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Combinatorial Properties of
Generalized Binomial Coefficients

Chal Benson and Gail Ratcliff

Abstract. The generalized binomial coefficients discussed in this paper were
first studied in the context of spherical functions for Gelfand pairs associated
with the Heisenberg group. We now define generalized binomial coefficients in
a more general context, and show that they satisfy most of the combinatorial
properties obtained for Gelfand pairs. The results depend on an isometric
involution defined on polynomials on Cn.

1. Introduction

Our initial study of generalized binomial coefficients involved the Heisenberg
group Hn = V × R, V ∼= Cn [BR98]. Any subgroup K ⊆ U(V ) acts on V , giving
automorphisms of Hn. We say that (KnHn, K) is a Gelfand pair if the convolu-
tion algebra of K-bi-invariant functions on K nHn is commutative. Equivalently,
the convolution algebra of K-invariant functions on Hn is commutative.

Generic representations of Hn act on Fock space F , the completion of C[V ]
with respect to the inner product

〈p, q〉 =
∫

p(z)q(z)e−|z|
2/2 dz̃,

where the measure dz̃ on Cn ∼= R2n is normalized so that
∫

e−|z|
2/2 dz̃ = 1. The

unitary group acts on F by intertwining operators, namely k · p(z) = p(k−1z). By
a theorem of Carcano [Car87], (K n Hn,K) is a Gelfand pair if and only if the
action of K on C[V ] is multiplicity free.

Spherical functions for the Gelfand pair (KnHn,K) are the K-invariant eigen-
functions for the K-invariant, left-Hn-invariant differential operators on Hn. We
have several algorithms for computing the spherical functions. Let π be the stan-
dard representation of Hn on F . Given u, v ∈ F , define the matrix coefficient

(1.1) Φ(u, v)(z, t) = 〈π(z, t)u, v〉.
Let

(1.2) C[V ] =
∑

α∈Λ

Vα
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be the multiplicity free decomposition with respect to the action of K. Given a
unit vector vα ∈ Vα, define

φα(z, t) =
∫

K

Φ(vα, vα)(kz, t)dk.

Then φα is a spherical function. Alternatively, let dα = dim Vα and {vi : i =
1, . . . , dα} be an orthonormal basis of Vα. Then

φα =
1
dα

dα∑

i=1

Φ(vi, vi).

Let P(V ) = C[V ]⊗ C[V ]. Define two inner products on the space P(V ):

〈p, q〉∗ = (p(2∂, 2∂)q)(0, 0);

〈p, q〉F =
∫

p(z, z)q(z, z)e−|z|
2/2dz̃.

We define a canonical basis for the K-invariant polynomials P(V )K by

pα(z, z) =
1
dα

∑
vi(z)vi(z),

for each α ∈ Λ. These invariant polynomials are related to the K-spherical functions
by

φα(z, t) = eitqα(z, z)e−|z|
2/4,

where qα ∈ P(V )K , qα = const. pα+L.O.T.
Thus the sets {pα : α ∈ Λ} and {qα : α ∈ Λ} are both bases for the space of

K-invariant polynomials. The pα’s are orthogonal with respect to 〈, 〉∗, while the
qα’s are orthogonal with respect to 〈, 〉F .

In the current work, we replace the space P(V )K with a subspace V ⊆ P(V )
which is invariant under the Laplacian, and under multiplication by |z|2. We define
an involution T : V → V, which can be described in four ways. Given a 〈, 〉∗-
orthogonal basis of homogeneous polynomials {pα}, we define another family {qα =
T pα}. We write

qα =
∑

β

[
α
β

]
(−1)|β|pβ ,

where |β| is the degree of homogeneity of pβ in z. The coefficients
[

α
β

]
are called

generalized binomial coefficients.
In Section 2, we discuss the motivating example of the Gelfand pair (U(n) n

Hn, U(n)), where the pα’s are monomials, the qα’s are Laguerre polynomials, and
the generalized binomial coefficients are the usual binomial coefficients.

The transformation T is introduced in Section 3, and we show that it can
be defined in four very different ways. In Section 4, we derive the combinatorial
properties of generalized binomial coefficients, which were previously known only
for Gelfand pairs. [BR98].

We calculate generalized binomial coefficients for several examples in Section
5, namely the Gelfand pair (U(n) n Hn, U(n)), monomials, monomial symmetric
functions, and Schur polynomials.
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2. Motivating example

Let V = Cn, K = U(n). Then C[V ] =
∑

m≥0 Vm, where Vm is the space
of homogeneous polynomials of degree m. Throughout this paper, we will use
multinomial notation, so that for a, b ∈ Nn, za = za1

1 . . . zan
n , |a| = a1 + . . . + an,

a! = a1! . . . an!, and
(
a
b

)
= a!/b!(a− b)! provided bj ≤ aj for all j.

The monomials {za/
√

2|a|a! : |a| = m} form an orthonormal basis of Vm,
yielding the canonical invariants pm = (n − 1)!γm/2m(m + n − 1)!, where γ(z) =
|z|2. The spherical functions are then given by qm = (n − 1)!Ln−1

m (γ/2), where
Ln−1

m is the Laguerre polynomial of degree m and order n − 1. Explicitly Ln−1
m =∑m

j=0

(
m
j

)
(−x)j/(j + n − 1)!. (See (5.1) for a proof in the current context.) The

two families of invariant polynomials are related by

qm =
m∑

k=0

(
m

k

)
(−1)kpk.

For general Gelfand pairs (K nHn,K), we have the decomposition (1.2). Writing
|α| = m if Vα ⊆ Vm, we have

qα =
∑

|β|≤|α|

[
α
β

]
(−1)|β|pβ .

The coefficients
[

α
β

]
are called ”Generalized Binomial Coefficients.”

There are many interesting combinatorial properties of Generalized Binomial
Coefficients which motivate this work. These were first derived in [Yan] [BR98],
with a different treatment in [BR04].

3. General Setting

We replace the space P(V )K with a subspace V ⊆ P(V ) satisfying:

(1) V has a 〈, 〉∗-orthogonal basis of homogeneous polynomials {pα : α ∈ Λ}.
We write |α| = m if pα is homogeneous of degree m in z. The set Λ is
given the partial order α < β if and only if |α| < |β|.

(2) ∆ : V → V, where ∆ =
∑n

j=1 ∂j∂j is the real Laplacian.
(3) If p ∈ V, then γp ∈ V, where γ(z) = |z|2.

Now define the operator T : P (V ) → P (V ) by

T (p) = e−2∆p(z,−z).

Clearly, we have T : V → V. The operator T was defined in [BR04] in the context
of multiplicity free actions. We have since realized that the results are applicable
in this more general setting. We will show that there are three additional ways to
define the operator T . First, define the symplectic Fourier transform

f̂(w) =
∫

f(z)e−iIm(z·w)dz̃.

Proposition 3.1. (pe−γ/2)̂= T (p)e−γ/2
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Proof. We calculate T (p) for monomials p(z) = zazb:

T p(z, z) = (−1)|b|e−2∆zazb

= (−1)|b|
∑

c

(−2)|c|

c!
∂c∂

c
zazb

= (−1)|b|
∑

c

(−2)|c|a!b!
c!(a− b)!(b− c)!

za−czb−c

On the other hand,

(pe−γ/2)̂= (−2∂)a(2∂)be−γ/2

= (2∂)bzae−γ/2

=
∑

c

(
b

c

)
((2∂)cza)

(
(2∂)b−ce−γ/2

)

=
∑

c

(
b

c

)
(2)|c|

a!
(a− c)!

za−c(−z)b−ce−γ/2

=
∑

c

(−1)|b|
(−2)|c|a!b!

c!(b− c)!(a− c)!
za−czb−ce−γ/2

¤
Since the symplectic Fourier transform is its own inverse, we immediately see:

Proposition 3.2. T is an involution on P(V ).

We can also define T in terms of the matrix coefficients (1.1) for the Fock space
representation of the Heisenberg group.

Proposition 3.3.
Φ(u, v) = T (uv)e−γ/4

Proof. Note that our normalization of the measure results in
∫

zazae−|z|2/2dz̃ =
2|a|a!, and distinct monomials are orthogonal. Let u(z) = za, v(z) = zb. Then

Φ(u, v)(z) = 〈π(z, 0)u, v〉

=
∫

π(z, 0)u(w)v(w)e−|w|
2/2dw̃

=
∫

u(w + z)e−|z|
2/4e−z·w/2v(w)e−|w|

2/2dw̃

= e−|z|
2/4

∫
(w + z)awbe−z·w/2e−|w|

2/2dw̃

= e−|z|
2/4

∫ ∑
c

(
a

c

)
wcza−cwbe−z·w/2e−|w|

2/2dw̃

= e−|z|
2/4

∫ ∑
c

(
a

c

)
wcza−cwb

∑

l

(−z)l(w/2)l

l!
e−|w|

2/2dw̃

= e−|z|
2/4

∑

c,l

(
a

c

)
(−1)|l|

2|l|l!

∫
wcza−cwbzlwle−|w|

2/2dw̃
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= e−|z|
2/4

∑

c,l

(
a

c

)
(−1)|l|

2|l|l!
za−czl

∫
wc+lwbe−|w|

2/2dw̃

=
∑

c

(
a

c

)
(−1)|b−c|

2|b−c|(b− c)!
za−czb−c2|b|b!e−|z|

2/4

= (−1)|b|
∑

c

(−2)|c|a!b!
c!(a− c)!(b− c)!

za−czb−ce−|z|
2/4

= T (uv)e−|z|
2/4,

as shown in the proof of Proposition 3.1. ¤

Proposition 3.4. T : (P(V ), 〈, 〉∗) → (P(V ), 〈, 〉F ) is an isometry.

Proof.

〈T (uv), T (u′v′)〉F = 〈Φ(u, v)eγ/4, Φ(u, v)eγ/4〉F
= 〈Φ(u, v), Φ(u′, v′)〉L2

= 〈u, u′〉〈v, v′〉
= 〈uv, u′v′〉∗

¤

Proposition 3.5. The family {T pα : α ∈ Λ} is obtained, up to constants, from
{pα : α ∈ Λ} by Gram-Schmidt orthogonalization with respect to the inner product
〈, 〉F and the partial order.

Proof. Note that T pα = (−1)|α|e−2∆pα = (−1)|α|pα+L.O.T. Thus span{pβ :
|β| ≤ |α|} = span{T pβ : |β| ≤ |α|}. Since the pα’s are orthogonal with respect to
〈, 〉∗, the T pα’s will be orthogonal with respect to 〈, 〉F . ¤

4. Combinatorial results

Since pα is homogeneous, we have

T (pα) = (−1)|α|e−2∆pα.

Define a new family of polynomials {qα} ⊆ V and new generalized binomial coeffi-
cients by

qα = T (pα) =
∑

|β|≤|α|

[
α
β

]
(−1)|β|pβ .

These new generalized binomial coefficients satisfy most of the combinatorial prop-
erties of the original generalized binomial coefficients.

Since T is an involution, we immediately obtain:

Proposition 4.1.

pα =
∑

|β|≤|α|

[
α
β

]
(−1)|β|qβ

Proposition 4.2.
(2∆)k

k!
pα =

∑

|β|=|α|−k

[
α
β

]
pβ
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Proof. Since the pα’s are a homogeneous basis for V, we know that

(2∆)k

k!
pα =

∑

|β|=|α|−k

cα,βpβ

for some coefficients cα,β .
Thus

T (pα) = (−1)|α|
∑

k

(−2∆)k

k!
pα

=
∑

k

(−1)|α|+k
∑

|β|=|α|−k

cα,βpβ

=
∑

β

(−1)|β|cα,βpβ ,

and hence cα,β =
[

α
β

]
. ¤

Proposition 4.3. ”Pieri Formula”

(2γ)k

k!
dβpβ =

∑

|α|=|β|+k

[
α
β

]
dαpα,

where 1/dα = 〈pα, pα〉∗.
Proof. Let

(2γ)k

k!
dβpβ =

∑

|α|=|β|+k

cα,βdαpα.

Then by orthogonality, we obtain

cα,β =
〈

(2γ)k

k!
dβpβ , pα

〉

∗

=
〈

dβpβ ,
(2∆)k

k!
pα

〉

∗

=

〈
dβpβ ,

∑

|δ|=|α|−k

[
α
δ

]
pδ

〉

∗

=
[

α
β

]

¤

Writing (2γ)m/m! as (2γ)k/k! · (2γ)m−k/(m−k)! · (m
k

)−1, Proposition 4.3 gives
us:

Proposition 4.4. For any l with |δ| < l < |α|,
∑

|β|= l

[
α
β

][
β
δ

]
=

(|α| − |δ|
|α| − l

)[
α
δ

]
.

By repeatedly multiplying pβ by 2γ, we also obtain:
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Proposition 4.5.
[

α
β

]
=

∑ [
α
δ1

][
δ1

δ2

]
· · ·

[
δ|β|−1

β

]
,

where the sum is taken over all (δ1, . . . , δ|β|−1) with |δk| = |α| − k.

5. Examples

5.1. Motivating Example Revisited. The motivating example for much
of this work is the Gelfand pair (U(n) n Hn, U(n)). We take the canonical basis
for P(V )U(n), namely {(n − 1)!|z|2m/2m(m + n− 1)!}. The corresponding set of
invariants is qm = (n − 1)!Ln−1

m (|z|2/2). For completeness, we provide the proof.
Let γ = |z|2, so that pm = (n− 1)!γm/2m(m + n− 1)! Then

∆(γm) =
∑

j

∂j∂j(γm)

=
∑

j

∂j(mzjγ
m−1)

=
∑

j

(mγm−1 + m(m− 1)zjzjγ
m−2)

= m(n + m− 1)γm−1.

T ((n− 1)!γm/2m(m + n− 1)!) = (−1)m(n− 1)!e−2∆γm/2m(m + n− 1)!

=
(−1)m(n− 1)!
2m(m + n− 1)!

∑

k

(−2)k

k!
∆kγm

=
(−1)m(n− 1)!
2m(m + n− 1)!

∑

k

(−2)k

k!
m!(n + m− 1)!

(m− k)!(n + m− 1− k)!
γm−k

=
(−1)m(n− 1)!

2m

∑

k

(−2)m−km!
(m− k)!k!(k + n− 1)!

γk

= (n− 1)!
∑

k

(
m

k

)
(−γ/2)k

(k + n− 1)!

= (n− 1)!Ln−1
m (γ/2)(5.1)

5.2. Monomials. Let V = P(V ), with basis pa,b = zazb. In the proof of
Proposition 3.1, we calculated T pa,b, obtaining

qa,b =
∑

c

(−1)|b|−|c|2|c|a!b!
c!(a− c)!(b− c)!

za−czb−c,

and thus [
(a, b)

(a− c, b− c)

]
=

2|c|a!b!
c!(a− c)!(b− c)!
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5.3. Monomial Symmetric Functions. Let K = Sn n Tn act on V = Cn

by

(σ, γ) · (z1, . . . zn) = (γ1zσ(1), . . . , γnzσ(n)),

and let V = P(V )K . (Note that (K n Hn,K) is also a Gelfand pair.) Given a
partition λ = (λ1, . . . , λn), let mλ = zλ1

1 . . . zλn
n .

Proposition 5.1. Vλ = span{mσ(λ) : σ ∈ Sn} is irreducible under the action
of Sn n Tn.

Proof. Suppose that λ = (1a12a2 . . .), with a1 + a2 + . . . = |λ|. Then stab
mλ

∼= Sa1 × Sa2 × . . . , so dim Vλ = n!/|stab mλ| = n!/a1!a2! . . . . The character for
the action of K on Vλ is given by

χ(σ, γ) =
∑

µ∈(Sn·λ):σ(µ)=µ

γµ,

and hence
∫

T n |χ(σ, γ)|2dγ = |{µ ∈ (Sn · λ) : σ(µ) = µ}|. Thus we get

〈χ, χ〉 =
1
n!

∑

σ∈Sn

|{µ ∈ (Sn · λ) : σ(µ) = µ}|

=
1
n!

∑

µ∈(Sn·λ)

|{σ : σ(µ) = µ}|

=
1
n!

dim Vλ|stab λ|
= 1.

¤

Our canonical family of K-invariant polynomials would be

1
dim Vλ

∑

µ∈Sn·λ

mµmµ

2|µ|µ!
.

For convenience, we take a multiple of the canonical invariants and define

pλ =
∑

σ∈Sn

|mσ(λ)|2
2|λ|λ!

= |stab λ|
∑

µ∈Sn·λ

mµmµ

2|µ|µ!
.

These are the monomial symmetric functions in the variables (|z1|2, . . . , |zn|2). De-
fine the Laguerre-type polynomial

Lλ(z) = Lλ1(|z1|2/2) . . . Lλn(|zn|2/2),

where Lλj := L
(0)
λj

. Using the fact that T (|mλ|2) = T (|z1|2λ1) . . . T (|zn|2λn), we
apply (5.1) to obtain

qλ =
∑

σ∈Sn

Lσ(λ).
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We can now derive the formula for the generalized binomial coefficients:

qλ(z, z) =
∑

σ∈Sn

Lσ(λ1)(|z1|2/2) . . . Lσ(λn)(|zn|2/2)

=
∑

σ∈Sn

∑
µ1

(
σ(λ)1

µ1

)
(−|z1|2/2)µ1

µ1!
. . .

∑
µn

(
σ(λ)n

µn

)
(−|zn|2/2)µn

µn!

=
∑

σ∈Sn

∑
µ

(
σ(λ)

µ

)
(−1)|µ||mµ|2

2|µ|µ!

The coefficient of pµ will agree with the coefficient of |mµ|2/2|µ|µ!, so we obtain

qλ =
∑

µ

∑

σ∈Sn

(−1)|µ|
(

σ(λ)
µ

)
pµ,

where the first sum is taken over µ in distinct Sn-orbits. Since
[

σ(λ)
µ

]
=

[
λ
σ−1(µ)

]
, we obtain the generalized binomial coefficients

[
λ
µ

]
=

∑

σ∈Sn

(
λ

σ(µ)

)
.

Note that the summands are non-zero only when σ(µ)j ≤ λj for each j.

5.4. Schur Polynomials. There are other choices for bases of symmetric
polynomials in (|z1|2, . . . , |z2

n|). Let pλ(z, z) = Sλ(|z1|2, . . . , |zn|2), where Sλ is
the Schur polynomial associated with the partition λ. (See [Sta99] [Mac95] for a
thorough treatment.)

Explicitly,

Sλ(x1, . . . , xn) =
det[xλj+n−j

i ]
det[xn−j

i ]
.

The classical Pieri formula says that

(x1 + . . . + xn)Sλ =
∑

Sµ,

where the sum is taken over all partitions µ with Young’s diagram obtained by
adding one box to λ. The Pieri formula for the family {pλ} becomes

γmpλ =
∑

Kλ,µpµ,

where Kλ,µ is a Kostka number [Sta99]. That is, Kλ,µ is the number of ways to
build the Young’s diagram for µ from λ, adding one box at a time. From this we
conclude that the generalized binomial coefficients are given by

[
µ
λ

]
=

2|µ|−|λ|

(|µ| − |λ|)!
dλ

dµ
Kλ,µ.
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