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The paper contains an error which necessitates some revisions to the proof of our

main result, Theorem 1.2. In fact the polynomial functions D̂α ∈ C[a∗] (α ∈ Λ),
discussed in Section 2.2, need not, in general, be invariant under the little Weyl
group W◦ as stated. One needs to introduce a “%-shift” (half the sum of the positive

roots) to achieve W◦-invariance. This means that although top(D̂α) ∈ C[a∗]W◦ the

polynomial D̂α itself need not lie in the image of the mapping ρ̄ given in Equations
2.1 and 2.3. Thus we cannot define polynomials Eα ∈ C[VR]K as in Definition 2.1 or
obtain the related functions εL ∈ C(h∗V )K as claimed in Proposition 4.2.

Lemma A.2 below provides a technical tool needed to revise the proof for Theorem
1.2. First we require the following substitute for Lemma 2.7 from the paper.

Lemma A.1. For a well-behaved multiplicity free action K : V and α, β ∈ Λ one
has (

top(D̂α)
)
(β) = pα(vβ).

Proof. Equation 2.3 yields

ρ̄(pα)(β) = p̃α
(
z, η(z, β)

)
for any z ∈ V satisfying hβ(z) 6= 0. Condition (i) in Definition 2.4 allows us to take
z = vβ and condition (ii) gives η(vβ, β) = 〈·, vβ〉 = v∗β. So then(

top(D̂α)
)
(β) = ρ̄(pα)(β) = p̃α(vβ, v

∗
β) = pα(vβ). �

Lemma A.2. Let K : V be a well-behaved multiplicity free action, (βn) a sequence
in Λ and (λn) a sequences in R× with limλn = 0 and (|λn|βn) converging in a∗. Then

lim L̂α(φβn,λn) = lim pα(
√

2|λn| vβn) for all α ∈ Λ.

Proof. Recall that L̂α(φβn,λn) = (2|λn|)|α|D̂α(βn) by Equation 3.1. So now

lim L̂α(φβn,λn) = lim(2|λn|)|α|D̂α(βn) = lim(2|λn|)|α|D̂α((2|λn|)−1β) =
(
top(D̂α)

)
(β)

where β := lim(2|λn|βn). On the other hand, using Lemma A.1,(
top(D̂α)

)
(β) = lim

(
top(D̂α)

)
(2|λn|βn)

= lim(2|λn|)|α|
(
top(D̂α)

)
(βn)

= lim(2|λn|)|α|pα(vβn) = lim pα(
√

2|λn|vβn). �
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Revised Proof of Theorem 1.2. Assume that the multiplicity free action K : V
is well-behaved. Let (ϕn)∞n=1 be a sequence in ∆(K,HV ), ϕ ∈ ∆(K,HV ), and write
Kn = Ψ(ϕn), K = Ψ(ϕ). We will show that

ϕn −→ ϕ in ∆(K,HV ) ⇐⇒ Kn −→ K in h∗V /K.

The Heisenberg fan model shows that ϕn −→ ϕ if and only if L̂(ϕn) −→ L̂(ϕ) for
every L ∈ DK(HV ). By considering subsequences we may assume that either every
ϕn is a spherical function of Type 2 or every ϕn is of Type 1.

(⇒): First assume that ϕn −→ ϕ. We will show Kn −→ K.

Case 1: Suppose that each ϕn is a spherical function of Type 2. For some points

wn ∈ V one has ϕn = ηK·wn and Kn = (K · wn) × {0}. As T̂ϕ = lim T̂ϕn = 0 it
follows that ϕ is also of Type 2. So now ϕ = ηK·w and K = (K · w) × {0} for some

w ∈ V . As L̂◦(ϕn) = |wn|2 (see (4.2)) converges to L̂◦(ϕ) = |w|2 it follows that (wn)
is a bounded sequence. Passing to a subsequence we may assume that (wn) converges
in V , with limwn = w′ say. Now for each α ∈ Λ we observe that

pα(w′) = lim pα(wn) = lim L̂α(ϕn) = L̂α(ϕ) = pα(w).

As {pα : α ∈ Λ} is a basis for C[VR]K and the invariants for a compact linear action
separate orbits it follows that K · w′ = K · w. Hence Kn converges to K in h∗V /K.

Case 2: Suppose that each ϕn is a spherical function of Type 1,

ϕn = φβn,λn and Kn =
√

2|λn| (K · vβn)× {λn}

say. Let

λ := T̂ϕ = lim T̂ϕn = limλn.

Case 2(a): If λ 6= 0 then ϕ = φβ,λ and K =
√

2|λ| (K · vβ) × {λ} for some β ∈ Λ.

As L̂◦(ϕn) = 2|λn||βn| converges to L̂◦(ϕ) = 2|λ||β|, it follows that lim |βn| = |β|. As
{α ∈ Λ : |α| = |β|} is a finite set we can assume, by passing to a subsequence, that

βn = β for every n. So now Kn =
√

2|λn| (K · vβ) × {λn} with λn −→ λ and thus
Kn −→ K as desired.

Case 2(b): If λ = 0 then ϕ = ηK·w and K = (K ·w)×{0} for some w ∈ V . Moreover

L̂◦(ϕn) = 2|λn||βn| = 2|λn||vβn|2 converges to L̂◦(ϕ) = |w|2 and thus
√

2|λn| vβn is
a bounded sequence. By passing to a subsequence we may assume this converges in
V and write v := lim

√
2|λn| vβn . Applying the moment map it follows that 2|λn|βn

converges to a point β ∈ a∗ with βk = τ(v). Now Lemma A.2 yields

pα(w) = L̂α(ϕ) = lim L̂α(φβn,λn) = lim pα
(√

2|λ| vβn

)
= pα(v)

for each α ∈ Λ. As in Case 1 this implies that K · w = K · v and thus K = limKn.

(⇐): Next assume conversely that Kn −→ K. We will show ϕn −→ ϕ.
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Case 1: Suppose that each ϕn is a spherical function of Type 2. Hence Kn ⊂ V ×{0}
for all n and as Kn → K it follows that K ⊂ V × {0} and that ϕ is of Type 2. So

ϕn = ηK·wn , Kn = (K · wn)× {0}; ϕ = ηK·w, K = (K · w)× {0}

say. Now K · wn −→ K · w and hence
(
L̂α(ϕn) = pα(wn)

)
−→

(
pα(w) = L̂α(ϕ)

)
for

each α ∈ Λ. It follows that ϕn −→ ϕ.

Case 2: Suppose that each ϕn is a spherical function of Type 1, and write

ϕn = φβn,λn and Kn =
√

2|λn| (K · vβn)× {λn}.
As (Kn) converges so does (λn). Let λ := limλn.

Case 2(a): If λ 6= 0 then ϕ = φβ,λ and K =
√

2|λ| (K · vβ) × {λ} for some β ∈ Λ
with K · vβn −→ K · vβ. As Λ is a discrete set it follows that the sequence (βn) is
eventually constant. Thus ϕ = φβ,λ = limφβ,λn = limϕn.

Case 2(b): If λ = 0 then ϕ = ηK·w and K = (K · w) × {0} for some w ∈ V . As

Kn −→ K we have
√

2|λn| (K · vβn) −→ K · w and by passing to a subsequence we

may assume that
√

2|λn| vβn converges to a point v ∈ K · w. Applying the moment
map it follows that 2|λn|βn converges in a∗. Again using Lemma A.2 we obtain

lim L̂α(ϕn) = lim pα
(√

2|λn| vβn

)
= pα(v) = pα(w) = L̂α(ϕ)

for each α ∈ Λ and hence ϕn −→ ϕ as claimed. �

Finally we note that without the functions εL given by Proposition 4.2 we do not
obtain an explicit homeomorphism between the orbital and Heisenberg fan models
for ∆(K,HV ), as claimed in Corollary 4.4.

Dept of Mathematics, East Carolina University, Greenville, NC 27858
E-mail address: bensonf@ecu.edu, ratcliffg@ecu.edu


