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Abstract. The Lichnerowicz conjecture asserted that every harmonic Riemannian
manifold is locally isometric to a two-point homogeneous space. In 1992, E. Damek
and F. Ricci produced a family of counter-examples to this conjecture, which arise
as abelian extensions of two-step nilpotent groups of type-H. In this paper we
consider a broader class of Riemannian manifolds: solvmanifolds of Iwasawa type
with algebraic rank one and two-step nilradical. Our main result shows that the
Damek-Ricci spaces are the only harmonic manifolds of this type.

1. Introduction

Harmonic spaces are Riemannian manifolds which exhibit a strong type of radial
symmetry. In particular, the volume density expressed in normal coordinates about
any point x◦ depends only on the distance to x◦. There are many equivalent condi-
tions, most of which concern the associated Laplace-Beltrami operator and harmonic
functions. For example, there exists a non-constant harmonic function on U\{x◦}
depending only on d(·, x◦) for some neighborhood U of any given point x◦. We refer
the reader to Chapter 6 in [Bes78] for a discussion of these conditions as well as
historical background.

It is well known that every harmonic space is also an Einstein manifold. The
converse is far from true, as the harmonicity conditions are highly restrictive. Indeed,
the Einstein condition is just one of the infinite family of “Ledger Conditions” on the
curvature tensor of a harmonic manifold. The most conspicuous harmonic manifolds
are the two-point homogeneous spaces, which are the (flat) Euclidean spaces together
with the rank one symmetric spaces [Hel78]. For a long time, it was not known
whether, conversely, every harmonic manifold was locally isometric to a two-point
homogeneous space. This question is known as the Lichnerowicz conjecture [Lic44].

The Lichnerowicz conjecture was proved in [Wal49] for manifolds of dimension four
or less and in [Sza90] for compact harmonic spaces with finite fundamental group.
Further positive results include Allamigeon’s Theorem ([All65]), asserting that every
complete connected and simply connected harmonic space is either a Euclidean space
or a Blaschke manifold. It is also known that if M is asymptotically harmonic,
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compact, and with negative sectional curvature, then M is locally rank one symmetric
([FL92], [BFL92],[BCG96]). (Asymptotic harmonicity is a property weaker than
harmonicity.)

In 1992, E. Damek and F. Ricci produced a new family of non-compact, simply con-
nected harmonic spaces which generalize the rank one symmetric spaces [DR92]. The
many non-symmetric Damek-Ricci spaces are counter-examples to the Lichnerowicz
conjecture. To date, we know of no other simply connected counter-examples.

The Damek-Ricci spaces arise as abelian extensions of nilpotent Lie groups of type-
H. (See [Kap80], [Kor85], [CDKR91], [DR93].) In this paper, we will use the term
solvmanifold to refer to a connected and simply connected solvable Lie group together
with a left-invariant metric. Each Damek-Ricci space is, in particular, a solvmanifold.
It is known, moreover, that every connected and simply connected homogeneous space
with nonpositive sectional curvature is isometric to a solvmanifold. (See [Hei74],
[AW76].)

It seems natural to seek a classification of harmonic solvmanifolds. In this paper
we work outward from the class of Damek-Ricci spaces and show that within a larger
class of solvmanifolds, the Damek-Ricci spaces are the only harmonic spaces. Our
main result is Theorem 1 below. The relevant definitions can be found below in
Section 2.

Theorem 1. Let S be a solvmanifold that is rank one, three-step, and of Iwasawa
type. If the first two Ledger conditions hold, then S is a Damek-Ricci space.

As an immediate corollary, we are able to say

Corollary 2. Let S be a solvmanifold that is rank one, three-step, and of Iwasawa
type. If S is harmonic, then S is a Damek-Ricci space.

A result of Heber [Heb95] shows that an asymptotically harmonic solvmanifold of
Iwasawa type with non-positive sectional curvature must have rank one. Thus we
also have

Corollary 3. Let S be a three-step solvmanifold of Iwasawa type with non-positive
sectional curvature. If S is harmonic, then S is a Damek-Ricci space.

In a particular case, we have the following result. This has been obtained indepen-
dently by M. Druetta [Dru].

Theorem 4. Let S be a three-step Carnot solvmanifold. If S is harmonic, then S is
a Damek-Ricci space.

The proof of Theorem 1 is quite technical, so we will also present an independent
elementary proof of Theorem 4. If the solvmanifold S in Theorem 1 is in fact two-step
then the appropriate conclusion is that S is a real hyperbolic space. This is a known
result. (See, in particular, Proposition 2.3(b) in [EH96].) Our proof of Theorem 1
encompasses this situation as a “degenerate case”.

We conclude this introductory section with a remark concerning work of P. Eber-
lein and J. Heber. In a detailed study of the geometric and algebraic properties
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of three-step solvmanifolds, they showed that if S is an Einstein solvmanifold with
quarter-pinched negative curvature [EH96], then S is locally rank one symmetric.
Since harmonic spaces are Einstein, it follows from this description that harmonic
three-step solvmanifolds with quarter-pinched negative curvature are locally rank one
symmetric.

Acknowledgements: The authors are grateful to Quo-Shin Chi for his interest and for
many helpful discussions. We also extend our appreciation to the referee for carefully
checking our calculations.

2. Algebraic Properties

A left-invariant metric g on a connected, simply connected solvable group S is
determined by its restriction Q to TeS ∼= s, so we will identify the pair (S, g) with
the pair (s, Q). For X, Y ∈ s, we write 〈X, Y 〉 in place of Q(X, Y ).

Definition 1. A solvmanifold (s, Q) is said to be of Iwasawa type if it has the fol-
lowing properties:

(1) The orthogonal complement a of n = [s, s] is an abelian subalgebra of s.
(2) For all nonzero A in a, adA is symmetric and nonzero.
(3) For some A in a, adA|n is symmetric and positive definite.

Our study of harmonic solvmanifolds is motivated by the observation that all known
examples of Einstein solvmanifolds are of Iwasawa type (see [Heb98] ). Throughout
this paper, we consider solvmanifolds (s, Q) of Iwasawa type, subject to two additional
conditions:

(4) The subalgebra a is one dimensional. We say that (s, Q) is of (algebraic) rank
one and let A denote a unit vector in a with adA positive definite on n.

(5) The nilradical n is either two-step nilpotent, or abelian. This means that
[n, [n, n]] = 0. If [n, n] 6= 0 then n is a two-step nilpotent Lie algebra. In this
case we say that (s, Q) is a three-step solvmanifold of Iwasawa type.

Moreover, we adopt the following notational conventions:

• z denotes the center of n, and v is the orthogonal complement to z in n, so
that n = v⊕ z. We let n = dim(v) and m = dim(z), with dim(n) = m+ n.
• For Z ∈ z, the linear transformation JZ : v→ v is defined by

〈JZX, Y 〉 = 〈Z, [X, Y ]〉

for all X and Y in v. Note that JZ is skew-symmetric for all Z.
• In the degenerate case where n is abelian, n = z, v = 0, and JZ = 0 for all
Z ∈ z. In this case, many of the identities derived below become trivial.

All rank one symmetric spaces of noncompact type may be represented as solv-
manifolds of Iwasawa type with an abelian or two-step nilradical n. The latter type
form a small subclass of the Damek-Ricci spaces.
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Definition 2. A three-step Carnot solvmanifold (s, Q) is a rank one solvmanifold of
Iwasawa type with two-step nilradical n such that

adA|v = c
2
Idv, adA|z = cIdz

for some constant c > 0. If, in addition, we have

J2
Z = −c2||Z||2Idv

for all Z in z, then (s, Q) is a Damek-Ricci space.

By rescaling the metric, one can always take c = 1 in this definition. More pre-
cisely, replacing the inner product Q in Definition 2 by c2Q, one obtains a three-step
solvmanifold with adA|v = (1/2)Idv, adA|z = Idz and, in addition, J2

Z = −||Z||2Idv

in the Damek-Ricci case. A two-step Lie algebra n with an inner product is said to
be of type-H (or Heisenberg type) when J2

Z = −||Z||2Idv for all Z ∈ z.
As adA is a derivation, it preserves the center z and, by symmetry, it also pre-

serves v = z⊥. Hence, again by symmetry, both v and z are the direct sum of
adA-eigenspaces. For λ in R, we use vλ to denote the λ-eigenspace of adA on v. That
is, vλ = {X ∈ v | adAX = λX}. Similarly, zλ is the λ-eigenspace of adA on z. For
adA-eigenvectors V ∈ v, Z ∈ z we will use λV , λZ to denote the eigenvalues for V , Z
respectively.

We use Bv and Bz to denote orthonormal bases for v and z consisting of eigenvectors
for adA. The following lemma relates the behavior of the operators JZ to adA and
its eigenspaces.

Lemma 5. Let λ be an eigenvalue for adA on z, and let µ, ν be eigenvalues for adA
on v. Then we have:

(1) [vµ, vν ] ⊂ zµ+ν

(2) JZadA + adAJZ = JadAZ for all Z in z.
(3) If Z is in zλ, then JZ maps vµ to vλ−µ
(4) For Z in zλ, J2

ZadA = adAJ
2
Z .

Proof. Part 1 holds because adA acts on n as a derivation.
For 2, take V,W in v and use the symmetry of adA:

〈JadAZV,W 〉 = 〈adAZ, [V,W ]〉
= 〈Z, adA[V,W ]〉
= 〈Z, [adAV,W ]〉+ 〈Z, [V, adAW ]〉
= 〈JZ(adAV ),W 〉+ 〈JZV, adAW 〉
= 〈JZ(adAV ),W 〉+ 〈adA(JZV ),W 〉
= 〈(JZadA + adAJZ)V,W 〉

Thus JadAZ = JZadA + adAJZ .
For V in vµ and Z in zλ we now have, by 2,

adA(JZV ) = JλZV − JZ(µV ) = (λ− µ)(JZV ),
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which shows that JZV is in vλ−µ.
For Z ∈ zλ, 3 shows that J2

Z preserves each eigenspace vµ of the diagonalizable
operator adA. Thus J2

Z and adA commute on v. �

We also consider, for V ∈ v, the operators

ad∗V adV : v→ v and adV ad∗V : z→ z

where ad∗V : z → v is the adjoint of adV : v → z with respect to the inner product
Q. Note that, for a linear operator T and its adjoint T ∗, the operators TT ∗ and T ∗T
have the same trace. This fact will be used repeatedly for the operators adV and
ad∗V .

Lemma 6. For all V in v and Z in z:

(1) ad∗VZ = JZV
(2) 〈adV ad∗VZ,Z〉 = −〈J2

ZV, V 〉
(3)

∑
V ∈Bv

tr(adV ad∗V ) = −
∑

Z∈Bz
tr(J2

Z).

Proof. Given W ∈ v,

〈JZV,W 〉 = 〈Z, [V,W ]〉 = 〈Z, adV (W )〉 = 〈ad∗V (Z),W 〉.
Property 2 follows from

〈adV ad
∗
VZ,Z〉 = 〈ad∗VZ, ad∗VZ〉 = 〈JZV, JZV 〉 = −〈J2

ZV, V 〉.
This last identity, summed over orthonormal bases of v, z, gives 3. �

We note that Lemmas 5 and 6 extend easily to higher rank and higher step solv-
manifolds of Iwasawa type. In the more general context, one defines JZ , ad∗V adV
and adV ad∗V as above for arbitrary elements Z, V in n as operators on all of n.
Now Lemma 5 remains true if A denotes any element in a with eigenvalues λ and
corresponding eigenspaces nλ. Lemma 6 remains true for arbitrary elements V, Z in
n.

3. Geometry of Solvmanifolds

We continue to employ the notation and hypotheses from the previous section.
In particular, (s, Q) will always denote a solvmanifold of Iwasawa type having rank
one with two-step (or abelian) nilradical n. We identify a vector X in s with the
left-invariant vector field that it determines. The Levi-Civita connection is given by

(1) ∇XY = 1
2
([X, Y ]− ad∗XY − ad∗YX)

for X and Y in s (see Chapter 7 of [Bes87]). Using this definition one may easily
derive explicit formulas for the connection on (s, Q).

Recall that for u in the tangent space TmM to a Riemannian manifold M at m,
the curvature transformation Ru is the endomorphism of TmM defined by Ru : v 7→
R(u, v)u. We use the convention that R(u, v) = [∇u,∇v] − ∇[u,v]. With this sign
convention, the sectional curvature of the 2-plane with orthonormal basis {u, v} is
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given by K(u, v) = −〈Ru(v), v〉. The operator Ru is homogeneous of degree 2 in ||u||
and R2

u is homogeneous of degree 4 in ||u||.

Proposition 7. For adA-eigenvectors V in v and Z in z, the curvature transforma-
tions RA, RV , RZ , RA+V and RA+Z are given by

RX(X) = 0 for all X in s

RA(X) = ad2
AX for all X in s

RV (A) = λ2
VA

RV (U) = λV adAU + 3
4
ad∗V adVU for all U in v with U ⊥ V

RV (W ) = λV adAW − 1
4
adV ad∗VW for all W in z

RZ(A) = λ2
ZA

RZ(U) = λZadAU + 1
4
J2
ZU for all U in v

RZ(W ) = λZadAW for all W in z with W ⊥ Z

RA+V (A) = λ2
V (A− V )

RA+V (U) = λV adAU + ad2
AU + [V, adAU ] + 1

2
λV [V, U ]

+ 3
4
ad∗V adVU − λ2

V 〈V, U〉(A+ V ) for all U in v

RA+V (W ) = λV adAW − 1
4
adV ad∗VW + ad2

AW

+ adAJWV + 1
2
λV JWV for all W in z

RA+Z(A) = λ2
Z(A− Z)

RA+Z(U) = λZadAU + 1
4
J2
ZU + ad2

AU

+ 1
2
(JZadA − adAJZ)U for all U in v

RA+Z(W ) = λZadAW + ad2
AW for all W in z with W ⊥ Z

Proof. To prove this, one uses the definition of RX and the formulas for the connection
in Equation 1. As similar formulas appear elsewhere in the literature (see for example
[BTV95]) we omit the calculations. These are straightforward but somewhat tedious.

�

Proposition 8. Let V and Z be unit adA-eigenvectors in v and z respectively. The
traces of the curvature transformations RA, RV , and RZ are given by

tr(RA) = tr(ad2
A)

tr(RV ) = λV tr(adA) + 1
2
tr(adV ad∗V )

tr(RZ) = λZtr(adA) + 1
4
tr(J2

Z)
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Proof. That tr(RA) = tr(ad2
A) is immediate from RA = ad2

A. We find tr(RV ) by
finding the sums of the traces of RV restricted to a, v, and z (noting that a, v, and z
are orthogonal)

tr(RV ) = tr(RV |a) + tr(RV |v) + tr(RV |z)
= λ2

V + λV tr(adA|v∩V ⊥) + 3
4
tr(ad∗V adV ) + λV tr(adA|z)− 1

4
tr(adV ad∗V )

= λV tr(adA) + 3
4
tr(ad∗V adV )− 1

4
tr(adV ad∗V )

= λV tr(adA) + 1
2
tr(ad∗V adV ).

Similarly,

tr(RZ) = tr(RZ |a) + tr(RZ |v) + tr(RZ |z)
= λ2

Z + λZtr(adA|v) + 1
4
tr(J2

Z) + λZtr(adA|z∩Z⊥)

= λZtr(adA) + 1
4
tr(J2

Z)

�

Proposition 9. For the unit adA-eigenvectors V in v and Z in z, the traces of the
squares of the curvature transformations RA, RV , RZ , RA+V , and RA+Z are given by:

tr(R2
A) = tr(ad4

A)

tr(R2
V ) = 5

8
tr((ad∗V adV )2) + 3

2
λV tr(ad∗V adV adA)− 1

2
λV tr(adV ad∗V adA) + λ2

V tr(ad2
A)

tr(R2
Z) = 1

16
tr(J4

Z) + 1
2
λZtr(J2

ZadA) + λ2
Ztr(ad2

A)

tr(R2
A+V ) = tr(ad4

A) + 2λV tr(ad3
A) + λ2

V tr(ad2
A) + 5

8
tr((ad∗V adV )2)

+ 1
2
λ2
V tr(ad∗V adV ) + 5

2
λV tr(ad∗V adV adA) + 5

2
tr(ad∗V adV ad2

A)

− 3
2
λV tr(adV ad∗V adA) + 1

2
tr(adV ad∗V ad2

A)

tr(R2
A+Z) = 1

16
tr(J4

Z)− 1
2
tr(J2

Zad2
A) + 3

2
λZtr(J2

ZadA)

− 1
4
λ2
Ztr(J2

Z) + tr(ad4
A) + 2λZtr(ad3

A) + λ2
Ztr(ad2

A)

Proof. This is another set of long calculations, which we again omit. �

4. Ledger’s equations

A real analytic Riemannian manifold M is harmonic if and only if it is “infinitesi-
mally harmonic.” The latter condition is equivalent to an infinite number of Ledger
conditions. (See [Lic44], [CR40], [Led54], [Bes78].) Since Lie groups are analytic, a
solvmanifold is harmonic if and only if it satisfies each of Ledger’s equations. In the
sequel, we only use the first two Ledger conditions, and employ the terminology of
[CGW82]:
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Definition 3. M is 2-stein when both the first and second Ledger conditions hold.
That is, there are constants K, H such that, for all X ∈ TM ,

tr(RX) =K||X||2 and

tr(R2
X) =H||X||4.

Note that the manifold M is Einstein if and only if it satisfies the first Ledger
condition.

5. Einstein Constraints

Continuing with the hypotheses and notation used above, we assume that (s, Q) is
a rank one solvmanifold of Iwasawa type with two-step (or abelian) nilradical n, and
A is a unit vector in a with adA : n→ n positive definite. In addition, we assume that
(s, Q) satisfies Ledger’s first equation, the Einstein condition. This last assumption
will impose additional constraints on the traces of powers of adA.

We employ the notation:

Tr = tr(adrA),

ar = tr(adrA|v),

br = tr(adrA|z).

Note that Tr = ar + br for each r ≥ 0. (Here it is understood that ar = 0 in
the degenerate case.) Recall that Bv and Bz denote orthonormal bases for v and z
consisting of eigenvectors for adA.

Proposition 10. For unit adA-eigenvectors V in v and Z in z, one has:

(1) tr(J2
Z) = 4(T2 − λZT1)

(2) tr(J2
ZadA) = 2λZ(T2 − λZT1)

(3) tr(adV ad∗V ) = 2(T2 − λV T1)

Proof. Equating tr(RV ) and tr(RZ) to tr(RA) in Proposition 8, we find that

tr(ad2
A) = λV tr(adA) + 1

2
tr(adV ad∗V )

= λZtr(adA) + 1
4
tr(J2

Z).

Using notation defined just above, we obtain Equations 1 and 3.
Now we compute tr(J2

ZadA) in two ways:
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tr(J2
ZadA) =

∑
V ∈Bv

〈J2
ZadAV, V 〉

=
∑
V ∈Bv

λV 〈J2
ZV, V 〉

tr(JZadAJZ) =
∑
V ∈Bv

〈JZadAJZV, V 〉

=
∑
V ∈Bv

(λZ − λV )〈J2
ZV, V 〉

In the last step, we use part 3 of Lemma 5, the fact that, for an eigenvector V , JZV
has eigenvalue λZ − λV . Finally, we obtain

2
∑
V ∈Bv

λV 〈J2
ZV, V 〉 =

∑
V ∈Bv

λZ〈J2
ZV, V 〉 = λZ

∑
V ∈Bv

〈J2
ZV, V 〉,

so that

tr(J2
ZadA) =

∑
V ∈Bv

〈J2
ZλV V, V 〉 = 1

2
λZ
∑

V ∈Bv
〈J2

ZV, V 〉 = 1
2
λZtr(J2

Z) = 2λZ(T2−λZT1).

�

Proposition 11. Let (s, Q) satisfy the Einstein condition. Then

(n+ 2m)T2 − (a1 + 2b1)T1 = 0

Proof. We use Lemma 6, together with identities from Proposition 10, to obtain:∑
V ∈Bv

tr(adV ad∗V ) = 2
∑
V ∈Bv

(T2 − λV T1)

= 2(nT2 − a1T1)

= −
∑
Z∈Bz

trace(J2
Z) = −4

∑
Z∈Bz

(T2 − λZT1)

= −4(mT2 − b1T1)

In other words, (2n+ 4m)T2 = 2a1T1 + 4b1T1.
�

Proposition 12. Let (s, Q) satisfy the Einstein condition. Then one has:

(1)
∑

V ∈Bv
λV tr(adV ad∗V adA) = −2(b2T2 − b3T1)

(2)
∑

V ∈Bv
λV tr(ad∗V adV adA) = −2(T 2

2 − T1T3)

(3)
∑

V ∈Bv
tr(adV ad∗V ad2

A) = −4(b2T2 − b3T1)

(4)
∑

V ∈Bv
tr(ad∗V adV ad2

A) = 2(a2T2 − a3T1)
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Proof. To prove Equation 1, we use Equation 2 of Lemma 6, and Equation 2 of
Proposition 10:∑

V ∈Bv

λV tr(adV ad∗V adA) =
∑
V ∈Bv

∑
Z∈Bz

λV 〈adV ad∗V adAZ,Z〉

=
∑
V ∈Bv

∑
Z∈Bz

λV λZ〈adV ad∗VZ,Z〉

= −
∑
V ∈Bv

∑
Z∈Bz

λV λZ〈J2
ZV, V 〉 by Lemma 6,

= −
∑
Z∈Bz

∑
V ∈Bv

λZ〈J2
ZadAV, V 〉

= −
∑
Z∈Bz

λZtr(J2
ZadA)

= −2
∑
Z∈Bz

λ2
Z(T2 − λZT1) by Proposition 10,

= −2
∑
Z∈Bz

(λ2
ZT2 − λ3

ZT1)

= −2(b2T2 − b3T1)

We now prove Equation 2 using Equation 1, and Equation 3 of Proposition 10:∑
V ∈Bv

λV tr(ad∗V adV adA) =
∑
V ∈Bv

λV tr(adV adAad∗V )

=
∑
V ∈Bv

∑
Z∈Bz

λV 〈adV adA(ad∗VZ), Z〉

=
∑
V ∈Bv

∑
Z∈Bz

λV (λZ − λV )〈adV ad∗VZ,Z〉

=
∑
V ∈Bv

(
λV tr(adV ad∗V adA)− λ2

V tr(adV ad∗V )
)

=
∑
V ∈Bv

λV tr(adV ad∗V adA)− 2
∑
V ∈Bv

λ2
V (T2 − λV T1)

= −2(b2T2 − b3T1)− 2(a2T2 − a3T1)

= −2(a2 + b2)T2 + 2(a3 + b3)T1

= −2T 2
2 + 2T1T3

For Equation 3:∑
V ∈Bv

tr(adV ad∗V ad2
A) =

∑
V ∈Bv

∑
Z∈Bz

〈adV ad∗V ad2
AZ,Z〉
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=
∑
V ∈Bv

∑
Z∈Bz

λ2
Z〈adV ad∗VZ,Z〉

= −
∑
V ∈Bv

∑
Z∈Bz

λ2
Z〈J2

ZV, V 〉 by Lemma 6,

= −
∑
Z∈Bz

λ2
Ztr(J2

Z)

= −4
∑
Z∈Bz

λ2
Z(T2 − λZT1) by Proposition 10,

= −4(b2T2 − b3T1)

The only equality left to prove is the one in Part 4. We make use of (3) of Lemma
5, Lemma 6 and Proposition 10.∑
V ∈Bv

tr(ad∗V adV ad2
A) =

∑
V ∈Bv

tr(adV ad2
Aad∗V )

=
∑
V ∈Bv

∑
Z∈Bz

〈adV ad2
A(ad∗VZ), Z〉

=
∑
V ∈Bv

∑
Z∈Bz

(λZ − λV )2〈adV ad∗VZ,Z〉

=
∑
V ∈Bv

∑
Z∈Bz

(
−λ2

Z〈J2
ZV, V 〉+ 2λZλV 〈J2

ZV, V 〉+ λ2
V 〈adV ad∗VZ,Z〉

)
= −

∑
Z∈Bz

λ2
Ztr(J2

Z) + 2
∑
Z∈Bz

λZtr(J2
ZadA) +

∑
V ∈Bv

λ2
V tr(adV ad∗V )

= −4
∑
Z∈Bz

λ2
Z(T2 − λZT1) + 4

∑
Z∈Bz

λ2
Z(T2 − λZT1) + 2

∑
V ∈Bv

λ2
V (T2 − λV T1)

= −4(b2T2 − b3T1) + 4(b2T2 − b3T1) + 2(a2T2 − a3T1)

= 2a2T2 − 2a3T1

�

We will derive some inequalities based on the following observation:

Lemma 13. Let ρ : RN → R
N be a symmetric linear map. Then

(tr(ρ))2 ≤ N tr(ρ2),

with equality if and only if ρ is a multiple of the identity.

Proof. Equip the vector space End(RN) with the positive definite inner product
〈S, T 〉 = tr(ST ∗). Applying the Cauchy-Schwartz Inequality to ρ and the identity
map Id, we see that

(tr(ρ))2 ≤ tr(ρ2)tr(Id) = tr(ρ2)N,
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with inequality if and only if ρ is a multiple of the identity. �

Proposition 14. Let (s, Q) be Einstein. Then

(1) na2 − a2
1 ≥ 0, with equality if and only if adA|v is a multiple of the identity.

(2) mb2 − b2
1 ≥ 0, with equality if and only if adA|z is a multiple of the identity.

Proof. These inequalities follow from applying Lemma 13 to the maps adA|v and
adA|z:

na2 − a2
1 = ntr(adA|2v)− (tr(adA|v))2 ≥ 0

mb2 − b2
1 = mtr(adA|2z )− (tr(adA|z))2 ≥ 0

�

6. 2-stein Constraints

In this section, we derive additional trace equalities and inequalities that hold when
(s, Q) is 2-stein. We continue to employ the hypotheses and notation from above,
with the additional assumption that (s, Q) satisfies the first two Ledger conditions.
In particular, we make extensive use of the formulas from Proposition 9.

Proposition 15. Let V and Z be unit adA-eigenvectors in v and z respectively. Then

(1) tr(J4
Z) = 16(T4 − 2λ2

ZT2 + λ3
ZT1)

(2)
∑

V ∈Bv
tr((adV ad∗V )2) = 8

5
(nT4 − 3T1T3 + 2T 2

2 + b3T1)

(3) tr(J2
Zad2

A) = −4T4 + 4λZT3 + 2λ2
ZT2 − 2λ3

ZT1

Proof. To prove Equation 1, we equate tr(R2
Z) and tr(R2

A) to find that

tr(ad4
A) = 1

16
tr(J4

Z) + 1
2
λZtr(J2

ZadA) + λ2
Ztr(ad2

A),

and hence
1
16

tr(J4
Z) = T4 − 1

2
λZtr(J2

ZadA)− λ2
ZT2.

By Equation 2 of Proposition 10 this is equal to
1
16

tr(J4
Z) = T4 − λ2

Z(T2 − λZT1)− λ2
ZT2 = T4 − 2λ2

ZT2 + λ3
ZT1.

For Equation 2, we equate tr(R2
A) and tr(R2

V ) :

tr(ad4
A) = 5

8
tr((ad∗V adV )2) + 3

2
λV tr(ad∗V adV adA)

− 1
2
λV tr(adV ad∗V adA) + λ2

V tr(ad2
A),

and then use Proposition 12 to sum over an orthonormal basis of v:
5
8

∑
V ∈Bv

tr((ad∗V adV )2) = nT4 − 3
2

∑
V ∈Bv

λV tr(ad∗V adV adA)

+ 1
2

∑
V ∈Bv

λV tr(adV ad∗V adA)−
∑

V ∈Bv
λ2
V tr(ad2

A)

= nT4 + 3(T 2
2 − T1T3)− (b2T2 − b3T1)− a2T2, by Proposition 12

= nT4 − 3T1T3 + T2(3T2 − b2 − a2) + b3T1

= nT4 − 3T1T3 + 2T 2
2 + b3T1.
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To prove the last equation, we equate tr(R2
A+Z) and ||A + Z||4tr(R2

A), noting the
fact that R2

u is quartic in ||u||:

4 tr(ad4
A) = 1

16
tr(J4

Z)− 1
2
tr(J2

Zad2
A) + 3

2
λZtr(J2

ZadA)−
1
4
λ2
Ztr(J2

Z) + tr(ad4
A) + 2λZtr(ad3

A) + λ2
Ztr(ad2

A).

Now we solve for tr(J2
Zad2

A), applying Proposition 10 and Equation 1.

1
2
tr(J2

Zad2
A) =− 4T4 + 1

16
tr(J4

Z) + 3
2
λZtr(J2

ZadA)

− 1
4
λ2
Ztr(J2

Z) + T4 + 2λZT3 + λ2
ZT2

=− 3T4 + (T4 − 2λ2
ZT2 + λ3

ZT1) + 3λ2
Z(T2 − λZT1)

− λ2
Z(T2 − λZT1) + 2λZT3 + λ2

ZT2

=− 2T4 + 2λZT3 + λ2
ZT2 − λ3

ZT1.

�

Proposition 16. Suppose (s, Q) is 2-stein. Then:

(1) nmT4 + nb3T1 − 2nb2T2 −mT 2
2 + 2b1T1T2 − b2T

2
1 ≥ 0,

with equality if and only if, for all Z in an orthonormal basis of adA-eigenvectors
for z, J2

Z is a multiple of Idv.
(2) 2mnT4 − 2m(3a3 + 2b3)T1 + (4m− 5n)T 2

2 + 10a1T1T2 − 5a2T
2
1 ≥ 0,

with equality if and only if, for all V in an orthonormal basis of adA-eigenvectors
for v, adV ad∗V is a multiple of Idz.

Proof. First we prove Inequality 1. For all Z in Bz, we apply Lemma 13 with ρ = J2
Z

and sum over Bz to obtain ∑
Z∈Bz

(tr(J2
Z))2 ≤ n

∑
Z∈Bz

tr(J4
Z).

Substituting Equation 1 of Proposition 10 on the left and Equation 1 of Proposition
15 on the right gives∑

Z∈Bz

16(T2 − λZT1)2 ≤ n
∑
Z∈Bz

16(T4 − 2λ2
ZT2 + λ3

ZT1)

∑
Z∈Bz

(T 2
2 − 2λZT1T2 + λ2

ZT
2
1 ) ≤ n(mT4 − 2b2T2 + b3T1)

mT 2
2 − 2b1T1T2 + b2T

2
1 ≤ n(mT4 − 2b2T2 + b3T1)

This can be rewritten in the form of Inequality 1. Equality holds if and only if
equality holds in each of the m summands. By Lemma 13, this happens if and only
if J2

Z is a scalar multiple of the identity for all Z in Bz.
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To prove Inequality 2, we apply Lemma 13 to the maps adV ad∗V : z → z for each
V in Bv. We sum over Bv to get

∑
V ∈Bv

(tr(adV ad∗V ))2 ≤ m
∑
V ∈Bv

tr((adV ad∗V )2)

Substituting Equation 3 of Proposition 10 on the left and Equation 2 of Proposition
15 on the right gives

∑
V ∈Bv

4(T2 − λV T1)2 ≤ 8
5
m(nT4 − 3T1T3 + 2T 2

2 + b3T1)

5
∑
V ∈Bv

(T 2
2 − 2λV T1T2 + λ2

V T
2
1 ) ≤ 2m(nT4 − 3T1T3 + 2T 2

2 + b3T1)

5(nT 2
2 − 2a1T1T2 + a2T

2
1 ) ≤ 2m(nT4 − 3T1T3 + 2T 2

2 + b3T1),

proving the desired inequality. As before, equality holds if and only if equality holds
in each summand. This occurs only when adV ad∗V is a scalar multiple of the identity
for all V in Bv. �

Proposition 17. If (s, Q) is 2-stein and equality holds in both inequalities of Propo-
sition 16, then (s, Q) is a Damek-Ricci space or real hyperbolic space.

Proof. Suppose that, for each Z ∈ Bz, V ∈ Bv, there are non-negative real numbers bZ
and cV such that J2

Z = −bZIz and adV ad∗V = cV Iv. (Recall that JZ is skew-symmetric,
while adV ad∗V is symmetric.)

We use Equation 2 of Lemma 6 and the usual manipulations:

nbZ = tr(bZIv)

= −tr(J2
Z)

= −
∑
V ∈Bv

〈J2
ZV, V 〉

=
∑
V ∈Bv

〈adV ad∗VZ,Z〉

=
∑
V ∈Bv

cV
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This shows that bZ is independent of Z. Likewise, we see that cV is independent of
V :

mcV = tr(cV Iz)

= tr(adV ad∗V )

=
∑
Z∈Bz

〈adV ad∗VZ,Z〉

= −
∑
Z∈Bz

〈J2
ZV, V 〉

=
∑
Z∈Bz

bZ .

If v 6= {0}, then we can set cV = c2 with c > 0. Substituting into the first equation,
we find that nbZ = nc2, so bZ = c2 for all Z in Bz. Thus tr(J2

Z) = −nc2 for all Z in
Bz and tr(adV ad∗V ) = mc2 for all V in Bv. Applying (1) from Proposition 10, we see
that for any Z in Bz,

(2) −nc2 = tr(J2
Z) = 4(T2 − λZT1).

As T1, T2 are constants and T1 6= 0 (since adA is positive definite on n), we conclude
that λZ is constant for all Z and adA restricted to z is a scalar multiple λ of the
identity, λ > 0. Likewise, using (3) from Proposition 10, we find that for any V in
Bv,

(3) mc2 = tr(adV ad∗V ) = 2(T2 − λV T1).

Hence λV is also independent of V . By Lemma 5, adA restricted to v is 1
2
λ. Using

equation 2 or 3, we see that λ2 = c2, and hence adA|v = 1
2
c, adA|z = c. Thus (s, Q) is

a Damek-Ricci space.
If v = {0}, then n = 0 and n is abelian. Equation 2 becomes tr(J2

Z) = 4(T2 −
λZT1) = 0, and we see that λZ is independent of Z. Thus adA is constant, so we have
real hyperbolic space. �

Proposition 18. Let (s, Q) be 2-stein. Then

(1) 2mT4 + T3(a1 − b1)− T 2
2 = 0

(2) T4(a1 + 4b1)− (a2 + 4b2)(a3 + b3) = 0
(3) −2nT4 + T3(4a1 + 2b1) + T2(4a2 − 2b2) + T1(−6a3) = 0

Proof. To prove the first equation, we sum tr(J2
Zad2

A) over an orthonormal basis of z.
On the one hand, by Equation 3 of Proposition 15,∑

Z∈Bz

tr(J2
Zad2

A) =− 4mT4 + 4
∑
Z∈Bz

λZT3 + 2
∑
Z∈Bz

λ2
ZT2 − 2

∑
Z∈Bz

λ3
ZT1

=− 4mT4 + 4b1T3 + 2b2T2 − 2b3T1.(4)
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On the other hand,∑
Z∈Bz

tr(J2
Zad2

A) =
∑
Z∈Bz

∑
V ∈Bv

〈J2
Zad2

AV, V 〉

=
∑
Z∈Bz

∑
V ∈Bv

λ2
V 〈J2

ZV, V 〉

=−
∑
V ∈Bv

∑
Z∈Bz

λ2
V 〈adV ad∗VZ,Z〉 by Lemma 6,

=−
∑
V ∈Bv

λ2
V tr(adV ad∗V )

=− 2
∑
V ∈Bv

λ2
V (T2 − λV T1) by Proposition 10,

=− 2
∑
V ∈Bv

(λ2
V T2 − λ3

V T1)

=− 2(a2T2 − a3T1).(5)

Equating (4) and (5) yields the equation we wanted to prove.
For the second equation:∑

Z∈Bz

tr(J2
Zad3

A) =
∑
Z∈Bz

∑
V ∈Bv

〈J2
Zad3

AV, V 〉

=
∑
V ∈Bv

∑
Z∈Bz

λ3
V 〈J2

ZV, V 〉

=
∑
Z∈Bz

tr(JZad3
AJZ)

=
∑
Z∈Bz

∑
V ∈Bv

〈JZad3
AJZV, V 〉

=
∑
Z∈Bz

∑
V ∈Bv

(λZ − λV )3〈J2
ZV, V 〉

=
∑
Z∈Bz

∑
V ∈Bv

(λ3
Z − 3λ2

ZλV + 3λZλ
2
V − λ3

V )〈J2
ZV, V 〉.

Hence

(6) 2
∑
V ∈Bv

∑
Z∈Bz

λ3
V 〈J2

ZV, V 〉 =
∑
V ∈Bv

∑
Z∈Bz

(λ3
Z − 3λ2

ZλV + 3λZλ
2
V )〈J2

ZV, V 〉.
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By Equation 2 of Lemma 6 and Equation 3 of Proposition 10, we can write the left
hand side of (6) as

2
∑
V ∈Bv

∑
Z∈Bz

λ3
V 〈J2

ZV, V 〉 =− 2
∑
Z∈Bz

∑
V ∈Bv

λ3
V 〈adV ad∗VZ,Z〉

=− 2
∑
V ∈Bv

λ3
V tr(adV ad∗V )

=− 4
∑
V ∈Bv

λ3
V (T2 − λV T1)

=− 4a3T2 + 4a4T1.

Now we compute, term by term, the right hand side of (6). Applying Property 1
of Proposition 10, we see that:

∑
V ∈Bv

∑
Z∈Bz

λ3
Z〈J2

ZV, V 〉 =
∑
Z∈Bz

λ3
Ztr(J2

Z)

=4
∑
Z∈Bz

λ3
Z(T2 − λZT1)

=4b3T2 − 4b4T1.

Next we use Equation 2 of Proposition 10 to write:

−3
∑
V ∈Bv

∑
Z∈Bz

λ2
ZλV 〈J2

ZV, V 〉 = −3
∑
V ∈Bv

∑
Z∈Bz

λ2
Z〈J2

ZadAV, V 〉

= −3
∑
Z∈Bz

λ2
Ztr(J2

ZadA)

= −6
∑
Z∈Bz

λ3
Z(T2 − λZT1)

= −6(b3T2 − b4T1),

and Equation 3 of Proposition 15 gives:

3
∑
V ∈Bv

∑
Z∈Bz

λZλ
2
V 〈J2

ZV, V 〉 = 3
∑
Z∈Bz

λZtr(J2
Zad2

A)

= 3
∑
Z∈Bz

λZ(−4T4 + 4λZT3 + 2λ2
ZT2 − 2λ3

ZT1)

= 3(−4b1T4 + 4b2T3 + 2b3T2 − 2b4T1).
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Now, for the right hand side of (6), we have a total of

(4b3T2 − 4b4T1)− 6(b3T2 − b4T1) + 3(−4b1T4 + 4b2T3 + 2b3T2 − 2b4T1)

= −12b1T4 + 12b2T3 + 4b3T2 − 4b4T1.

Equating the two sides of (6), we get

−4a3T2 + 4a4T1 = −12b1T4 + 12b2T3 + 4b3T2 − 4b4T1

or

3b1T4 − 3b2T3 − T2T3 + T1T4 = 0.

In other words,

T4(a1 + 4b1)− (a2 + 4b2)(a3 + b3) = 0.

Now we prove Equation 3. Let A be our chosen unit vector in a and let V be a unit
adA-eigenvector in Bv. The second Ledger condition on tr(R2

U) is quadratic in ||U ||2,
so if we apply it to A and A + V , we get tr(R2

A+V ) = ||A + V ||4tr(R2
A) = 4 tr(ad4

A).
Summing this over V in Bv, and using Proposition 9, we obtain:

4nT4 = ntr(ad4
A) + 2

∑
V ∈Bv

λV tr(ad3
A) +

∑
V ∈Bv

λ2
V tr(ad2

A) + 5
8

∑
V ∈Bv

tr((ad∗V adV )2)

+ 1
2

∑
V ∈Bv

λ2
V tr(ad∗V adV ) + 5

2

∑
V ∈Bv

λV tr(ad∗V adV adA) + 5
2

∑
V ∈Bv

tr(ad∗V adV ad2
A)

− 3
2

∑
V ∈Bv

λV tr(adV ad∗V adA) + 1
2

∑
V ∈Bv

tr(adV ad∗V ad2
A).

We may substitute for all the traces using Propositions 10, 12 and 15 to get

4nT4 = nT4 + 2a1T3 + a2T2 + (nT4 − 3T1T3 + 2T 2
2 + b3T1) + (a2T2 − a3T1)

+ (−5T 2
2 + 5T1T3) + (5a2T2 − 5a3T1) + 3(b2T2 − b3T1)− 2(b2T2 − b3T1)

Simplification yields the desired equality. �

7. Solutions to the Constraints

In this section, we focus on the adA-trace constants Tr, ar and br defined at the
beginning of Section 5. We consider the possible values that these constants may
assume for a rank one three-step solvmanifold of Iwasawa type which satisfies the
first two Ledger conditions. Recall that adA is positive definite on n, and hence the
trace constants are all positive (with the exception that ar = 0 in the degenerate
case). We will show that the only possible values are those obtained for Damek-Ricci
spaces and real hyperbolic spaces (viewed as “degenerate three-step solvmanifolds”).
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We summarize conditions derived in Sections 5 and 6, which give us a set of con-
straints on the eigenvalues of adA:

(n+ 2m)T2 − (a1 + 2b1)T1 = 0(Prop 11)

2mT4 + T3(a1 − b1)− T 2
2 = 0(Prop 18)

T4(a1 + 4b1)− (a2 + 4b2)(a3 + b3) = 0

− 2nT4 + (4a1 + 2b1)T3 + (4a2 − 2b2)T2 − 6a3T1 = 0

na2 − a2
1 ≥ 0(Prop 14)

mb2 − b2
1 ≥ 0

nmT4 + nT1b3 − 2nT2b2 −mT 2
2 + 2T1T2b1 − T 2

1 b2 ≥ 0(Prop 16)

2mnT4 − 2mT1(3a3 + 2b3) + T 2
2 (4m− 5n) + 10T1T2a1 − 5T 2

1 a2 ≥ 0

The manifold (s, Q) remains 2-stein if we rescale the metric Q by a positive scalar
factor c. This changes Tr, ar and br by a factor of cr for r = 1, 2, 3, 4. Note that, as we
expect, all of our constraints are “homogeneous” with respect to this scaling. Hence
we may normalize Q by setting b1 = m. Making this substitution and eliminating
some variables using the identities T2 = a2 + b2, a3 = T3− b3, we get the constraints:

E1 = (n+ 2m)(a2 + b2)− (a1 + 2m)(a1 +m) = 0(7)

E2 = 2mT4 + (a1 −m)T3 − (a2 + b2)2 = 0(8)

E3 = (a1 + 4m)T4 − (a2 + 4b2)T3 = 0(9)

E4 = −2nT4 − (2a1 + 4m)T3 + 6(a1 +m)b3 + (4a2 − 2b2)(a2 + b2) = 0(10)

I1 = na2 − a2
1 ≥ 0(11)

I2 = b2 −m ≥ 0(12)

I3 = nmT4 + n(a1 +m)b3 − (2n+m)b2
2 − ((2m+ 2n)a2 −m2 + a2

1)b2(13)

−ma2
2 + 2m(a1 +m)a2 ≥ 0

I4 = 2mnT4 − 6m(a1 +m)T3 + 2m(a1 +m)b3 + (4m− 5n)(a2 + b2)2(14)

+ 5(a1 +m)(a1a2 −ma2 + 2a1b2) ≥ 0

Theorem 19. The only simultaneous solutions to the constraints (7) to (14) are
{ar = n/2r, br = m} or {ar = n, br = m}, where all inequalities are equalities.

Proof. We have made extensive use of a computer algebra system (Maple) to perform
many of the onerous calculations involved in this proof. For example, equalities (7)
to (10) can be used to solve for the remaining variables a2, b3, T3, T4 in terms of
(a1, b2). Since the denominators of the solutions reappear in many expressions, we
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denote:

(15) γ(a1, b2) = 12m2b2 − 4m3 + 6b2mn− 4m2n+ 12a1m
2 + 3a1mn+ 4a2

1m+ a2
1n.

Note that γ(a1, b2) is positive when b2 ≥ m.

The solutions are:

a2 = (a2
1 + 3ma1 + 2m2 − (2m+ n)b2)/(n+ 2m)

(16)

b3 = (a1 + 2m)
(
(6n2m+ 24nm2 + 24m3)b2

2 +
(
(2n2 + 4nm)a2

1 + (6n2m+ 12nm2)a1 − 2n2m2

− 16nm3 − 24m4
)
b2 − 2ma4

1 + (nm− 10m2)a3
1 + (9nm2 − 8m3)a2

1

+ (20nm3 + 16m4)a1 + 12nm4 + 16m5
)/

(n+ 2m)2γ(a1, b2)

T3 = (a1 + 4m)(a1 + 2m)2(a1 +m)2
/

(n+ 2m)γ(a1, b2)

T4 = (a1 + 2m)2(a1 +m)2((3n+ 6m)b2 + a2
1 + 3ma1 + 2m2)

/
(n+ 2m)2γ(a1, b2)

Now we see that any solutions to the constraints will depend only on (a1, b2).
In particular, the inequalities I1 ≥ 0, I2 ≥ 0 constrain the solutions (a1, b2) to a
connected region R bounded by a line L and a parabola P :

(17) R :


b2 ≥ m,

n(n+ 2m)b2 ≤ −2ma2
1 + 3nma1 + 2nm2,

n/2 ≤ a1 ≤ n.

Now we consider Inequalities 13 and 14 on the region R. In the sequence of lemmas
below, we show that the only simultaneous solutions to I3 ≥ 0, I4 ≥ 0 in the region
R are at the corner points (n/2,m), (n,m) . We show that the equations I3 = 0
and I4 = 0 define two continuous curves which connect the corner points and only
intersect at those points. The inequality I3 > 0 holds below the curve I3 = 0, while
the inequality I4 > 0 holds above the curve I4 = 0. We then show that the curve
I4 = 0 lies above the curve I3 = 0, so that the only points inR at which all inequalities
hold are the two corners.

Lemma 20. On the line segment L = {(a1,m) : n/2 < a1 < n}, I3 > 0 and I4 < 0.
On the parabolic arc P = {(a1, b2) : n(n + 2m)b2 = −2ma2

1 + 3nma1 + 2nm2, n/2 <
a1 < n}, I3 < 0 and I4 > 0.

Proof. Along the line segment L, after substituting the solutions (16), expressions I3

and I4 become:

I3 =
2m(a1 − n/2)(n− a1)(a1 +m)2

(n+ 4m)(n+ 2m)

I4 =
−8m(a1 − n/2)(n− a1)(a1 +m)(4a1m+ na1 + 6m2 + nm)

(n+ 4m)(n+ 2m)2

Using n/2 < a1 < n, it is not hard to check that I3 is positive and I4 is negative.
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Along the parabolic arc P , we obtain:

I3 = −2m2(a1 − n/2)(n− a1)(a1 +m)
(
16nm4 + (−24a2

1 + 76na1 + 40n2)m3

+ (−24a3
1 + 38na2

1 + 102n2a1)m2 + (−10na3
1 + 65n2a2

1)m+ 9n2a3
1

)/(
n(n+ 2m)2(a2

1n
2 + 4nma2

1 − 12m2a2
1 + 3n2ma1 + 30nm2a1 − 4m2n2 + 8nm3)

)
Since 76na1 > 24a2

1, 38na2
1 > 24a3

1, 65n2a2
1 > 10na3

1, and 30nm2a1 > 12m2a2
1 + 4n2m2

for n/2 < a1 < n, we see that I3 is negative.

I4 = 8m2(a1 − n/2)(n− a1)(a1 +m)
(
56nm4 + (−20n2 + 182na1 − 42a2

1)m3+

(139na2
1 − 5n2a1 − 36a3

1)m2 + (20n2a2
1 + 16na3

1)m+ 5n2a3
1

)/
n(n+ 2m)2(a2

1n
2 + 4nma2

1 − 12m2a2
1 + 3n2ma1 + 30nm2a1 − 4m2n2 + 8nm3)

Similarly, I4 is positive because 182na1 > 20n2 + 42a2
1 and 139na2

1 > 5n2a1 + 36a3
1

when n/2 < a1 < n. �

Lemma 21. I3 and I4 are zero at the corners of R.

Proof. When we substitute a1 = n/2, b2 = m into the solutions (16), we obtain
a2 = n/4, b3 = m, T3 = n/8 + m, T4 = n/16 + m. With a1 = n, b2 = m, we obtain
a2 = n, b3 = m, T3 = n+m, T4 = n+m. In other words, the first point corresponds
to adA = Idv/2 on v, adA = Idz on z, while the second point gives us adA = Idn on
n. �

Lemma 22. The equations I3 = 0, I4 = 0 define continuous curves inside R which
connect the corner points of R.

Proof. We can express I3, I4 in terms of a1, b2:

I3 = −i3(a1, b2)(a1 +m)
/

(n+ 2m)γ(a1, b2),

where

(18) i3(a1, b2) =
(

(24m3 + 12n2m+ 36nm2)a1 + 48nm3 + 24m4 + 18m2n2
)
b2

2

+
(

(11nm+n2 + 14m2)a3
1 + (37nm2 + 38m3 + 4n2m)a2

1 + (−8m4− 2nm3− 7m2n2)a1

− 32m5 − 16m3n2 − 40m4n
)
b2 + 2ma5

1 + (−3nm+ 8m2)a4
1 + (−4m3 − 23nm2)a3

1

+ (−34m4 − 52nm3)a2
1 + (−16m5 − 40m4n)a1 − 8m5n+ 8m6.

I4 = i4(a1, b2)(a1 +m)
/

(n+ 2m)2γ(a1, b2),
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where

(19) i4(a1, b2) =
(

(30n3m+ 288m4 + 408nm3 + 192n2m2)a1

+ 30n3m2 + 336m5 + 204m3n2 + 456m4n
)
b2

2 +
(

(50n2m+ 5n3 + 204m2n+ 248m3)a3
1

+(800m4+20n3m+120n2m2+560nm3)a2
1+(−5n3m2+376m5−182m3n2−156m4n)a1

− 224m6 − 264m4n2 − 560m5n− 20n3m3
)
b2 + (10mn+ 40m2)a5

1

+ (−15n2m− 20m2n+ 180m3)a4
1 + (−90n2m2 − 424nm3 + 12m4)a3

1

+ (−105m3n2 − 930m4n− 680m5)a2
1 + (−432m5n− 664m6 + 90m4n2)a1

+ 104m6n+ 120m5n2 − 112m7.

While the precise form of these expressions is not important, we see that i3, i4 are
quadratic in b2, and that the curves I3 = 0, I4 = 0 correspond to the curves i3 = 0,
i4 = 0. Thus, for each a1 in the interval (n/2, n), there are at most two solutions to
each of the equations I3 = 0, I4 = 0. Since we know that each of I3, I4 changes sign
from the bottom L to the top P of our region R, we conclude that for each a1 in
(n/2, n), there is exactly one solution to each equation in R. �

Lemma 23. In the region R, the curves I3 = 0 and I4 = 0 intersect only at the
corners.

Proof. We parametrize the interior of R by a1(s) = n/2 + sn/2, b2(s, t) = (1− t)m+
t(−2ma1(s)2 + 3mna1(s) + 2m2n)/(n(n+ 2m)) for (s, t) ∈ (0, 1)× (0, 1). Substituting
these values into (18) and (19) gives polynomials p3(s, t) and p4(s, t).

We take a combination H of p3 and p4 which eliminates the terms in t0: H(s, t) =
p3(s, 0)p4(s, t)− p4(s, 0)p3(s, t). Note that if I3 and I4 are simultaneously zero in the
interior of R, then H is zero for some (s, t) ∈ (0, 1)× (0, 1). We obtain

H(s, t) = 1
256(n+2m)

s2tn3m3(s− 1)2(2m+ n+ sn)(n+ 4m+ sn)2

× (h1(s)t+ h0(s))

where

h1(s) = (−336n3m2 − 192m3n2 − 60n4m)s3 + (−384m4n− 912m3n2 − 120n3m2)s2

+ (1104m3n2 + 456n3m2 + 60n4m+ 384m4n)s

and

h0(s) = (25n5 + 86n4m+ 32n3m2)s3 + (75n5 + 518n4m+ 884n3m2 + 136m3n2)s2

+ (75n5 + 898n4m+ 3324n3m2 + 3840m3n2 + 208m4n)s

+ 25n5 + 466n4m+ 2712n3m2 + 6648m3n2 + 5840m4n+ 128m5.



HARMONIC SOLVMANIFOLDS 23

To show that H(s, t) 6= 0, we just need to check that h1(s)t+h0(s) is positive when
t = 0 and t = 1. If we let t = 0, we obtain h0(s), which is a sum of positive terms. If
we let t = 1, we have

h1(s)+h0(s) = 128m5+(5840+592s−384s2)nm4+(6648+4944s−776s2−192s3)n2m3

+ (2712 + 3780s+ 764s2 − 304s3)n3m2 + (466 + 958s+ 518s2 + 26s3)n4m

+ (75s2 + 75s+ 25 + 25s3)n5.

Since s < 1, the negative terms are easily dominated, and hence h1(s)t + h0(s) is
never zero for (s, t) in (0, 1)× (0, 1). Thus H is never zero in the interior of R, so I3

and I4 are never simultaneously zero, as claimed. �

Lemma 24. The curve I4 = 0 is always above the curve I3 = 0 in the region R.

Proof. We calculate the slopes of the curves I3 = 0 and I4 = 0 at the point of
intersection (n/2,m). Recall that i3 = 0 (18) and i4 = 0 (19) describe the same
curves. If we differentiate implicitly and evaluate at a1 = n/2, b2 = m we find that
the slope of I3 is:

m3 =
nm(n+ 4m)(n+ 2m)

n4 + 17n3m+ 122m2n2 + 272m3n+ 64m4
.

Similarly, the slope of I4 is:

m4 =
5nm(n+ 4m)(12m2 + 6mn+ n2)

(n+ 2m)(896m4 + 760nm3 + 364n2m2 + 70mn3 + 5n4)
.

Note that both of these slopes are positive, as we would expect. To see which is
larger, we compute their difference:

m4 −m3 = nm2(n+ 4m)2(64m4 + 2888nm3 + 1880n2m2 + 416mn3 + 25n4)
/

(n+ 2m)(5n4 + 70mn3 + 364n2m2 + 760nm3 + 896m4)

(64m4 + 272nm3 + 122n2m2 + 17mn3 + n4),

showing that the curve I4 = 0 lies above the curve I3 = 0 in the interior of R. �

We now combine the results from Lemmas 20 to 24 to conclude that the open
regions I4 > 0 and I3 > 0 do not intersect in the interior of the constrained region R.
Indeed, we have shown that I3, I4 are also non-zero on the boundary of R, except at
the corner points (n/2,m) and (n,m). This concludes the proof of Theorem 19. �

8. Harmonic solvmanifolds

First we provide a simple proof of Theorem 4 that does not rely on the inequalities
from Proposition 16 or the depth of analysis leading to Theorem 19.

Theorem 25. Let (s, Q) be a three-step Carnot solvmanifold. If (s, Q) is 2-stein,
then (s, Q) is a Damek-Ricci space.
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Proof. By rescaling the metric, we can ensure that adA|v = 1
2
Idv and adA|z = Idv.

Thus we get the trace constants ar = n/2r, br = m. By Equation 1 of Proposition 10
we have, for each unit vector Z in z,

tr(J2
Z) = 4(T2 − λZT1) = 4(n/4 +m− (n/2 +m)) = −n.

By Equation 1 of Proposition 15, we also have

tr(J4
Z) = 16(T4 − 2λ2

ZT2 + λ3
ZT1) = 16(n/16 +m− 2(n/4 +m) + n/2 +m) = n.

Applying Schwartz’s Inequality (Lemma 13), to J2
Z , we conclude that J2

Z is a mul-
tiple of the identity, with trace −n. Thus J2

Z = −Idv for all unit Z, and (s, Q) is a
Damek-Ricci space. �

Now we prove Theorem 1.

Theorem 26. Let (s, Q) be a three-step solvmanifold of Iwasawa type and of algebraic
rank one. If (s, Q) is 2-stein, then it is a Damek-Ricci space.

Proof. By Theorem 19, all inequalities obtained via the Ledger conditions must be
equalities. This includes the inequalities derived in Proposition 16. Then by Proposi-
tion 17, this is only possible if (s, Q) is a Damek-Ricci space or a hyperbolic space. �
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différentiables. J. Amer. Math. Soc., 5:33–74, 1992.
[BTV95] J. Berndt, F. Tricerri, and L. Vanhecke. Generalized Heisenberg groups and Damek-Ricci

harmonic spaces, volume 1598 of Lecture Notes in Math. Springer-Verlag, 1995.
[CDKR91] M. Cowling, A. Dooley, A. Koranyi, and F. Ricci. H-type groups and Iwasawa decom-

positions. Adv. Math., 87:1–41, 1991.
[CGW82] P. Carpenter, A. Gray, and T. J. Willmore. The curvature of Einstein symmetric spaces.

Quart. J. Math. Oxford, 33:45–64, 1982.
[CR40] E. Copson and S. Ruse. Harmonic Riemannian spaces. Proc. Roy. Soc. Edinburgh,

60:117–133, 1939-40.
[DR92] E. Damek and F. Ricci. A class of nonsymmetric harmonic Riemannian spaces. Bull. A.

M. S., 27(1):139–142, 1992.
[DR93] E. Damek and F. Ricci. Harmonic analysis on solvable extensions of H-type groups. J.

Geom. Anal., 2:213–248, 1993.
[Dru] M. Druetta. On harmonic and 2-stein spaces of Iwasawa type. Diff. Geom. and its Ap-

plications, to appear.
[EH96] P. Eberlein and J. Heber. Quarter pinched homogeneous spaces of negative curvature.

Intern. J. Math., 7:441–500, 1996.



HARMONIC SOLVMANIFOLDS 25

[FL92] P. Foulon and F. Labourie. Sur les variétés asymptotiquement harmoniques. Invent.
Math., 109:97–111, 1992.

[Heb95] J. Heber. Homogeneous spaces of nonpositive curvature and their geodesic flow. Intern.
J. Math., 6:279–296, 1995.

[Heb98] J. Heber. Noncompact homogeneous Einstein spaces. Invent. Math, 133:279–352, 1998.
[Hei74] E. Heintze. On homogeneous manifolds of negative curvature. Math. Ann., 211:23–34,

1974.
[Hel78] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press,

1978.
[Kap80] A. Kaplan. Fundamental solutions for a class of hypoelliptic PDE generated by compo-

sitions of quadratic forms. Trans. Amer. Math. Soc., 258:147–153, 1980.
[Kor85] A. Koranyi. Geometric properties of Heisenberg-type groups. Adv. Math., 56:28–38, 1985.
[Led54] A. Ledger. Harmonic spaces. PhD thesis, University of Durham, 1954.
[Lic44] A. Lichnerowicz. Sur les espaces Riemanniens complètement harmoniques. Bull. Soc.
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