2E−γr .

The coefficient of E−γr will be 2EγrE−γrEγr f̃ = 2Uγr f̃ .

Case 2. α = β 6= γr, then again δ = γr. Eβ does not commute with E−γr if and

only if α = β ∈ Q̃r. Hence by the Jacobi identity

[E−α, [Eα, E−γr ]] = −[Eα, [E−γr , E−α]]− [E−γr , [E−α, Eα]] = −[Hα, E−γr ]

= E−γr .

The coefficient will be EαE−αEγr f̃ = Uαf̃ .
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Case 3. α 6= β = δ, then α = γr and as before

[E−γr , [Eβ, E−β]] = E−γr

for β ∈ Q̃r. The coefficient will be EγrE−βEβ f̃ = Uβ f̃ .

Case 4. Assume that α 6= β and β 6= δ and β − δ = α− γr is a root.

Then (α − γr)(Hγr) = ±1, so α must belong to Q̃r. Thus β − δ ∼ (γi + γr)/2 or

−γr/2. Since β ∈ Q+, we must have δ ∈ Q̃r or δ = γr. But α 6= β, so we conclude

that both α, δ are in Q̃r.

We further analyze this case in a series of lemmas:

Lemma 6.12. Suppose that α, δ ∈ Q̃r, β ∈ Q+ such that β − δ = α − γr is a root.
Then there is some d = ±1 such that dE−βEδ − E−αEγr and dE−βEα − E−δEγr are
in Hc.

Proof. Since β − δ = α− γr is a root, there is some d = ±1 such that

(6.13) [Eβ, E−δ] = d[Eα, E−γr ].

By applying the conjugation τ, we also have

(6.14) [E−β, Eδ] = d[E−α, Eγr ].

From (6.13), and the fact that p− is abelian, we obtain:

[E−α, [Eβ, E−δ]] = d[E−α, [Eα, E−γr ]]

= d[E−γr , [Eα, E−α]] + d[Eα, [E−α, E−γr ]]

= d[E−γr , Hα]

= dγr(Hα)E−γr = dE−γr .

On the other hand,

[E−α, [Eβ, E−δ]] = [Eβ, [E−α, E−δ] + [E−δ, [Eβ, E−α]]

= [E−δ, [Eβ, E−α]]

Thus we obtain:

dHγr = d[Eγr , E−γr ]

= [Eγr , [E−δ, [Eβ, E−α]]]

= [E−δ, [Eγr , [Eβ, E−α]]] + [[Eβ, E−α], [E−δ, Eγr ]]

= ε1Hδ + ε2Hβ−α.

We compare this last equation to

H̃γr = H̃δ − H̃β−α.

If β − α and δ are not linearly independent, then δ − γr = β − α = cδ for some
c 6= 0, so δ is a multiple of γr, namely δ = γr/2. Then our last calculation implies
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that δHγr = (ε1 + ε2)H−γr , which is impossible. Thus we conclude that ε2 6= 0, and
therefore β − α = δ − γr is a root.

So in fact we have Hγr = Hδ −Hβ−α, and therefore ε1 = d, ε2 = −d. Now

[[Eβ, E−α], [E−δ, Eγr ]] = −dHβ−α,

and

[E−δ, Eγr ] = ρEγr−δ = ρEα−β

with ρ = ±1. Thus

[Eβ, E−α] = −ρdEβ−α

and hence, by applying the conjugation τ ,

(6.15) [E−β, Eα] = ρdEα−β = d[E−δ, Eγr ].

Combining (6.14) and (6.15), we see that both dE−βEδ −E−αE−γr and dE−βEα−
E−δEγr are in Ker(ϕ) = Hc. ¤

Lemma 6.16. Suppose that α, δ ∈ Q̃r, β ∈ Q+ and β − δ = α − γr is a root. Then

Uαf̃ = Uδf̃ .

Proof. By Lemma 6.12,

Uαf̃ = EαE−αEγr f̃ = dEαE−βEδf̃ = dEδE−βEαf̃ = EδE−δEγr f̃ = Uδf̃ .

¤
Lemma 6.17. For any α ∈ Qir, Uαf̃ = Ueαf̃ .

Proof. Take β = γi, δ = α̃ in Lemma 6.16. ¤

Lemma 6.18. For any α ∈ Qir and δ ∈ Qr, Uαf̃ = Uδf̃ .

Proof. In light of lemmas 6.16 and 6.17 we need to show that, given α ∈ Qir and
δ ∈ Qr, there is a β ∈ Qi such that

β − δ = α− γr ∈ ∆ or β − δ = α̃− γr ∈ ∆.

If δ − α ∈ ∆, then δ − α ∼ −γi/2, and hence it is an element of Ci. Then
β = δ − α + γi ∈ Qi, so β − δ = α̃− γr ∈ ∆.

If δ−α 6∈ ∆, then α and δ are strongly orthogonal, and we can find a maximal set
Γ′ of strongly orthogonal roots containing this pair. Since γr(Hα) = α(Hγr) = 1 and
γr(Hδ) = δ(Hγr) = 1, we must have γr ∼Γ′ (α + δ)/2. Then β = α + γ − γr is a root,
and β − δ = α− γr ∈ ∆. ¤

Thus we have shown that Uαf̃ has a common value in the sets Qir, Qr, and hence:

Proposition 6.19. Uαf̃ has the same value for every α in Q̃r.

Combining all four cases, we now have the following consequence of Theorem 6.9:
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Theorem 6.20. Let G/K be a Hermitian symmetric non-tube space and let f be a
Poisson-Szegö integral annihilated by the L ⊕Hc system. Then

BV (f̃) =
(
EγrE−γrEγr + c

∑

α∈ eQr

EαE−αEγr

)
f̃ = 0,

with c greater than 1.

7. The L ⊕Hc system on Siegel domains

Our proof of Theorem 5.3 in Section 8 uses the operators L, ∆1, ∆2 and BV
together with some Fourier analysis on the group S. Therefore, we are going to
transfer these operators to S and make them act on corresponding functions there.

The scheme is as follows. Given a function f on D and a function f̃(g) = f(g · o)
on G, we choose coordinates z =

∑
zαEα in p+ to express L, ∆1, ∆2, BV in partial

derivatives (see (7.10)).

Let Ũ be one of operators L, ∆1, ∆2, BV and U the corresponding right-hand side

operator in (7.10). Since Ũ is left-invariant on G we have

U(f ◦ g)(o) = Ũ f̃(g).

Next we need to have (7.10), but on cD for the function

(7.1) cf(x) = f(c−1 · x).

For that we compute the differential of the Cayley transform c, we choose convenient

coordinates (7.11) in p+ and we write Ũ f̃(e) as in (7.12) i.e.

Ũ f̃(e) = (cU cf)(c · o),
there cU denotes the corresponding operator on the right-hand side of (7.12).

Finally, we extend cU by S-invariance

(cU cf̃)(s) =c U(cf · s)(c · o),
where

(7.2) cf̃(s) =c f(s · (c · o)).
Then, by invariance, Ũ f̃ = 0 implies cU cf̃ = 0. Then L, ∆1, ∆2, BV are written in
Theorem 7.24 in terms of some basic building blocks ∆(W,Z), as explained in (7.13).

7.1. Operators on the domain D. All our operators are sums of elements hav-
ing the form EαEαEγrand EαEα. In D ⊂ p+ let us introduce complex coordinates
{zα}α∈Q+ (we shall denote zα = xα + iyα) corresponding to the root space decompo-
sition z =

∑
zαEα. Then we prove:
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Theorem 7.3. Let f be a function on D, then

EαEαf̃(e) = ∂zα∂zαf(o),(7.4)

EαEαEγr f̃(e) = ∂zα∂zα∂zγr
f(o).(7.5)

Notice first that for right K-invariant functions f̃ ∈ C∞(G):

EαEαf̃ =(X2
α + Y 2

α )f̃ ,

EαEαEγr f̃ =EγrEαEαf̃ = (XγrX
2
α + XγrY

2
α − i(YγrX

2
α + YγrY

2
α ))f̃ .

(7.6)

To prove the above theorem we need to understand better the action of the group G on
the domain D. It is known ([K]) that for the case of D ∼= SU(n,m)/S(U(n)×U(m))
and p+ = Mn,m:

(7.7) g · 0 = BD−1

where g =

(
A B
C D

)
∈ SU(n,m). Using this formula we shall be able to compute

the action of some elements of G on D ∼= G/K in the general case.

Lemma 7.8 ([H1],[KW]). Let α ∈ Q+, then

exp tXα · o = tanh(t)Eα, exp rXα · tEα = t cosh(r)+sinh(r)
cosh(r)+t sinh(r)

Eα,

exp tYα · o = i tanh(t)Eα, exp rYα · tEα = t cosh(r)+i sinh(r)
cosh(r)−it sinh(r)

Eα.

Proof. The algebra spanned by Eα, Eα, Hα is isomorphic with sl(2,C) = su(1, 1)C.
By j−1 we shall denote the isomorphism:

j−1(Eα) = E =

(
0 1
0 0

)
, j−1(E−α) = E =

(
0 0
1 0

)
, j−1(Hα) = H =

(
1 0
0 −1

)

which extends to an isomorphism j of exp Lie(Eα, Eα, Hα) and SL(2,C). Moreover,
j commutes with taking the P+ component in both GC and SL(2,C):

p+ ◦ j = j ◦ p̃+.

Therefore, by (7.7):

exp tXα · o = p+(exp tXα) = p+ ◦ j(exp tX) = j ◦ p̃+(

(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
)

= j ◦ log

(
1 tanh(t)
0 1

)
= tanh(t)Eα,

exp rXα · tEα = p+(exp rXα exp tE) = j ◦ p̃+(

(
cosh(r) t cosh(r) + sinh(r)
sinh(r) cosh(r) + t sinh(r)

)
)

= j ◦ log

(
1 t cosh(r)+sinh(r)

cosh(r)+t sinh(r)

0 1

)
=

t cosh(r) + sinh(r)

cosh(r) + t sinh(r)
Eα.

In the same way we prove the two remaining formulas. ¤
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Using Lemma 7.8 we conclude:

X2
αf̃(e) = ∂2

xα
f(o), Y 2

α f̃(e) = ∂2
yα

f(o),

X3
αf̃(e) = ∂3

xα
f(o)− 2∂xαf(o), Y 3

α f̃(e) = ∂3
yα

f(o)− 2∂yαf(o),

XαY 2
α f̃(e) = ∂xα∂2

yα
f(o) + 2∂xαf(o), YαX2

αf̃(e) = ∂yα∂2
xα

f(o) + 2∂yαf(o),

which by (7.6) proves (7.4) and (7.5) for α = γr. To cope with the general version of
equation (7.5) we need a stronger version of Lemma 7.8:

Lemma 7.9. If α ∈ Qr ∪
⋃

i Qir then

exp sXγr · tEα =
t

cosh(s)
Eα + tanh(s)Eγr ,

exp sYγr · tEα =
t

cosh(s)
Eα + tanh(s)(iEγr).

Proof. Put β = α − γr, then by the Restricted Roots Theorem β is a root and we
may assume

Eβ = [Eα, E−γr ],

E−β = [Eγr , E−α],

Hβ = [Eβ, E−β] = Hα −Hγr .

The vectors Eα, Eβ, Eγr , E−α, E−β, E−γr , Hα, Hβ span a subalgebra of gC isomorphic
with sl(3,C) = su(2, 1)C:

j−1(Eβ) = E1 =




0 1 0
0 0 0
0 0 0


 , j−1(Eα) = E2 =




0 0 1
0 0 0
0 0 0


 ,

j−1(Eγ) = E3 =




0 0 0
0 0 1
0 0 0


 .

Applying (7.7) we obtain

exp sXγr · tEα = p+ ◦ j(exp sX3 exp tE2) = j ◦ p̃+




1 0 t
0 cosh(s) sinh(s)
0 sinh(s) cosh(s)




= j ◦ log




1 0 t
cosh(s)

0 1 tanh(s)
0 0 1


 =

t

cosh(s)
Eα + tanh(s)Eγr ,

exp sYγr · tEα = j ◦ p̃+




1 0 t
0 cosh(s) i sinh(s)
0 −i sinh(s) cosh(s)
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=
t

cosh(s)
Eα + tanh(s)(iEγr).

¤
By Lemma 7.9:

XγrX
2
αf̃(e) = ∂xγr

∂2
xα

f(o), XγrY
2
α f̃(e) = ∂xγr

∂2
yα

f(o),

YγrX
2
αf̃(e) = ∂yγr

∂2
xα

f(o), YγrY
2
α f̃(e) = ∂yγr

∂2
yα

f(o),

which finishes the proof of Theorem 7.3. ¤
Having this result it is easy to write our operators on the domain at the point o:

Lf̃(e) =
( ∑

α∈Q+

∂zα∂zα

)
f(o),

∆1f̃(e) =
( ∑

α∈Si Qi

∂zα∂zα + c0

∑
γ∈Γ

∂zγ∂zγ

)
f(o),

∆2f̃(e) =
( ∑

α∈Qr∪
S

i Qir

cα∂zα∂zα − cγr∂zγ∂zγ

)
f(o),

BV f̃(e) =
(
c1

∑

α∈Qr∪
S

i Qir

∂zα∂zα∂zγr
+ ∂zγr

∂zγr
∂zγr

)
f(o).

(7.10)

7.2. The Cayley transform. In order to write down the above operators on S, we
compute the differential of c. We shall use the formula given by [S], Lemma II.5.3,
which says that the Jacobian of the mapping z 7→ c · z at the point o is given by

Jac(o 7→ c · o) = Ad cK |p+ ,

where cK denotes the KC component of c in the decomposition P+KCP−. By [KW],
Lemma 3.5:

cK = exp

(
−

∑
1≤i≤r

log cosh(
π

4
i) ·Hγi

)
=

∏
1≤i≤r

exp

(
− log

√
2

2
·Hγi

)
.

Hence the vectors Eα are eigenvectors of Ad(cK):

AdcK(Eα) =





2Eα, for α ∈ Γ,
2Eα, for α ∈ Qij,√
2Eα, for α ∈ Qj.

Therefore, to have the operators on cD it is enough to multiply all terms by appro-
priate constants. But it will be more convenient for us to write the result using the
basis (3.16):

v = u + it =
∑

vjXj +
∑

α∈SQi

vαXα +
∑

α∈SQij

vk
αXk

α.
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We assume below that G/K is of non-tube type (for tube spaces using similar methods
we get the same values of cL and c∆1). Then it is known that α 6= α̃ for α ∈ Qij.
By (3.16):

xα =
1√
2
(u1

α − t2α), yα =
1√
2
(u2

α + t1α),

xeα = − εα√
2
(u1

α + t2α), yeα =
εα√
2
(u2

α − t1α),
(7.11)

therefore

∂zα∂zα

cf(c · o) = (∂2
xα

+ ∂2
yα

) cf(c · o)
=

(1

2
(∂u1

α
− ∂t2α

)2 +
1

2
(∂u2

α
+ ∂t1α

)2
)

cf(c · o),

∂zeα∂zeα
cf(c · o) =

(1

2
(∂u1

α
+ ∂t2α

)2 +
1

2
(∂u2

α
− ∂t1α

)2
)

cf(c · o),
(∂zα∂zα + ∂zeα∂zeα) cf(c · o) = (∂v1

α
∂v1

α
+ ∂v2

α
∂v2

α
) cf(c · o).

Finally for any Hermitian symmetric space G/K:

Lf̃(e) = 4
( ∑

α∈SQi

∂vα∂vα +
∑

α∈SQij

∂vk
α
∂vk

α
+

∑
j

∂vj
∂vj

)
cf(c · o),

∆1f̃(e) = 4
( ∑

α∈SQi

∂vα∂vα + c0

∑
j

∂vj
∂vj

)
cf(c · o),

(7.12)

and for G/K being of non-tube type:

BV f̃(e) = 8
(
c1

( ∑
α∈Qr

∂vα∂vα∂vr +
∑

α∈Si Qir

∂vk
α
∂vk

α
∂vr

)
+ ∂vr∂vr∂vr

)
cf(c · o),

∆2f̃(e) = 4
( ∑

α∈Qr

cα∂vα∂vα +
∑

α∈SQir

(cα∂zα∂zα + ceα∂zeα∂zeα)− cγr∂vr∂vr

)
cf(c · o),

where in the last operator it is more convenient not to change coordinates for α ∈ Qir.

7.3. S-invariant operators on Siegel domains. Now we extend the above oper-
ators by S-invariance. Let W and Z be S-invariant holomorphic vector fields which
agree with ∂w and ∂z at o. We have to find S-invariant operators on cD, ∆(W,Z)
and D(W,Z), such that:

∆(W,Z) cf̃(e) = ∂w∂z
cf(c · o),

D(W,Z) cf̃(e) = ∂w∂w∂z
cf(c · o)

for any function cf on cD.

The operators ∆(W,Z) are explicitly computed in [DHMP]:

(7.13) ∆(W,Z) = WZ −∇W Z = ZW −∇ZW
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where ∇ denotes the Riemannian connection on S. ∆(Z, Z) is a real, second or-
der, elliptic degenerate operator which annihilates holomorphic (consequently pluri-
harmonic) functions. Moreover any left-invariant operator with the above proper-
ties is a linear combination of ∆(W,Z)’s. To simplify our notation we shall denote
∆(Z, Z) by ∆Z . In view of (3.18)

∆Zj

cf̃(e) = ∂vj
∂vj

cf(c · o)
∆Zk

α

cf̃(e) = ∂vk
α
∂vk

α

cf(c · o)
∆Zα

cf̃(e) = ∂vα∂vα
cf(c · o),

and for α ∈ Qir

∆Wα

cf̃(e) = ∂zα∂zα
cf(c · o)

∆Weα
cf̃(e) = ∂zeα∂zeα

cf(c · o),
where

Wα =
1√
2

[
(X1

α − Y 2
α )− i(X2

α + Y 1
α )

]
,

Weα =− εα√
2

[
(X1

α + Y 2
α ) + i(X2

α − Y 1
α )

]
.

(7.14)

It remains to calculate the operators D(W,Zr).

Theorem 7.15. Let W be one of the holomorphic vector fields Zα, Zk
β , Zr, for

α ∈ Qr, β ∈
⋃

i Qir then

D(W,Zr) = W∆(W,Zr)− icW ∆Zr

with a positive constant cW .

Proof. We begin the proof with some general observations. Given any coordinates
{wi} in cD, take Wn to be the S-invariant holomorphic vector field such that:

(7.16) Wng(c · o) = ∂wng(c · o),
then Wn can be written in the form

Wng(z) =
∑

i

hn
i (z)∂wi

g(z)

and of course by (7.16)

hn
i (c · o) = δin.
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Let us write the building blocks ∆(Wp,Wq) in these coordinates.

∆(Wp,Wq) = W pWq −∇W p
Wq

=
( ∑

i

hp
i (z)∂wi

)( ∑
j

hq
j(z)∂wj

)−
∑

i

hp
i (z)∇∂wi

( ∑
j

hq
j(z)∂wj

)

=
∑
i,j

hp
i (z)hq

j(z)∂wi
∂wj

+
∑
i,j

hp
i (z)∂wi

hq
j(z)∂wj

−
∑
i,j

hp
i (z)∂wi

hq
j(z)∂wj

−
∑
i,j

hp
i (z)hq

j(z)∇∂wi
∂wj

=
∑
i,j

hp
i (z)hq

j(z)∂wi
∂wj

.

Since

Wn∆(Wn,Wk)g(c · o) = Wn

( ∑
i,j

hn
i (z)hk

j (z)∂wi
∂wj

)
g(c · o)

=
( ∑

i,j

hn
i (z)hk

j (z)∂wn∂wi
∂wj

+
∑
i,j

∂wn(hn
i hk

j )(z)∂wi
∂wj

)
g(c · o)

= ∂wn∂wn∂wk
g(c · o) +

∑
i,j

∂wn

(
hn

i hk
j

)
(c · o)∂wi

∂wj
g(c · o),

we see that

(7.17) D(Wn,Wk) = Wn∆(W n, Wk)−
∑
i,j

∂wn

(
hn

i hk
j

)
(c · o)∆(W i,Wj),

Thus we need to compute:

(7.18) ∂wn(hn
i hk

j )(c · o) = (∂wnhn
i )(c · o)hk

j (c · o) + hn
i (c · o)(∂wnhk

j )(c · o)
and to do it, we are going to use the action of the Wi’s on cD.

Taking g(z) = zj we get

Wkg(z) =
∑

i

hk
i (z)∂wi

g(z) = hk
j (z)

For z = s · (c · o):

hk
j (z) = Wkg(s) =

1

2
(Xk − iYk)g(s)

=
1

2

(
∂tg(s exp tXk)|t=0 − i∂tg(s exp tYk)|t=0

)



SYSTEMS ON HERMITIAN SYMMETRIC SPACES 35

(To simplify the notation we write g(s) instead of g(s · o) identifying the function on
S with that on cD.) Furthermore,

∂wnhk
j (c · o) =Wnhk

j (c · o) =
1

2
(Xn − iYn)hk

j (c · o)

=
1

2

(
∂sh

k
j (exp sXn)|s=0 − i∂sh

k
j (exp sYn)|s=0

)

=
1

4
∂s∂t

(
(
g(exp sXn exp tXk)− g(exp sYn exp tYk)

)

− i
(
g(exp sXn exp tYk) + g(exp sYn exp tXk)

)
)
|t=0
s=0

(7.19)

and

∂wnhn
i (c · o) =∂wnhn

i (c · o)

=
1

4
∂s∂t

(
(
g(exp sXn exp tXn) + g(exp sYn exp tYn)

)

+ i
(
g(exp sXn exp tYn)− g(exp sYn exp tXn)

)
)
|t=0
s=0

(7.20)

From now we shall use the standard notation (3.13) of Siegel domains. To prove the
theorem we need to consider Wn = X − iY ∈ {Zα, Zk

α, Zr} and Wk = Zr = Xr − iYr.
Let us also recall the action of the group S on the domain cD:

(7.21) ((ζ, x)s) · (w, z) = (ζ + σ(s)w, x + sz + 2iΦ(σ(s)w, ζ) + iΦ(ζ, ζ)),

where σ is a representation of N0Ã:

σ : N0Ã 3 s 7→ σ(s) ∈ GL(Z).

Observe that (7.21) implies:

∂s∂tg(exp sX exp tXr)|t=0
s=0

= 0,

∂s∂tg(exp sX exp tHr)|t=0
s=0

= 0,

which simplifies (7.19) and (7.20). Furthermore

(7.22) ∂s∂tg(exp sY exp tXr)|t=0
s=0

and ∂s∂tg(exp sY exp tHr)|t=0
s=0

are nonzero only for Y = Hr. Thus for Wn ∈ {Zα, Zk
α} the formula (7.18) reduces to:

(7.18’) ∂wn(hn
i (z)hr

r(z))(c · o) = (∂wnhn
i )(c · o).

while for Wn = Zr (8.12) becomes

(7.18”) ∂zr(h
r
i (z)hr

r(z))(c · o) = (∂zrh
r
i + ∂zrh

r
i )(c · o).
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Now we are going to calculate (7.18’) and (7.18”).
Case I. Wn = Zr. Then exp tXr ∈ Vrr, exp tHr ∈ ar. Notice that in (7.19) the
values ∂s∂tg are nonzero only if g((ζ, z)) = zr. Then

∂s∂tg(exp sHr exp tXr · (c · o))|t=0
s=0

= ∂s∂tg(exp sHr · exp tXr + i exp sHr)|t=0
s=0

= 1,

∂s∂tg(exp sHr exp tHr · (c · o))|t=0
s=0

= ∂s∂tg(i exp(s + t)Hr)|t=0
s=0

= i,

and we get
∂zrh

r
r(o) = −2i.

Similarly using (7.20) we obtain:

∂zrh
r
r(o) = −2i.

Hence by (7.18”)
∂zr(h

r
r(z)hr

r(z))(c · o) = −4i.

Case II. Wn = Zk
α for α ∈ Qjr. Let xt = exp tXk

α then xt ∈ Vjr. To describe the

action of yt = exp tY k
α = exp(2xt¤cj) we need a Jordan algebra lemma ([FK], Lemma

VI.3.1):

Lemma 7.23. Take z ∈ V and decompose z = z1 + z 1
2

+ z0 into its Peirce decompo-

sition with respect to cj. Then for a = exp(2xt¤cj)z, we have:

a1 = z1,

a 1
2

= 2L(xt)z1 + z 1
2
,

a0 = 2L(e− cj)L(xt)
2z1 + 2L(e− cj)L(xt)z 1

2
+ z0. ¤

We shall also use a key fact: Vij · Vij ⊂ Vii + Vjj. We have:

ys(xt) = xt + 2L(e− cj)L(xs)(xt) = xt + CstXr, C 6= 0.

Therefore,
∂s∂tg(exp sY exp tX)|t=0

s=0
= C

for g(ζ, z) = zr and it is zero for other variables. We have

yt · e = e + 2L(xt)cj + 2L(e− cj)L(xt)
2cj

= e + xt + L(e− cj)L(xt)xt

To calculate
∂s∂tg(exp sY exp tY )|t=0

s=0

we need to know only the term with st in ys · (yt · e). Therefore it is enough to
calculate

ys · (e + xt) = e + xs + L(e− cj)L(xs)xs + xt + 2L(e− cj)L(xs)xt.

Only the last term matters, it is equal iCstXr and so

∂s∂tg(exp sY exp tY )|t=0
s=0

= −iC.
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Finally the only nonzero term in (7.18’) is

∂zk
α
hα,k

r (o) = −2iC.

Case III. Wn = Zα for α ∈ Qr. Then exp tX = exp tXα = tXα, Φ(Xα,Xα) = CXr

and for g((ζ, z)) = zr

∂s∂tg(exp sX exp tX)|t=0
s=0

= ∂s∂t2stiΦ(x, x) = −2iC.

By analogy, for exp tY = exp tYα = itXα:

∂s∂tg(exp sY exp tY )|t=0
s=0

= −2iC,

∂s∂tg(exp sX exp tY )|t=0
s=0

= −2C,

∂s∂tg(exp sY exp tX)|t=0
s=0

= 2C.

Thus
∂zαhα

r (o) = −8iC.

¤
Now we are ready to transfer operators L, ∆1, ∆2, BV to S:

Theorem 7.24. The images of operators L, ∆1, ∆2 and BV are respectively:

cL =
∑

α∈SQi

∆Zα +
∑

i

∆Zi
+

∑

α∈SQij

∆Zk
α
,

c∆1 =
∑

α∈SQi

∆Zα + c0

∑
i

∆Zi
,

c∆2 =
∑
α∈Qr

cα∆Zα +
∑

α∈Si Qir

(cα∆Wα + ceα∆Weα)− cr∆Zr ,

cBV = A
( ∑

α∈Qr

Zα∆(Zα, Zr) +
∑

α∈Sj Qjr

Zk
α∆(Zk

α, Zr)
)

+ Zr∆Zr − iB∆Zr ,

where Wα, Weα are as in (7.14), c0, cα, cr, B are strictly positive constants and
A > 1.

One can simplify the operator cBV . For that we use the following formula for the
Bergmann connection

∇W Z = πQ([W,Z]),

(see e.g. [BBDHPT]) where W, Z are holomorphic vectors fields and πQ denotes the
projection onto the space of holomorphic vectors fields. Then for Z ∈ {Zα, Zk

α} we
have

∇ZZr = πQ[X + iY, Xr − iHr] =
1

2
πQ(iX − Y ) =

1

2
πQ(i(X − iY )) = 0
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which by (7.13) implies

∆(Z, Zr) = ZZr.

Furthermore applying

ZZ = (X − iY )(X + iY ) = X2 + Y 2 + i[X,Y ] = X2 + Y 2 − iXr,

we obtain

cBV =A
( ∑

α∈Qr

(
(Xα)2 + (Yα)2

)
+

∑

α∈Si Qir

(
(Xk

α)2 + (Y k
α )2

))
Zr

− kAiXrZr + Zr∆Zr − iB∆Zr

(7.25)

for k = q1 + (r − 1)q2. (Recall that q1 denotes the cardinality of the sets Qi and q2

the cardinality of the Qij’s.)
Similarly, we rewrite c∆2. If α ∈ Qjr then

(7.26) [Y ε1
α , Xε2

α ] = Xr

when ε1 = ε2 and [Y ε1
α , Xε2

α ] = 0 when ε1 6= ε2. Now using (7.13) and (7.26) we
calculate

∆Zr = X2
r + H2

r −Hr

∆Wα =
1

2
(X1

α − Y 2
α )2 +

1

2
(X2

α + Y 1
α )2 −Hr

∆Weα =
1

2
(X1

α + Y 2
α )2 +

1

2
(X2

α − Y 1
α )2 −Hr

∆Zα = X 2
α + Y2

α −Hr

and so

c∆2 = 4
(
− cγr(X

2
r + H2

r −Hr) +
∑

α∈Si Qir

cα(
1

2
(X1

α − Y 2
α )2 +

1

2
(X2

α + Y 1
α )2 −Hr)

+
∑

α∈Si Qir

ceα(
1

2
(X1

α + Y 2
α )2 +

1

2
(X2

α − Y 1
α )2 −Hr) +

∑
α∈Qr

cα(X 2
α + Y2

α −Hr)
)
.

(7.27)

8. Proof of the main theorem

We turn now to the proof of Theorem 5.3. Our proof will depend on whether or
not G/K is of tube type. The first step, given by Proposition 8.1, applies to both
cases.
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8.1. Poisson-Szegö integrals. We will show that bounded L⊕Hc-harmonic func-
tions are Poisson-Szegö integrals. In fact, we have the following.

Proposition 8.1. Let F be a bounded function on S annihilated by cL and c∆1.
Then F is the Poisson-Szegö integral of a function f ∈ L∞(N(Φ)).

Proof. The first part of this proof closely follows that for Proposition 3.3 in [BBDHPT].

Since cLF = 0, F can be written as the Poisson integral of a function f̃ over

N = N(Φ)N0. As in [BBDHPT] we can assume that f̃ is continuous. We will prove

below that y 7→ f̃(y) is constant on N0. It then follows that F is the Poisson-Szegö

integral of f = f̃ |N(Φ) over N(Φ), completing the proof.
Let

H =
∑

j

Hj

and set
Ft(g) = F (exp(tH)g)

for g ∈ S. By Formula (37) in [BBDHPT], FH = limt→−∞ Ft exists and is given by
the formula

(8.2) FH(wya) =

∫

N0

f̃(yaua−1)

(∫

N(Φ)

P̃L(vu)dv

)
du

where w, v ∈ N(Φ), y, u ∈ N0, a ∈ Ã, and P̃L denotes the Poisson kernel for cL on
N = N(Φ)N0.

The operators cL and c∆1 act from the right and annihilate F . So cLFt = 0 =
c∆1Ft and hence

cLFH = 0,(8.3)
c∆1FH = 0.(8.4)

Moreover, as in Lemma 3.4 in [BBDHPT], one can use (8.2) to show that t 7→
FH(wyaexp(tH)) is constant and hence

(8.5) HFH = 0.

Equation (8.2) shows that FH(wya) = FH(ya), independent of w ∈ N(Φ). Substi-
tuting the expressions

∆Zi
= X2

i + H2
i −Hi, ∆Zα = X 2

α + Y2
α −Hi (α ∈ Qi)

into the formula for c∆1 in Proposition 7.24 and noting that Xi, Xα, Yα belong to
the Lie algebra Z ⊕ V for N(Φ), we see that

c∆1FH(ya) =
(
c0

∑
H2

i − (c0 + q1)
∑

Hi

)
FH(ya)

where q1 is the common cardinality of the sets Qi. Now using (8.4) and (8.5), we
conclude that FH(ya) is annihilated by the Laplace-Beltrami operator

∑
H2

i for the
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abelian group Ã. As FH is bounded, FH(ya) can not depend on a ∈ Ã. We have
shown FH(wya) = FH(y) and (8.3) now yields

0 = (
∑

H2
i +

∑
(Y k

α )2 −
∑

aiHi)FH(y) = (
∑

(Y k
α )2)FH(y).

So FH(y) is annihilated by a left-invariant second order elliptic differential operator
on the nilpotent group N0. Thus FH(y) is a constant function. Now from (8.2) we

conclude that f̃(y) is also constant on N0. ¤

8.2. Proof of Theorem 5.3 for tube domains. Let G/K be of tube type and F
be a real-valued bounded L⊕Hc-harmonic function on G/K. Proposition 8.1 shows
that F is a Poisson-Szegö integral. The Johnson-Koranyi Theorem 5.1 implies that
F is H-harmonic. So F is in fact annihilated by all of H′ ⊕L⊕Hc = p+ ⊗ p−. This
means F is pluriharmonic.

8.3. Proof of Theorem 5.3 in the non-tube case. The Hua system does not
annihilate the Poisson-Szegö kernel on a non-tube domain, so Poisson-Szegö integrals
need not be Hua harmonic. Thus we require a different proof for Theorem 5.3 in the
non-tube case.

For the rest of this section we assume G/K to be of non-tube type. As above,

F denotes a real-valued bounded L ⊕ Hc-harmonic function on G/K and cF , cF̃
are as in (7.1) and (7.2) . We note the following consequence of Theorem 6.20 and
Proposition 8.1.

Corollary 8.6. cBV (cF̃ ) = 0.

Our proof will make use of the operators cBV , c∆2 and a characterization of
bounded pluriharmonic functions on Siegel domains from [BDH]. It is shown in

[BDH] that F is pluriharmonic if and only if cF̃ is annihilated by three operators.
Each of these is a linear combination of building-blocks ∆Zα , ∆Zi

and ∆Zk
α
. Thus we

have:

Theorem 8.7 ([BDH]). If a real bounded function cF̃ is annihilated by the operators

∆Zα (α ∈ ∪iQi), ∆Zi
(1 ≤ i ≤ r) and ∆Zk

α
(α ∈ ∪Qij)

then it is pluriharmonic.

Consider the decomposition

(8.8) s = sr−1 ⊕ sr,
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where

sr−1 =

(⊕
j<r

Zj

)
⊕

( ⊕
1≤i≤j<r

Vij

)
⊕

( ⊕
1≤i<j<r

nij

)
⊕

( ⊕
1≤j<r

RHj

)
,

sr = Zr ⊕
( ⊕

1≤j<r

Vjr

)
⊕

( ⊕
1≤j<r

njr

)
⊕ Vrr ⊕ RHr.

(8.9)

sr−1 is a subalgebra of s and sr is an ideal. Therefore we can decompose the group
as a semidirect product of a subgroup Sr−1 and normal subgroup Sr,

(8.10) S = Sr−1Sr.

Let

(8.11) hr = Zr ⊕
(⊕

j<r

Vjr

)
⊕

(⊕
j<r

njr

)
⊕ Vrr, ãr = RHr,

so that sr = hr⊕ ãr. Using the bracket relations, one sees that hr is a Heisenberg Lie
algebra of dimension 2k + 1, where, as in formula (7.25), k = q1 + (r − 1)q2. Here

Zr has basis {Xa,Ya : α ∈ Qr},
⊕j<rVjr has basis {X1

α, X2
α : α ∈ ∪j<rQjr},

⊕j<rnjr has basis {Y 1
α , Y 2

α : α ∈ ∪j<rQjr}
and Vrr = RXr is the center of hr. The basis

Xα,Yα, Xk
α, Y k

α , Xr, Hr, α ∈ Qr ∪
⋃

Qjr

for sr is orthonormal with respect to the Riemannian form gr on Sr. The complex
structure J on s restricts to yield a complex structure on sr:

J (Xr) = Hr, J (Hr) = −Xr,

J (Xk
α) = Y k

α , J (Y k
α ) = −Xk

α,

J (Xα) = Yα, J (Yα) = −Xα.

The operators ∆̃Zr , ∆̃Zα , ∆̃Zk
α

defined on Sr as in (7.13), act from the right and make
perfect sense on both Sr and S. Thus for any smooth function g on S we may write:

∆̃Zr(gs′)(sr) = (∆Zrg)(s′sr),

∆̃Zα(gs′)(sr) = (∆Zαg)(s′sr),

∆̃Zk
α
(gs′)(sr) = (∆Zk

α
g)(s′sr).

(8.12)

where s′ ∈ Sr−1, sr ∈ Sr and gs′(sr) = g(s′sr). Likewise, Equations (7.25) and (7.27)
show that cBV and c∆2 can be applied to functions on Sr. As cBV and c∆2 annihilate
cF̃ we have

(8.13) cBV c(F̃s′) = c∆2
c(F̃s′) = 0.
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Theorem 8.18, proved below, shows that (8.13) implies cF̃s′ is a pluriharmonic
function on Sr. Hence

∆̃Zr(
cF̃s′) = ∆̃Zα(cF̃s′) = ∆̃Zk

β
(cF̃s′) = 0 for all α ∈ Qr, β ∈

⋃
i

Qir

and by (8.12)

(8.14) ∆Zr(
cF̃ ) = ∆Zα(cF̃ ) = ∆Zk

β
(cF̃ ) = 0 for all α ∈ Qr, β ∈

⋃
i

Qir.

Thus the function cF on cD satisfies

(8.15) ∂vα∂vα

cF (c · o) = ∂vk
β
∂vk

β

cF (c · o) = 0, for α ∈ {γr} ∪Qr, β ∈
⋃
i

Qir,

where, as before, vα, vk
β denote coordinates on cD with respect to basis (3.18). Notice

that our considerations do not depend on the order of the roots in Γ, hence the role
of all γj’s is equivalent as far as the conclusion is made on the domain cD not on
the group S. In particular, we may interchange γr with γj and so obtain (8.15) for
α ∈ {γj} ∪Qj, β ∈

⋃
i Qij. But now we may apply S-invariance (with respect to the

group S defined by the original ordering) and conclude that all building blocks ∆Zj
,

∆Zα , ∆Zk
α

annihilate cF̃ . This shows that F is pluriharmonic, in view of Theorem
8.7.

8.4. Rank one analysis. The group Sr in (8.10) can be identified with the semidi-
rect product

S0 = HkA0

of the Heisenberg group Hk = Ck × R with A0 = R+ acting via dilations. The
solvable group S0 arises in connection with the rank one Hermitian symmetric space
G/K = SU(1, k)/S(U(1)×U(k)), whose bounded realization D0 is biholomorphically
equivalent to the unit ball in Ck+1. S0 is identified with the classical Siegel domain

cD0 = {(z, zk+1) ∈ Ck × C : =zk+1 >
1

4
|z|2}.

We write points s ∈ S0 as

s =
(
(ζ, u), a

)
=

(
((ζ1 . . . , ζk), u), a

)
, (ζj = xj + iyj ∈ C, u ∈ R, a ∈ R+)

and denote by Xj, Yj, T the left-invariant fields on Hk, which at e agree respectively

with ∂xj
, ∂yj

, ∂u. Then the operators X̃j, Ỹj, T̃ , H given by

X̃j =
√

aXj,

Ỹj =
√

aYj,

T̃ = aT,

H = a∂a,

(8.16)
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are left-invariant on the group S0, and form a basis of the Lie algebra s0 of S0. The

elements Xr and Hr of sr correspond to T̃ and H respectively. Xk
α’s and Xα’s in sr

correspond to the X̃j’s in s0 and the Y k
α ’s, Yα’s correspond to the Yj’s. Let ` = (r−1)q2

and order the bases for sr and s0 so that the Xk
α’s and Y k

α ’s (α ∈ ⋃
j Qjr) correspond

with X̃1, . . . , X̃` and Ỹ1, . . . , Ỹ` respectively. The elements X̃α, Ỹa (α ∈ Qr) correspond

to X̃j, Ỹj with ` < j ≤ k.
Recall that the operators cBV and c∆2 on S are now regarded as living on the

subgroup Sr. Identifying Sr with S0 as described above and working with equations
(7.25) and (7.27) we obtain the following expressions in the notation of (8.16).

cBV =AaLBZ − ikAT̃Z + Z∆Z − iB∆Z ,

c∆2 =a
∑

0≤j<l

(
b2j+1((X2j+1 − Y2j+2)

2 + (X2j+2 + Y2j+1)
2)

+ b2j+2((X2j+1 + Y2j+2)
2 + (X2j+2 − Y2j+1)

2)
)

+ a
∑

2l<j≤k

bj((Xj)
2 + (Yj)

2)− CH − cr(T̃
2 + H2),

(8.17)

where

Z = T̃ − iH, ∆Z = T̃ + H2 −H, LB =
∑

1≤j≤n

(
(Xj)

2 + (Yj)
2
)
.

To complete the proof of Theorem 5.3 in the non-tube case, it remains to establish
the following result.

Theorem 8.18. Let F be a real bounded function on S0 annihilated by two operators:
cBV and c∆2. Then F is pluriharmonic.

Observe that F is a real function while cBV is a complex operator. Therefore F
is annihilated by two real operators:

U =AaLBT̃ − kAT̃H + T̃ (T̃ 2 + H2 −H),

V =AaLBH + kAT̃ 2 + H(T̃ 2 + H2 −H) + B(T̃ 2 + H2 −H),
(8.19)

A > 1, B > 0.
Let φ be a Schwartz function on R whose Fourier transform satisfies

φ̂(λ) =

{
1 for |λ| ≤ 1,
0 for |λ| ≥ 2.

By [BDH] (Lemma 4.4) there exists a sequence {kn}n=1,2,...of natural numbers tending
to infinity such that for

φn(x) =
1

kn

φ

(
x

kn

)
,
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convolving in the central direction in Hk the limit

lim
n→∞

φn ∗R F ((ζ, x)a)

exists for every ζ ∈ Ck, a ∈ A0 and does not depend on the central variable x. Denote
this limit by G(ζ, a), then G is annihilated by the same operators as F : U, V, c∆2.

Lemma 8.20. The function G(ζ, a) is constant.

Proof. Let G̃(ζ, a) = HG(ζ, a) = (a∂a)G(ζ, a), then by Harnack’s inequality the

function G̃ is bounded and by (8.19)

V G = (AaLB + H2 + (B − 1)H −B)G̃(ζ, a) = 0.

This equation implies that G̃ = 0. Indeed, let µt be the semigroup of measures with
infinitesimal generator AaLB + H2 + (B − 1)H. Then AaLB + H2 + (B − 1)H − B

generates the semigroup e−Btµt and so G̃ ∗ e−Btµt = G̃. Now letting t → ∞ we

see that G̃ vanishes, G does not depend on a and so it is a function on R2k = Ck

annihilated by the elliptic operator (compare (8.17)):

( ∑

0≤j<l

(
b2j+1((∂x2j+1

− ∂y2j+2
)2 + (∂x2j+2

+ ∂y2j+1
)2)

+ b2j+2((∂x2j+1
+ ∂y2j+2

)2 + (∂x2j+2
− ∂y2j+1

)2)
)

+
∑

2l<j≤k

bj(∂
2
xj

+ ∂2
yj

)

)
G(x, y) = 0,

Taking the Fourier transform of both sides (in the distribution sense) we get

( ∑

0≤j<l

(
b2j+1((η2j+1 − ξ2j+2)

2 + (η2j+2 + ξ2j+1)
2)

+ b2j+2((η2j+1 + ξ2j+2)
2 + (η2j+2 − ξ2j+1)

2)
)

+
∑

2l<j≤k

bj(η
2
j + ξ2

j )

)
Ĝ(η, ξ) = 0,

which implies

suppĜ ⊂ {0}.
Boundedness of G forces it to be constant. ¤

We remark that the only use of the operator ∆2 appears above in the proof of
Lemma 8.20. In summary, we have proved the following.

Theorem 8.21. Assume that F satisfies the assumptions of Theorem 8.18. Denote
by F (ζ, λ̂, a) the distributional partial Fourier transform of F along the center of Hk.
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Let

ηn(x) = knφ(knx)− knφ(k−1
n x),

Fn(ζ, x, a) = ηn ∗R F (ζ, x, a).

Then

suppFn(·, ·̂, ·) ⊂ Cn × {λ ∈ R : k−1
n ≤ |λ| ≤ 2kn} × R+,

Fn is annihilated by U and V and there is a constant c such that the sequence Fn

tends to F + c.

As a corollary, we see that to justify Theorem 8.18 it is enough to justify it for
functions satisfying

(8.22) suppF (·, ·̂, ·) ⊂ Cn × {λ ∈ R : ε ≤ |λ| ≤ ε−1} × R+,

Writing the operator U on the partial Fourier transform side and using the above
assumptions one can easily prove that such F is annihilated by

(8.23) U1 = AaLB − kAH + T̃ 2 + H2 −H,

which is a second order elliptic operator. Therefore by [DH], [R] the function F may
be written as

F ((ζ, x)a) = f ∗Hk Pa(ζ, x)

for the Poisson kernel Pa determined by U and f ∈ L∞(Hk). Furthermore

lim
a→0

F ((ζ, x)a) = f(ζ, x)

in the *weak sense.

Proposition 8.24. The boundary value f of F satisfies the following differential
equation:

(L2
B + k2∂2

x)f(ζ, x) = 0

Proof. In the proof we shall use the following simple lemma

Lemma 8.25. Let h ∈ C1(0,∞). Assume that

ah′(a)− γh(a) = v(a)

for some γ > 0 and

lim
a→0

v(a) = v0.

Then

lim
a→0

h(a) = −v0

γ
.
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Let F (a)(ζ, x) = F ((ζ, x)a) and let φ be a test function. The lemma is applied to
h(a) = 〈∂p

aF (a), φ〉, for p = 1, 2, 3. Observe that by (8.23)

(8.26) a∂2
aF (a)− kA∂aF (a) = −(ALB + a∂2

x)F (a).

Applying Lemma 8.25 we get

lim
a→0

∂aF (a) =
1

k
LBf.

Differentiating (8.26) along a we obtain:

(8.27) a∂3
aF (a)− (kA− 1)∂2

aF (a) = −(ALB∂a + ∂2
x + a∂2

x∂a)F (a)

and using again Lemma 8.25 we prove

lim
a→0

∂2
aF (a) =

1

kA− 1

(A

k
L2

B + ∂2
x

)
f.

Repeating this procedure one can also show that:

lim
a→0

∂3
aF (a) exists.

Applying the operator V we have:

0 = lim
a→0

(
ALB∂a + kA∂2

x + a∂a(∂
2
x + ∂2

a) + B′(∂2
x + ∂2

a)
)
F (a) (B′ = B + 2)

=
(A

k
L2

B + kA∂2
x + B′∂2

x +
B′

kA− 1

(A

k
L2

B + ∂2
x

))
f

=
1

k(kA− 1)

(
(A(kA− 1) + B′A)L2

B

+(k2A(kA− 1) + B′k(kA− 1) + B′k)∂2
x

)
f

=
1

k(kA− 1)

(
A(kA− 1 + B′)L2

B + k2A(kA− 1 + B′)∂2
x

)
f

= C(L2
B + k2∂2

x)f.

¤
Lemma 8.28. There is an ε′ such that for every ζ ∈ Cn

suppf̂ζ(λ) ⊂ {ε′ < |λ| < ε′−1}.
Proof. Let ε be as in 8.22. Taking φ ∈ S(R) such that:

φ̂(λ) =

{
1 for ε < |λ| < ε−1,
0 for |λ| ∈ (0, ε

2
) ∪ (2

ε
,∞),

with ε as in (8.22), we obtain F = φ ∗R F . Thus

(f − φ ∗R f) ∗Hk Ps = F (s)− φ ∗R F (s) = 0,

but the mapping L∞(Hk) 3 g 7→ g ∗Hk Ps ∈ L∞(S0) is injective ([DH]), therefore
f = φ ∗R f , establishing the lemma with ε′ = ε/2. ¤
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Now we are in the situation described in [B] (see also [BBDHJ]), where the following
was proved:

Theorem 8.29 ([B]). Let f ∈ L∞(Hk) be a boundary value of a real bounded function
F on S0 i.e.:

F ((ζ, x)a) = f ∗Hk Pa(ζ, x).

Assume:
- (L2

B + k2∂2
x)f(ζ, x) = 0,

- suppf̂ζ(λ) ⊂ {ε′ < |λ| < ε′−1} for every ζ ∈ Ck.
Then F is pluriharmonic.
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rable. Bull. Soc. Math. France, Memoiré, 54:5–118, 1977.
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