THE SPACE OF BOUNDED SPHERICAL FUNCTIONS ON THE FREE TWO STEP NILPOTENT LIE GROUP

CHAL BENSON AND GAIL RATCLIFF

ABSTRACT. Let N be a connected and simply connected 2-step nilpotent Lie group and K be a compact subgroup of $Aut(N)$. We say that (K, N) is a Gelfand pair when the set of integrable K-invariant functions on N forms an abelian algebra under convolution. In this paper, we construct a one-to-one correspondence between the set $\Delta(K, N)$ of bounded spherical functions for such a Gelfand pair and a set $\mathcal{A}(K,N)$ of K-orbits in the dual \mathfrak{n}^* of the Lie algebra for N. The construction involves an application of the Orbit Method to spherical representations of $K \ltimes N$. We conjecture that the correspondence $\Delta(K, N) \leftrightarrow \mathcal{A}(K, N)$ is a homeomorphism. Our main result shows that this is the case for the Gelfand pair given by the action of the orthogonal group on the free 2-step nilpotent Lie group. In addition, we show how to embed the space $\Delta(K, N)$ for this example in a Euclidean space by taking eigenvalues for an explicit set of invariant differential operators. These results provide geometric models for the space of bounded spherical functions on the free 2-step group.

1. INTRODUCTION

This paper concerns the topological structure of spectra for Gelfand pairs that arise in analysis on nilpotent Lie groups. Suppose that N is a connected and simply connected nilpotent Lie group and that K is a compact Lie group acting smoothly on N via automorphisms. We say that (K, N) is a Gelfand pair when the algebra $L^1_K(N)$ of integrable K-invariant functions on N is commutative under convolution. It is shown in [BJR90] that when (K, N) is a Gelfand pair, N is necessarily 2-step (or abelian). The possibilities have been completely classified for the cases where N is a Heisenberg group [BR96], [Lea98]. Gelfand pairs of the sort (K, N) where N is a not a Heisenberg group are classified, subject to certain hypotheses, in [Vin01, Vin03] and [Yak05, Yak04]. Examples can also be found in [KR83], [Ric85], [Car87], [BJR90] and [Lau00]. Analysis in the non-Heisenberg setting has, however, not as yet been highly developed.

Consider the algebra $\mathbb{D}_K(N)$ of differential operators on N that are simultaneously invariant under left multiplication by N and under the action of K . It is known that $\mathbb{D}_K(N)$ is abelian whenever (K, N) is a Gelfand pair. In this case, a smooth function ϕ on N is said to be K-spherical if

¹⁹⁹¹ Mathematics Subject Classification. Primary 22E30, 43A90.

- ϕ is K-invariant,
- ϕ is an eigenfunction for all $D \in \mathbb{D}_K(N)$, and
- $\phi(e) = 1$, where $e \in N$ denotes the identity element.

We let $\Delta(K, N)$ denote the set of all *bounded* K-spherical functions for the Gelfand pair (K, N) . One can identify $\Delta(K, N)$ with the Gelfand space (or spectrum) of the commutative Banach \star -algebra $L^1_K(N)$ via integration against spherical functions $\phi \in \Delta(K, N)$. The compact-open topology on $\Delta(K, N)$ (uniform convergence on compact sets) corresponds to the weak[∗] -topology on the Gelfand space.

Below we introduce a correspondence between $\Delta(K, N)$ and a set $\mathcal{A}(K, N)$ of Korbits in the dual \mathfrak{n}^* of \mathfrak{n} (Definition 1.3), which we call K-spherical orbits. The correspondence $\Delta(K, N) \leftrightarrow \mathcal{A}(K, N)$ is motivated by the *Orbit Method* in Representation Theory, which says that irreducible unitary representations of a Lie group should correspond to coadjoint orbits in the dual of its Lie algebra.

Let $G = K \ltimes N$ be the semidirect product of K with N. Now $L_K^1(N)$ coincides with $L^1(K\backslash G/K)$, the K-bi-invariant functions on G, via restriction of functions on G to N. So (K, N) is a Gelfand pair if and only if $L^1(K\backslash G/K)$ is abelian. Equivalently the space of K-fixed vectors for any irreducible unitary representation of G is at most one-dimensional [Gel50]. Theorem 1.1 below provides an orbital counterpart to this representation-theoretic criterion. Here we assume N is 2-step and identify \mathfrak{n}^* with the annihilator of $\mathfrak k$ in $\mathfrak g^*$. The intersection $\mathcal O \cap \mathfrak n^*$ of any $Ad^*(G)$ -orbit $\mathcal O \subset \mathfrak g^*$ with \mathfrak{n}^* is K-saturated, i.e. a union of K-orbits.

Theorem 1.1. ([BJR99, Nis01]) (K, N) is a Gelfand pair if and only if every coadjoint orbit in \mathfrak{g}^* meets \mathfrak{n}^* in at most one K-orbit.

It is shown in [BJR99] that the orbit condition in Theorem 1.1 holds whenever (K, N) is a Gelfand pair. The converse is proved in [Nis01]. The result for Heisenberg groups was obtained first in [BJLR97].

There is an Orbit Method, due to Lipsman [Lip80, Lip82] and Pukanszky [Puk78], for semidirect products of compact with nilpotent groups. We discuss aspects of this below in Section 3, here specialized to $G = K \ltimes N$ where N is 2-step. The theory produces a well-defined coadjoint orbit $\mathcal{O}(\rho) \subset \mathfrak{g}^*$ for each irreducible unitary representation ρ of G. In this context, the orbit mapping

$$
\widehat{G} \to \mathfrak{g}^*/Ad^*(G), \quad \rho \mapsto \mathcal{O}(\rho)
$$

is, in general, finite-to-one, a fact which will require our subsequent attention.

Now suppose that (K, N) is a Gelfand pair and let G_K denote the K-spherical representations of G:

 $\widehat{G}_K = \{ \rho \in \widehat{G} \; : \; \rho \text{ has a 1-dimensional space of } K \text{-fixed vectors} \}.$

The following proposition is proved in Section 5.2.

Proposition 1.2. $\mathcal{O}(\rho) \cap \mathfrak{n}^* \neq \emptyset$ for each $\rho \in \widehat{G}_K$.

Proposition 1.2 together with Theorem 1.1 show that for each $\rho \in \widehat{G}_K$ the intersection

$$
\mathcal{K}(\rho) = \mathcal{O}(\rho) \cap \mathfrak{n}^*
$$

is a K-orbit in \mathfrak{n}^* .

Definition 1.3. Let $\mathcal{A}(K,N)$ denote the set of K-orbits in \mathfrak{n}^* given by

$$
\mathcal{A}(K,N) = \{ \mathcal{K}(\rho) \ : \ \rho \in \widehat{G}_K \}.
$$

We call these the K-spherical orbits for the Gelfand pair (K, N) .

In Section 5.4 we will prove the following.

Theorem 1.4. The map $K : \widehat{G}_K \to \mathcal{A}(K, N)$ is a bijection.

The positive definite spherical functions for (K, N) correspond with \widehat{G}_K . Given a K-spherical representation, one obtains a spherical function by forming the diagonal matrix coefficient for a K-fixed vector of unit length. Such a spherical function is bounded by 1, its value at the identity element. Conversely it is known that every bounded spherical function for (K, N) is positive definite [BJR90]. Thus we can lift K to a mapping Ψ on the space $\Delta(K, N)$ of bounded K-spherical functions:

Definition 1.5. $\Psi : \Delta(K, N) \to \mathfrak{n}^*/K$ is defined as

$$
\Psi(\phi) = \mathcal{K}(\rho^{\phi})
$$

where $\rho^{\phi} \in \widehat{G}_K$ is the K-spherical representation of G that yields ϕ .

The following assertion is now equivalent to Theorem 1.4.

Corollary 1.6. The map $\Psi : \Delta(K, N) \to \mathcal{A}(K, N)$ is a bijection.

We give $\mathcal{A}(K,N)$ the subspace topology from \mathfrak{n}^*/K . Note that \mathfrak{n}^*/K is metrizable since K is compact. The compact-open topology on $\Delta(K, N)$ corresponds to the Fell topology on \widehat{G}_K . It is known that for nilpotent and exponential solvable groups, the Orbit Method provides a homeomorphism between the unitary dual and the space of coadjoint orbits [Bro73], [LL94]. Thus it is natural to conjecture that $\mathcal{K}: \widehat{G}_K \to \mathcal{A}(K,N)$ is a homeomorphism. Equivalently:

Conjecture 1.7. $\Psi : \Delta(K, N) \to \mathcal{A}(K, N)$ is a homeomorphism

There is a "degenerate" context in which Conjecture 1.7 is easily verified. This is the situation where $N \cong \mathbb{R}^n$ is abelian, discussed below in Section 6. See also [Wol06]. In this case $\mathcal{A}(K,N) = \mathfrak{n}^*/K$ is the set of all K-orbits in \mathfrak{n}^* , with $K \cdot \ell \in \mathfrak{n}^*/K$ corresponding, via Ψ , to the K-average of the unitary character $\chi_{\ell}(x) = e^{i\ell(x)}$. So Ψ can be viewed as the map obtained from the homeomorphism $\hat{N} \cong \mathfrak{n}^*, \chi_{\ell} \leftrightarrow \ell$ by passing to K-orbits.

An alternate description of the map Ψ is preferable for purposes of calculation. As explained in Section 5.3, the bounded spherical functions $\phi \in \Delta(K, N)$ can be indexed by pairs of parameters (π, α) . Here π and α are irreducible unitary representations of N and of the stabilizer K_{π} for $\pi \in \widehat{N}$. (The pair (π, α^*) are Mackey parameters for a K-spherical representation of G.) In Section 4 we define a moment map $\tau_{\mathcal{O}}: \mathcal{O} \to \mathfrak{k}_{\pi}^*$ for the action of K_{π} on the coadjoint orbit $(\mathcal{O} = \mathcal{O}^{N}(\pi)) \subset \mathfrak{n}^*$ associated to π . We show that the image of $\tau_{\mathcal{O}}$ includes the $Ad^*(K_{\pi})$ -orbit $\mathcal{O}^{K_{\pi}}(\alpha)$ associated to the representation $\alpha \in \widehat{K}_{\pi}$. Moreover one has

$$
\Psi(\phi_{\pi,\alpha}) = K \cdot \ell_{\pi,\alpha}
$$

where $\ell_{\pi,\alpha}$ denotes any point in O with $\tau_{\mathcal{O}}(\ell_{\pi,\alpha}) \in \mathcal{O}^{K_{\pi}}(\alpha)$. See Proposition 5.3 below.

In [BJR90] it is shown that the orthogonal group $O(d)$ acts on the F_d , the free 2-step nilpotent Lie group on d generators, to yield a Gelfand pair $(O(d), F_d)$. This example plays an important role in the theory of Gelfand pairs (K, N) since $O(d)$ is maximal compact in $Aut(F_d)$ and any 2-step group can be realized as a quotient of some F_d by a central subgroup. Some results concerning the spherical functions for $(O(d), F_d)$ can be found in [Str91] and [Fis06]. We discuss this example below, in a coordinatefree fashion, beginning in Section 8. Our main result is Theorem 8.1, which asserts that the correspondence $\Delta(O(d), F_d) \leftrightarrow \mathcal{A}(O(d), F_d)$ is indeed a homeomorphism.

There is another approach to constructing topological models for $\Delta(K, N)$. One can use the eigenvalues with respect to some set of operators $D \in \mathbb{D}_K(N)$ to map $\Delta(K, N)$ to a Euclidean space. This technique was used in [Wol92] to embed the spectrum for any Gelfand pair into an infinite dimensional Euclidean space by using all $D \in \mathbb{D}_K(N)$. For the Gelfand pair $(U(n), H_n)$, given by the action of the unitary group $U(n)$ on the Heisenberg group H_n , it suffices to use just two operators, the Heisenberg sub-Laplacian and the central derivative. This yields an embedding of $\Delta(U(n), H_n)$ in \mathbb{R}^2 whose image is called "the Heisenberg fan" [Bou81], [Far87], [Str91]. In [BJRW96], the Heisenberg fan construction is generalized to encompass Gelfand pairs of the form (K, H_n) where K is a closed subgroup of $U(n)$. The result is an embedding into a finite dimensional Euclidean space.

Our proof of Theorem 8.1, contained in Section 11, requires first establishing the analogous result for $(U(n), H_n)$. This is done in Section 7 by relating the space of spherical orbits for $(U(n), H_n)$ to the Heisenberg fan. For the case of $(O(d), F_d)$ we show that there is also a direct analog for the fan construction. That is, we describe a finite set of operators $D \in \mathbb{D}_{O(d)}(F_d)$ that can be used to embed $\Delta(O(d), F_d)$ in a finite dimensional Euclidean space. This construction is contained in Sections 9 and 10 below, culminating in Corollary 10.2. In Section 12 we describe our geometric models for $\Delta(O(d), F_d)$ explicitly in the case $d = 3$.

We conclude this overview of our results by listing the Gelfand pairs for which Conjecture 1.7 will be established. These are

- (K, N) with N abelian (Section 6),
- $(K, N) = (U(n), H_n)$ (Section 7),

•
$$
(K, N) = (O(d), F_d)
$$
 (Section 11).

We have also proved Conjecture 1.7 for the pair $(SO(d), F_d)$. In fact, as explained in Section 8, this can be derived as a corollary to the result for $(O(d), F_d)$.

Acknowledgment: The authors thank two anonymous referees for suggesting improvements to a prior version of this paper.

2. Preliminaries and notation

- Throughout this paper, N denotes a connected and simply connected 2-step nilpotent Lie group. K is a (possible disconnected) compact Lie group acting smoothly on N by automorphisms. We let $k \cdot x$ denote the result of applying $k \in K$ to $x \in N$.
- $G = K \times N$ is the semidirect product, with group law

$$
(k, x)(k', x') = (kk', x(k \cdot x')).
$$

- A script letter indicates the Lie algebra for a corresponding group. We identify N with its Lie algebra n via the exponential map. The derived action of $\mathfrak k$ on **n** is written $A \cdot X$ for $A \in \mathfrak{k}$ and $X \in \mathfrak{n}$.
- H denotes the unitary dual of a Lie group H . We identify representations modulo unitary equivalence and make no notational distinction between a representation and its equivalence class.
- The coadjoint actions of a Lie group H and its Lie algebra \mathfrak{h} on $\mathfrak{h}^* = hom(\mathfrak{h}, \mathbb{R})$ are

$$
Ad^*(h)\varphi = \varphi \circ Ad(h^{-1}),
$$

$$
ad^*(X)\varphi(Y) = \varphi \circ ad(-X)(Y) = -\varphi([X, Y])
$$

for $h \in H$, $\varphi \in \mathfrak{h}^*$, and $X, Y \in \mathfrak{h}$. When H is nilpotent and is identified with its Lie algebra \mathfrak{h} , $Ad^*(X)$ for $X \in \mathfrak{h}$ denotes the coadjoint action of the group H.

• The symbol $\mathcal O$ indicates a coadjoint orbit. Given $\sigma \in \widehat{H}$, $\mathcal O(\sigma)$ is an associated coadjoint orbit in \mathfrak{h}^* . Sometimes we write $\mathcal{O}^H(\sigma)$ to clarify the group in question. We assume familiarity with Kirillov's Orbit Method for nilpotent Lie groups. (See [Kir62], [Kir04] or [CG90].) This establishes a one-to-one correspondence

$$
\widehat{N} \leftrightarrow \mathfrak{n}^*/Ad^*(N), \quad \pi \leftrightarrow \mathcal{O}^N(\pi).
$$

The Orbit Method for other groups that arise in this paper is discussed in Section 3.

• We will frequently extend linear functionals $\xi \in \mathfrak{h}^*$ from subalgebras \mathfrak{h} of \mathfrak{k} to all of $\mathfrak k$. For this purpose we fix at the outset a definite $Ad(K)$ -invariant inner product $(\cdot, \cdot)_\mathfrak{k}$ on \mathfrak{k} . As an element of \mathfrak{k}^*, ξ is the unique extension which vanishes on the $(\cdot, \cdot)_\mathfrak{k}$ -orthogonal complement of \mathfrak{h} . For concreteness one can realize K as a Lie subgroup of a unitary group $U(n)$, via some faithful unitary representation, and use the negative definite inner product

$$
(A,B)_{\mathfrak{k}} = tr(AB).
$$

• Elements of \mathfrak{g}^* are denoted $\varphi = (\xi, \ell)$, where $\xi \in \mathfrak{k}^*$ and $\ell \in \mathfrak{n}^*$. This means

$$
\varphi(A, X) = \xi(A) + \ell(X)
$$

for $A \in \mathfrak{k}, X \in \mathfrak{n}$. The set \mathfrak{n}^* can be viewed as the subset $\{(0, \ell) : \ell \in \mathfrak{n}^*\}$ of \mathfrak{g}^* , the annihilator of \mathfrak{k} in \mathfrak{g}^* , so that $\mathfrak{g}^* = \mathfrak{k}^* \oplus \mathfrak{n}^*$.

3. THE ORBIT METHOD FOR $G = K \ltimes N$

A version of the Orbit Method, due to R. Lipsman [Lip80, Lip82] and L. Pukanszky [Puk78], associates a coadjoint orbit $\mathcal{O}(\rho)$ in \mathfrak{g}^* to each irreducible unitary representation $\rho \in \widehat{G}$ of $G = K \ltimes N$. This construction is described in the current section. We do not, however, require the full strength of this theory, since N is here a 2-step group.

3.1. Orbit Method for subgroups of K. Let H be any *connected* Lie subgroup of K. Given an irreducible unitary representation $\nu \in \widehat{H}$ of H we use the highest weight theory for compact connected Lie groups to obtain a coadjoint orbit $\mathcal{O}(\nu) \subset \mathfrak{h}^*$. To begin, choose a maximal torus T in H and a system of positive roots. Let $i\xi : \mathfrak{t} \to i\mathbb{R}$ be the highest weight for ν . Extend $\xi \in \mathfrak{t}^*$ to an element of \mathfrak{h}^* by using the $Ad(K)$ invariant inner product $(\cdot, \cdot)_k$, as discussed in Section 2. The coadjoint orbit $\mathcal{O}(\nu) \subset \mathfrak{h}^*$ is then defined as

$$
\mathcal{O}(\nu) = \mathcal{O}^H(\nu) = Ad^*(H)\xi.
$$

The map $\mathcal{O}: \widehat{H} \to \mathfrak{h}^*/Ad^*(H)$ is well-defined and injective.

Note that this approach does *not* incorporate the " ρ -shift" (half the sum of the positive roots) that appears elsewhere in the literature on the Orbit Method for compact groups. (See, for example, Chapter 5 in [Kir04].) The approach described here is better suited to our purposes.

Next suppose H is a disconnected Lie subgroup of K and $\alpha \in \widehat{H}$. Let $\nu \in \widehat{H}^{\circ}$ be an irreducible representation of the identity component $H[°]$ occurring in the restriction α to H° . We let

$$
\mathcal{O}(\alpha) = Ad^*(H)\mathcal{O}^{H^{\circ}}(\nu)
$$

where $O^{H^{\circ}}(\nu) \subset \mathfrak{h}^*$ is the coadjoint orbit for $\nu \in \widehat{H^{\circ}}$, as defined above. Equivalently

$$
\mathcal{O}(\alpha) = Ad^*(H)\xi
$$

where $i\xi$ is any highest weight occurring in $\alpha|_{H^{\circ}}$.

Suppose that ν' is another irreducible representation of H° occurring in $\alpha|_{H^{\circ}}$. As H° is a normal subgroup of finite index in H, it follows that

$$
\nu'(k) = (k_{\circ} \cdot \nu)(k) = \nu(k_{\circ}^{-1}kk_{\circ})
$$

for some $k_0 \in H$. Hence if $\xi \in \mathcal{O}^{H^{\circ}}(\nu)$ then $Ad^*(k_0)\xi \in \mathcal{O}^{H^{\circ}}(\nu')$. We conclude that $Ad^*(H)\mathcal{O}^{H^{\circ}}(\nu) = Ad^*(H)\mathcal{O}^{H^{\circ}}(\nu').$ This shows that $\mathcal{O}(\alpha)$ is well defined, independent of the choice of $\nu \in \widehat{H}^{\circ}$ occurring in $\alpha|_{H^{\circ}}$.

When H is disconnected the orbit correspondence $\mathcal{O}: \widehat{H} \to \mathfrak{h}^*/Ad^*(H)$ is, in general, finite-to-one. That is, finitely many inequivalent representations of H can yield a common coadjoint orbit. For an example of this phenomenon one need only consider the situation when H is a *finite* subgroup of K .

3.2. Aligned points in \mathfrak{n}^* . Choose a positive definite inner product $(\cdot, \cdot)_{\mathfrak{n}}$ on \mathfrak{n} that is invariant under the action of K. Let $\mathfrak z$ denote the center of $\mathfrak n$ and let $\mathcal V = \mathfrak z^{\perp}$, so that

$$
\mathfrak{n}=\mathcal{V}\oplus\mathfrak{z}.
$$

Let $\mathcal{O} \subset \mathfrak{n}^*$ be a coadjoint orbit and choose any point $\ell \in \mathcal{O}$, so that $\mathcal{O} = Ad^*(N)\ell$. Let $B_{\mathcal{O}}$ be the bilinear form

$$
B_{\mathcal{O}}(X,Y) = \ell([X,Y])
$$

on n and let

$$
\mathfrak{a}_{\mathcal{O}} = Rad(B_{\mathcal{O}}) \cap \mathcal{V} = \{X \in \mathcal{V} : \ell([X,\mathfrak{n}]) = 0\}.
$$

As suggested by the notation, $B_{\mathcal{O}}$ and $\mathfrak{a}_{\mathcal{O}}$ do not depend on the choice of $\ell \in \mathcal{O}$, since N is 2-step nilpotent. Let

$$
\mathfrak{w}_{\mathcal{O}} = \mathfrak{a}_{\mathcal{O}}^{\perp} \cap \mathcal{V}
$$

so that

(3.1)
$$
\mathfrak{n} = \mathfrak{a}_{\mathcal{O}} \oplus \mathfrak{w}_{\mathcal{O}} \oplus \mathfrak{z}.
$$

Since N is 2-step, we see that the map

$$
\mathfrak{w}_{\mathcal{O}} \to \mathcal{O}, \quad X \mapsto Ad^*(X)\ell = \ell - \ell[X, -]
$$

is a homeomorphism. This identification of $\mathfrak{w}_{\mathcal{O}}$ with $\mathcal O$ does, however, depend on the choice of base point $\ell \in \mathcal{O}$. For our subsequent results, it is crucial that one can distinguish a canonical base point and use this to obtain a canonical identification $\mathfrak{w}_{\mathcal{O}} \cong \overset{\circ}{\mathcal{O}}$.

Definition 3.1. A point $\ell \in \mathcal{O}$ is said to be aligned if $\ell|_{\mathfrak{w}_{\mathcal{O}}} = 0$.

Lemma 3.2. $\mathcal O$ contains exactly one aligned point.

Proof. Let ℓ be any point in \mathcal{O} . Since $B_{\mathcal{O}}$ is non-degenerate on $\mathfrak{w}_{\mathcal{O}}$, we have

$$
\ell|_{\mathfrak{w}_{\mathcal{O}}} = B_{\mathcal{O}}(X_{\circ}, -)
$$

for some $X_{\circ} \in \mathfrak{w}_{\mathcal{O}}$. One checks easily that $\ell_{\circ} = Ad^*(X_{\circ})\ell$ is the unique aligned point in $\mathcal{O}.$ The compact group K acts on \mathfrak{n}^* via the contragredient of its action on \mathfrak{n} :

 $(k \cdot \ell)(X) = \ell(k^{-1} \cdot X).$

Since K acts by automorphisms on $\mathfrak n$, the action of K on $\mathfrak n^*$ takes coadjoint orbits to coadjoint orbits. Moreover

$$
\mathfrak{a}_{k \cdot \mathcal{O}} = k \cdot \mathfrak{a}_{\mathcal{O}} \quad \text{and} \quad \mathfrak{w}_{k \cdot \mathcal{O}} = k \cdot \mathfrak{w}_{\mathcal{O}}
$$

for elements $k \in K$, and coadjoint orbits $\mathcal{O} \subset \mathfrak{n}^*$. The following is now immediate.

Lemma 3.3. If ℓ is aligned then so is $k \cdot \ell$.

Now let $K_{\mathcal{O}} \subset K$ denote the stabilizer of the coadjoint orbit \mathcal{O} :

$$
K_{\mathcal{O}} = \{ k \in K \; : \; k \cdot \mathcal{O} = \mathcal{O} \}.
$$

The action of $K_{\mathcal{O}}$ on **n** preserves $a_{\mathcal{O}}$ and $\mathfrak{w}_{\mathcal{O}}$. Together Lemmas 3.2 and 3.3 imply:

Lemma 3.4. Let $\ell_{\mathcal{O}}$ be the aligned point in \mathcal{O} . Then $K_{\mathcal{O}} = \{k \in K : k \cdot \ell_{\mathcal{O}} = \ell_{\mathcal{O}}\}.$ That is, the stabilizer of a coadjoint orbit coincides with that of its aligned point.

Our definition of aligned point depends, a priori, on the choice of K-invariant inner product (\cdot, \cdot) _n. Proposition 3.6 below will, however, relate Definition 3.1 to that found in [Lip80]. The latter does not involve a choice of inner product. In particular, we emphasize that the orbit method for G , described next, is independent of the chosen inner product.

3.3. Coadjoint orbits and representations of G . Our goal here is to obtain a coadjoint orbit $\mathcal{O}(\rho)$ in \mathfrak{g}^* for each $\rho \in \widehat{G}$. First we recall how the *Mackey machine* describes \widehat{G} in terms of representations of N and subgroups of K.

The group K acts on the unitary dual \widehat{N} of N via

$$
k\cdot \pi = \pi\circ k^{-1}
$$

for $k \in K$, $\pi \in \widehat{N}$. Let K_{π} denote the stabilizer of π (up to unitary equivalence). Note that

$$
K_\pi=K_{\mathcal{O}}
$$

where $\mathcal{O} = \mathcal{O}^N(\pi) \subset \mathfrak{n}^*$ is the coadjoint orbit for π .

Lemma 2.3 in [BJR99] shows that there is a (non-projective) unitary representation

$$
W_{\pi}: K_{\pi} \to U(\mathcal{H}_{\pi})
$$

of K_π in the representation space \mathcal{H}_π for π that intertwines $k \cdot \pi$ with π :

$$
(k \cdot \pi)(x) = W_{\pi}(k)^{-1} \pi(x) W_{\pi}(k)
$$

for all $k \in K_{\pi}$, $x \in N$. Given any irreducible unitary representation α of K_{π} Mackey theory ensures that \overline{a} ´

$$
\rho_{\pi,\alpha} = Ind_{K_{\pi} \ltimes N}^{K \ltimes N} ((k, x) \mapsto \alpha(k) \otimes \pi(x) W_{\pi}(k))
$$

is an irreducible unitary representation of G . Moreover, up to unitary equivalence, all irreducible unitary representations of G have this form. That is:

$$
\widehat{G} = \{ \rho_{\pi,\alpha} : \pi \in \widehat{N}, \ \alpha \in \widehat{K_{\pi}} \}.
$$

We say that $\rho = \rho_{\pi,\alpha}$ has *Mackey parameters* (π,α) . For our purposes it is important to note that the intertwining representation W_{π} can be *canonically* chosen, so that the parameters (π, α) completely determine $\rho_{\pi,\alpha}$. Corollary 3.2 in [Lip80] establishes this, via positive polarizations, in the general setting of Lie groups with co-compact nilradical. In the current context this observation amounts to the proof of Lemma 2.3 in [BJR99]. In outline one has the following.

Let ℓ be the aligned point in $\mathcal O$ and note that π factors through

$$
N_{\mathcal{O}} = exp(\mathfrak{n}/Ker(\ell|_{\mathfrak{z}})).
$$

When $\ell|_3 \neq 0$ the group $N_{\mathcal{O}}$ is the product of a Heisenberg group H with the (possibly trivial) abelian group $\mathfrak{a}_{\mathcal{O}}$. Working from the inner product $(\cdot, \cdot)_{\mathfrak{n}}$ one constructs a unitary K_{π} -space V and and isomorphism φ from H to the standard Heisenberg group $H_V = V \times \mathbb{R}$. (See Section 5.1.) The element ℓ_φ in \mathfrak{h}_V^* which corresponds to ℓ via φ satisfies

$$
\ell_{\varphi}|_V = 0 \qquad \ell_{\varphi}(0,1) = 1.
$$

So $\pi|_H$ can be realized, via φ , as the standard representation of H_V in the Fock space \mathcal{F}_V on V. Thus also W_π is realized, via φ , as the restriction to K_π of the standard representation of $U(V)$ on \mathcal{F}_V . The equivalence class of W_π does not depend on the choice of inner product $(\cdot, \cdot)_{\mathfrak{n}}$ used to produce φ .

The coadjoint orbit $\mathcal{O}(\rho) \subset \mathfrak{g}^*$ for $\rho = \rho_{\pi,\alpha}$ is obtained from the Mackey parameters (π, α) as follows.

- Let $\mathcal{O}^N(\pi) \subset \mathfrak{n}^*$ be the coadjoint orbit corresponding to $\pi \in \widehat{N}$ and let ℓ_{π} denote the unique aligned point in $\mathcal{O}^{N}(\pi)$. (See Definition 3.1.)
- Let ξ be any point in the coadjoint orbit $\mathcal{O}^{K_{\pi}}(\alpha)$. (See Section 3.1.) Use the $Ad(K)$ -invariant inner product $(\cdot, \cdot)_\mathfrak{k}$ on \mathfrak{k} to lift ξ to a linear functional on all of k.
- Now set

(3.2)
$$
\mathcal{O}(\rho) = Ad^*(G)(\xi, \ell_\pi).
$$

To justify this definition, we will verify that $\mathcal{O}(\rho)$ does not depend on the various choices of data involved in its construction.

Lemma 3.5. The coadjoint orbit $\mathcal{O}(\rho)$ depends only on ρ (up to unitary equivalence).

Proof. Lemma 3.4 shows that $K_{\pi} = K_{\mathcal{O}^N(\pi)}$ coincides with the stabilizer of the aligned point $\ell_{\pi} \in \mathcal{O}^{N}(\pi)$:

$$
K_{\pi} = \{k \in K \; : \; k \cdot \ell_{\pi} = \ell_{\pi}\}.
$$

In addition observe that

$$
Ad^*_{G}(k)(\xi,\ell) = (Ad^*_{K}(k)\xi, k \cdot \ell)
$$

for $k \in K$ and $(\xi, \ell) \in \mathfrak{g}^*$.

• $\mathcal{O}(\rho)$ does not depend on the choice of $\xi \in \mathcal{O}^{K_{\pi}}(\alpha)$:

Indeed if $\xi' = Ad^*(k_0)\xi$ for some $k_0 \in K_\pi$ then

$$
(\xi', \ell_\pi) = (Ad_K^*(k_\circ)\xi, k_\circ \cdot \ell_\pi) = Ad_G^*(k_\circ)(\xi, \ell_\pi)
$$

since $k_{\circ} \cdot \ell_{\pi} = \ell_{\pi}$.

• $\mathcal{O}(\rho)$ does not depend on the choice of Mackey parameters (π, α) for ρ :

Mackey theory dictates that $\rho_{\pi,\alpha} = \rho_{\pi',\alpha'}$ if and only if (π,α) and (π',α') differ by the action of K . This means

$$
\pi' = k_{\circ} \cdot \pi, \quad \alpha' = k_{\circ} \cdot \alpha
$$

for some $k_{\circ} \in K$ where

$$
K_{k_o \cdot \pi} = k_o K_{\pi} k_o^{-1}, \quad (k_o \cdot \alpha)(k) = \alpha (k_o^{-1} k k_o).
$$

We have $\mathcal{O}^N(\pi') = k_\circ \cdot \mathcal{O}^N(\pi)$ and hence

$$
\ell_{\pi'}=k_{\circ}\cdot\ell_{\pi}
$$

by Lemma 3.3. Moreover $\mathcal{O}^{K_{k_o}.\pi}(\alpha') = Ad^*(k_o)\mathcal{O}^{K_{\pi}}(\alpha)$. Thus if $\xi \in \mathcal{O}^{K_{\pi}}(\alpha)$ then $\xi' = Ad_K^*(k_\circ)\xi$ is in $\mathcal{O}^{K_{k_\circ}(\pi)}(\alpha')$ and finally

$$
(\xi',\ell_{\pi'})=(Ad_K^*(k_\circ)\xi,k_\circ\cdot\ell_\pi)=Ad_G^*(k_\circ)(\xi,\ell_\pi).
$$

 \Box

Note that the orbit correspondence

$$
\widehat{G} \to \mathfrak{g}^*/Ad^*(G), \quad \rho \mapsto \mathcal{O}(\rho)
$$

is, in general, finite-to-one. In fact $\mathcal{O}(\rho_{\pi,\alpha})$ can arise from more than one representation whenever the stabilizer K_{π} fails to be connected.

The following proposition relates Definition 3.1 to Lipsman's definition of aligned point in \mathfrak{g}^* . The point $(\xi, \ell_\pi) \in \mathfrak{g}^*$ in Equation 3.2 is, in particular, aligned in \mathfrak{g}^* . This reconciles our description of the orbit mapping $\rho \mapsto \mathcal{O}(\rho)$ with [Lip80, Lip82] and [Puk78].

Proposition 3.6. Let $\ell \in \mathfrak{n}^*$ be aligned and $\xi \in \mathfrak{k}_\ell^* \subset \mathfrak{k}^*$ then $\varphi = (\xi, \ell)$ is an aligned point in \mathfrak{g}^* in the sense of [Lip80]. That is,

$$
G_{\ell} = K_{\ell} N_{\ell}, \quad and \quad G_{\varphi} = K_{\varphi} N_{\varphi}.
$$

Proof. The adjoint action of G on $\mathfrak g$ can be written as (3.3)

$$
Ad_G(k, Y)(U, X) = \left(k \cdot U, \quad k \cdot X - (k \cdot U) \cdot Y + [Y, k \cdot X] - \frac{1}{2}[Y, (k \cdot U) \cdot Y]\right)
$$

for $k \in K$, $U \in \mathfrak{k}$, $X, Y \in \mathfrak{n}$. Here $k \cdot U = Ad_K(k)U$ and we have identified N with \mathfrak{n} . Let $(k, Y) \in G_{\ell}$. Applying (3.3) with $U = 0$ yields

(3.4)
$$
\ell(k \cdot X) + \ell[Y, k \cdot X] = \ell(X) \text{ for all } X \in \mathfrak{n}.
$$

Equivalently $k^{-1} \cdot (Ad_N^*(Y^{-1})\ell) = \ell$ and in particular, $k \cdot \ell \in Ad_N^*(N)\ell$. As ℓ is aligned this implies $k \cdot \ell = \ell$, in view of Lemmas 3.2 and 3.3. That is $k \in K_{\ell}$. Moreover (3.4) now becomes

$$
\ell[Y, k \cdot X] = 0 \quad \text{for all } X \in \mathfrak{n},
$$

which implies that $Y \in N_{\ell}$. So $G_{\ell} = K_{\ell}N_{\ell}$ as stated.

Next let $(k, Y) \in G_{\varphi}$. As $G_{\varphi} \subset G_{\ell}$ we have $k \in K_{\ell}, Y \in N_{\ell}$. Now (3.3) with $X = 0$ yields

(3.5)
$$
\xi(k \cdot U) - \ell((k \cdot U) \cdot Y) = \xi(U) \text{ for all } U \in \mathfrak{k}.
$$

This implies $\xi(k \cdot U) = \xi(U)$ when $U \in \mathfrak{k}_{\ell}$. But when $U \in \mathfrak{k}_{\ell}^{\perp}$ (orthogonal complement with respect to a definite $Ad(K)$ -invariant inner product on \mathfrak{k}) we have $\xi(k \cdot U)$ = $0 = \xi(U)$, since $\xi \in \mathfrak{k}_{\ell}^* \subset \mathfrak{k}^*$. So

(3.6)
$$
\xi(k \cdot U) = \xi(U) \text{ for all } U \in \mathfrak{k}.
$$

From this it is easy to see that $k \in K_{\varphi}$. Moreover (3.5) and (3.6) together now give

$$
\ell(A \cdot Y) = 0 \quad \text{for all } A \in \mathfrak{k}.
$$

Using this and the fact that $Y \in N_\ell$ one can apply (3.3) to show

$$
\varphi(Y \cdot (U, X)) = \varphi(U, X) \quad \text{for all } U \in \mathfrak{k}, X \in N.
$$

That is, $Y \in N_{\varphi}$. So $G_{\varphi} = K_{\varphi} N_{\varphi}$ as stated. \square

Remark 3.7. The proof for Proposition 3.6 shows that one has $G_\ell = K_\ell N_\ell$ whenever $\ell = \varphi_{\vert \mathfrak{n}}$ is aligned. The condition that ξ belong to \mathfrak{k}_{ℓ}^* only enters the proof that $G_{\varphi}=K_{\varphi}N_{\varphi}.$

Lemma 3.8. Let $\varphi = (\xi, \ell) \in \mathfrak{g}^*$ where $\ell \in \mathfrak{n}^*$ is aligned. Then

$$
Ad^*_{G}(N_{\ell})\varphi=\varphi+(\mathfrak{k}_{\ell}+\mathfrak{n})^{\perp}.
$$

Proof. Lemma 2 in [Puk78] shows that, in any case, $Ad^*_G(N_\ell)\varphi = \varphi + (\mathfrak{g}_\ell + \mathfrak{n})^{\perp}$. But alignment of ℓ gives $\mathfrak{g}_{\ell} + \mathfrak{n} = \mathfrak{k}_{\ell} + \mathfrak{n}$, in view of the preceding remark. \Box

12 C. BENSON AND G. RATCLIFF

4. THE MOMENT MAP FOR AN $Ad^*(N)$ -ORBIT

Definition 4.1. Let $\mathcal{O} \subset \mathfrak{n}^*$ be a coadjoint orbit for N, $K_{\mathcal{O}}$ the stabilizer of \mathcal{O} in K and $\mathfrak{k}_{\mathcal{O}}$ its Lie algebra. The moment map $\tau_{\mathcal{O}}: \mathcal{O} \to \mathfrak{k}_{\mathcal{O}}^*$ is defined via¹

$$
\tau_{\mathcal{O}}(Ad^*(X)\ell_{\mathcal{O}})(A) = -\frac{1}{2}B_{\mathcal{O}}(X, A \cdot X) = -\frac{1}{2}\ell_{\mathcal{O}}[X, A \cdot X]
$$

for $A \in \mathfrak{k}_{\mathcal{O}}$, $X \in \mathfrak{n}$. Here $\ell_{\mathcal{O}}$ is the unique aligned point in \mathcal{O} .

Lemma 4.2. The map $\tau_{\mathcal{O}}$ is well defined.

Proof. Suppose that $Ad^*(X_1)\ell_{\mathcal{O}} = Ad^*(X_2)\ell_{\mathcal{O}}$. It follows that $X_1 - X_2 \in Rad(B_{\mathcal{O}})$. Let $A \in \mathfrak{k}_{\mathcal{O}}$. We have $A \cdot \ell_{\mathcal{O}} = 0$ in view of Lemma 3.4 and an easy calculation yields $B_{\mathcal{O}}(X_1, A \cdot X_1) = B_{\mathcal{O}}(X_2, A \cdot X_2).$

Next note that for $k_0 \in K$ and coadjoint orbits $\mathcal{O} \subset \mathfrak{n}^*$ one has

$$
K_{k_{\circ}\cdot\mathcal{O}}=k_{\circ}K_{\mathcal{O}}k_{\circ}^{-1}, \quad \mathfrak{k}_{k_{\circ}\cdot\mathcal{O}}=Ad(k_{\circ})(\mathfrak{k}_{\mathcal{O}}), \quad \text{and} \quad \mathfrak{k}_{k_{\circ}\cdot\mathcal{O}}^* = Ad^*(k_{\circ})(\mathfrak{k}_{\mathcal{O}}^*).
$$

The following equivariance property for moment maps is fundamental. The proof involves a routine calculation, which we leave to the reader.

Lemma 4.3. The diagram

$$
\begin{array}{ccc}\n\mathcal{O} & \xrightarrow{k_{\circ} -} & k_{\circ} \cdot \mathcal{O} \\
\downarrow \tau_{\mathcal{O}} & & \downarrow \tau_{k_{\circ} \cdot \mathcal{O}} \\
\mathfrak{k}_{\mathcal{O}}^{*} & \xrightarrow{Ad^{*}(k_{\circ})} & \mathfrak{k}_{k_{\circ} \cdot \mathcal{O}}^{*}\n\end{array}
$$

commutes for any $k_{\circ} \in K$ and any coadjoint orbit $\mathcal{O} \subset \mathfrak{n}^*$. In particular, one has $\tau_{\mathcal{O}}(k \cdot \ell) = Ad^*(k) \tau_{\mathcal{O}}(\ell)$ for $\ell \in \mathcal{O}, k \in K_{\mathcal{O}}$.

The map $Ad^*(k_{\circ})$: $\mathfrak{k}_{\mathcal{O}}^* \to \mathfrak{k}_{k_{\circ} \cdot \mathcal{O}}^*$ in the preceding diagram takes $Ad^*(K_{\mathcal{O}})$ -orbits to $Ad^*(K_{k_\circ \cdot \mathcal{O}})$ -orbits. For $\pi \in \widehat{N}$, $\alpha \in \widehat{K}_{\pi}$, $k_\circ \in K$ one has

$$
K_{\pi} = K_{\mathcal{O}^N(\pi)}, \quad K_{k_{\circ}\cdot\pi} = K_{\mathcal{O}^N(k_{\circ}\cdot\pi)}, \quad k_{\circ}\cdot\alpha \in \widehat{K_{k_{\circ}\cdot\pi}}
$$

and we conclude that

(4.1)
$$
\mathcal{O}^{K_{k_o \cdot \pi}}(k_o \cdot \alpha) = Ad^*(k_o) \mathcal{O}^{K_{\pi}}(\alpha).
$$

Proposition 4.4. Consider a point $\varphi = (\xi, \ell)$ in \mathfrak{g}^* where $\ell \in \mathfrak{n}^*$ is aligned and let $\mathcal{O} = Ad^*(N)\ell$. Then

$$
Ad^*(G)\varphi\cap \mathfrak{n}^*=\{k\cdot \ell'\ :\ k\in K,\ \ell'\in \mathcal{O}\ with\ \tau_{\mathcal{O}}(\ell')=(-\xi)|_{\mathfrak{k}_{\mathcal{O}}}\},
$$

the K-saturation of $\tau_{\mathcal{O}}^{-1}((-\xi)|_{\mathfrak{k}_{\mathcal{O}}})$. In particular, $Ad^*(G)\varphi \cap \mathfrak{n}^* \neq \emptyset$ if and only if $(-\xi)|_{\mathfrak{k}_{\mathcal{O}}}$ is in the image of $\tau_{\mathcal{O}}$.

¹The minus sign in Definition 4.1 has been included to simplify the form of Equation 5.4 and Proposition 5.3 below.

Proof. First note that as ℓ is aligned we have $\mathfrak{k}_{\mathcal{O}} = \mathfrak{k}_{\ell}$, by Lemma 3.4. For $X \in \mathfrak{n}$ let $X \times \ell \in \mathfrak{k}^*$ be defined as $(X \times \ell)(A) = \ell(A \cdot X)$ and set

$$
T_X \varphi = T_X(\xi, \ell) = \xi + X \times \ell + \frac{1}{2}X \times ad^*_N(X)\ell
$$

From Equation 3.3 one obtains (see [BJR99])

$$
Ad^*_G(X)\varphi = (T_X\varphi, Ad^*_N(X)\ell)
$$

and hence

$$
Ad^*(G)\varphi\cap \mathfrak{n}^*=\{k\cdot (Ad^*_N(X)\ell)\ :\ k\in K, X\in \mathfrak{n}\ \text{with}\ T_X\varphi=0\}
$$

Observe that in this notation,

$$
\tau_{\mathcal{O}}(Ad_N^*(X)\ell) = \frac{1}{2}(X \times ad_N^*(X)\ell)\Big|_{\mathfrak{k}_{\mathcal{O}} = \mathfrak{k}_{\ell}}
$$

.

Suppose that $k \in K$ and $\ell' = Ad_N^*(X_\circ)\ell$ where $X_\circ \in \mathfrak{n}$ satisfies $T_{X_\circ}\varphi = 0$, so that $k \cdot \ell' \in Ad^*(G)\varphi \cap \mathfrak{n}^*$. As $X_{\circ} \times \ell$ vanishes on \mathfrak{k}_{ℓ} the identity $T_{X_{\circ}}\varphi|_{\mathfrak{k}_{\ell}} = 0$ becomes $\tau_{\mathcal{O}}(\ell') = (-\xi)|_{\mathfrak{k}_{\ell}}$. So $Ad^*(G)\varphi \cap \mathfrak{n}^*$ is contained in the K-saturation of $\tau_{\mathcal{O}}^{-1}((-\xi)|_{\mathfrak{k}_{\mathcal{O}}})$.

Next assume that $(-\xi)|_{\mathfrak{k}_\ell} = \tau_{\mathcal{O}}(\ell')$ where $\ell' = Ad_N^*(X_\circ)\ell \in \mathcal{O}$ and set $\varphi' =$ $Ad^*_G(X_\circ)\varphi$. Now φ' vanishes on \mathfrak{k}_ℓ , since $X_\circ \times \ell|_{\mathfrak{k}_\ell} = 0$, and thus φ' and $(0, \ell')$ agree on $\mathfrak{k}_{\ell} + \mathfrak{n}$. Lemma 3.8 now implies that there is some $X_1 \in \mathfrak{n}_{\ell}$ with $Ad^*_{G}(X_1)\varphi' = (0, \ell').$ So $X_2 = X_1 + X_{\circ} + \frac{1}{2}$ $\frac{1}{2}[X_1, X_{\circ}] \in \mathfrak{n}$ has $Ad^*_{G}(X_2)\varphi = (0, \ell')$. That is, ℓ' belongs to $Ad^*(G)\varphi \cap \mathfrak{n}^*$. As $Ad^*(G)\varphi \cap \mathfrak{n}^*$ is K-saturated we conclude that the K-saturation of $\tau_{\mathcal{O}}^{-1}((-\xi)|_{\mathfrak{k}_{\mathcal{O}}})$ is contained in $Ad^*(G)\varphi \cap \mathfrak{n}^*$. The contract of the contract of \Box

5. THE ORBIT METHOD WITH GELFAND PAIRS (K, N)

Henceforth we assume that (K, N) is a Gelfand pair. Our goal here is to prove Proposition 1.2 and Theorem 1.4.

As in Section 3.3, given $\pi \in \hat{N}$,

$$
W_{\pi}: K_{\pi} \to U(\mathcal{H}_{\pi})
$$

denotes the canonical unitary representation of K_π intertwining $k \cdot \pi$ with π . The representation W_{π} is necessarily multiplicity free. In fact, (K, N) is a Gelfand pair if and only if W_{π} is a multiplicity free representation of K_{π} for all $\pi \in \widehat{N}$ [Car87, BJR90]. Let \sim

$$
\mathcal{H}_{\pi} = \bigoplus_{\alpha \in \Lambda_{\pi}} P_{\pi,\alpha}
$$

denote the decomposition of \mathcal{H}_{π} into $W_{\pi}(K_{\pi})$ -irreducible subspaces. This decomposition is canonical because W_{π} is multiplicity free. Here Λ_{π} is a countable index set that depends on $\pi \in \widehat{N}$. For concreteness we take

$$
\Lambda_{\pi} = Spec(W_{\pi}) = \{ \alpha \in \widehat{K}_{\pi} : \alpha \text{ occurs in } W_{\pi} \},
$$

so that $W_{\pi}|_{P_{\pi,\alpha}} = \alpha \in \widehat{K}_{\pi}$.

Let $\rho = \rho_{\pi,\sigma} \in \widehat{G}$ have Mackey parameters $\pi \in \widehat{N}$, $\sigma \in \widehat{K}_{\pi}$. By Frobenius reciprocity

 $mult(1_K, \rho|_K) = mult(1_K, Ind_{K_{\pi}}^K \sigma \otimes W_{\pi}) = mult(1_{K_{\pi}}, \sigma \otimes W_{\pi}) = mult(\sigma^*, W_{\pi}).$

Thus ρ is a K-spherical representation if and only if the representation σ^* , contragredient to σ , occurs in W_{π} . Hence

(5.2)
$$
\widehat{G}_K = \{ \rho_{\pi,\alpha^*} : \pi \in \widehat{N}, \ \alpha \in \Lambda_\pi \}.
$$

Lemma 5.1. Let $\pi \in \widehat{N}$ and $\alpha \in \Lambda_{\pi}$, so that $\rho = \rho_{\pi,\alpha^*}$ belongs to \widehat{G}_K . Then

$$
\mathcal{O}(\rho) \cap \mathfrak{n}^* = K \cdot \tau_{\pi}^{-1}(\mathcal{O}^{K_{\pi}}(\alpha)),
$$

where τ_{π} denotes the moment map $\tau_{\mathcal{O}^N(\pi)} : \mathcal{O}^N(\pi) \to \mathfrak{k}_{\pi}^*$. In particular, $\mathcal{O}(\rho) \cap \mathfrak{n}^* \neq \emptyset$ if and only if $\mathcal{O}^{K_{\pi}}(\alpha) \subset Image(\tau_{\pi}).$

Proof. Choose a point $\xi \in \mathcal{O}^{K_{\pi}}(\alpha)$. Then $-\xi \in \mathcal{O}^{K_{\pi}}(\alpha^*)$ and ρ has coadjoint orbit $\mathcal{O}(\rho) = Ad^*(G)(-\xi,\ell_\pi)$. Proposition 4.4 shows $\mathcal{O}(\rho) \cap \mathfrak{n}^* = K \cdot \tau_\pi^{-1}(\xi|\mathfrak{e}_\pi)$ and the result now follows by K_{π} -equivariance of τ_{π} .

Recall that Proposition 1.2 asserts that $\mathcal{O}(\rho) \cap \mathfrak{n}^* \neq \emptyset$ for all $\rho \in \widehat{G}_K$. Our proof, given below in Section 5.2, involves reduction to cases where N is a Heisenberg group.

5.1. Gelfand pairs (K, H_V) . Let V be a finite dimensional *complex* vector space and $\langle \cdot, \cdot \rangle$ be a positive definite Hermitian inner product on V. The associated Heisenberg group H_V has Lie algebra

 $\mathfrak{h}_V = V \oplus \mathbb{R}$ with Lie bracket $[(v, t), (v', t')] = (0, -Im\langle v, v'\rangle).$

The unitary group $U(V)$ for $(V,\langle\cdot,\cdot\rangle)$ acts on H_V via automorphisms as

$$
k \cdot (v, t) = (kv, t).
$$

Let K be a closed Lie subgroup of $U(V)$. We know that (K, H_V) is a Gelfand pair if and only if the representation of K on the ring $\mathbb{C}[V]$ of (holomorphic) polynomials, given by

(5.3)
$$
(k \cdot p)(v) = p(k^{-1}v),
$$

is multiplicity free [BJR90]. Gelfand pairs of the sort (K, H_V) have been completely classified [Kac80, Bri85, BR96, Lea98].

Lemma 5.2. Proposition 1.2 holds for Gelfand pairs (K, H_V) .

Proof. Let (K, H_V) be a Gelfand pair as above. In view of Lemma 5.1 it suffices to check that $\mathcal{O}^{K_{\pi}}(\alpha) \subset Image(\tau_{\pi})$ for all $\pi \in \widehat{H}_V$, $\alpha \in \Lambda_{\pi}$. Letting $\mathcal{O} = \mathcal{O}^{H_V}(\pi)$ we will write

$$
``\Lambda_{\pi} \subset Image(\tau_{\mathcal{O}})"
$$

as shorthand for the statement

$$
\mathcal{O}^{K_{\pi}}(\alpha) \subset Image(\tau_{\mathcal{O}})
$$
 for all $\alpha \in \Lambda_{\pi}$.

The coadjoint orbits in \mathfrak{h}_V^* are of two sorts. We will describe the moment map $\tau_{\mathcal{O}}$ for each type of orbit and verify that $\Lambda_{\pi} \subset Image(\tau_{\mathcal{O}})$ in each case.

For $(v, t) \in \mathfrak{h}_V$ let $\ell_{(v,t)} \in \mathfrak{h}_V^*$ denote the functional

$$
\ell_{(v,t)}(v',t') = Im\langle v,v'\rangle + tt'.
$$

One has easily that

$$
k \cdot \ell_{(v,t)} = \ell_{(kv,t)}
$$
 for $k \in U(V)$.

Single Point Orbits: We have single point coadjoint orbits

$$
\mathcal{O}=\{\ell_{(v_\circ,0)}\}
$$

for $v_0 \in V$. In this case $K_{\mathcal{O}} = \{k \in K : kv_0 = v_0\}$ is the stabilizer of v_0 and $\tau_{\mathcal{O}}: \mathcal{O} \to \mathfrak{k}_{\mathcal{O}}^*$ is the zero map $(\ell_{(v_0,0)} \mapsto 0)$. The representation $\pi \in \widehat{H}_V$ associated to $\mathcal O$ is the one dimensional representation

$$
\pi(v,t) = e^{iIm\langle v_\circ, v \rangle}
$$

and W_{π} is the trivial one dimensional representation $1_{K_{\mathcal{O}}}$ of $K_{\mathcal{O}}$. Thus $\Lambda_{\pi} = \{1_{K_{\mathcal{O}}}\}\.$ Since $\{0\} \subset \mathfrak{k}_{\mathcal{O}}^*$ is the coadjoint orbit that corresponds to $1_{K_{\mathcal{O}}}$, we see that $\Lambda_{\pi} \subset$ $Image(\tau_{\mathcal{O}}).$

Planar Orbits: We have coadjoint orbits of the sort

$$
\mathcal{O} = \{ \ell_{(v,\lambda)} : v \in V \}
$$

for fixed $\lambda \in \mathbb{R}^{\times}$. The stabilizer of \mathcal{O} in K is $K_{\mathcal{O}} = K$. The aligned point in \mathcal{O} is $\ell_{\mathcal{O}} = \ell_{(0,\lambda)}$ and one computes that

$$
Ad^*(v)\ell_{\mathcal{O}} = \ell_{(\lambda v,\lambda)}.
$$

Hence we have

$$
\tau_{\mathcal{O}}(\ell_{(v,\lambda)})(A) = \tau_{\mathcal{O}}\left(Ad^*\left(\frac{1}{\lambda}v\right)\ell_{\mathcal{O}}\right)(A)
$$

$$
= -\frac{1}{2}\ell_{\mathcal{O}}\left(\left[\frac{1}{\lambda}v, \frac{1}{\lambda}Av\right]\right)
$$

$$
= -\frac{1}{2\lambda^2}\ell_{(0,\lambda)}(0, -Im\langle v, Av\rangle)
$$

$$
= \frac{1}{2\lambda}Im\langle v, Av\rangle
$$

for $A \in \mathfrak{k}$. Thus letting $\eta : V \to \mathfrak{k}^*$ be the map

$$
\eta(v)(A) = Im\langle v, Av \rangle,
$$

we have that

(5.4)
$$
\tau_{\mathcal{O}}(\ell_{(v,\lambda)}) = \frac{1}{2\lambda}\eta(v).
$$

The map η is the (unnormalized) moment map for the action of K on V. Equation 5.4 shows that

$$
\tau_{\mathcal{O}}(\mathcal{O}) = \begin{cases} \eta(V) & \text{for } \lambda > 0 \\ -\eta(V) & \text{for } \lambda < 0 \end{cases}.
$$

The representation $\pi \in \widehat{H}_V$ that corresponds to $\mathcal O$ is infinite dimensional. When $\lambda > 0$ we can realize π in a Fock space that contains $\mathbb{C}[V]$ as a dense subspace. The intertwining representation W_{π} is given by Equation 5.3. Thus Λ_{π} is the spectrum of C[V]. Proposition 4.1 in [BJLR97] asserts that $\Lambda_{\pi} \subset \eta(V)$. When $\lambda < 0$ we can realize π on the conjugate Fock space and W_{π} is contragredient to the representation given by Equation 5.3. In this case, Λ_{π} is the set of representations contragredient to those in the spectrum of $\mathbb{C}[V]$. These correspond to coadjoint orbits contained in $-\eta(V)$. Thus we see that $\Lambda_{\pi} \subset Image(\tau_{\mathcal{O}})$ holds in all cases. \Box

5.2. Proof of Proposition 1.2. We can now complete the proof of Proposition 1.2. Let $\rho \in \widehat{G}_K$ and $\mathcal{O}(\rho) = Ad^*(G)\varphi$, where $\varphi \in \mathfrak{g}^*$ and $\ell = \varphi|_{\mathfrak{n}}$ is aligned, as usual.

Let $\pi \in \widehat{N}$ be the representation corresponding to $Ad^*(N)\ell \subset \mathfrak{n}^*$. This representation factors through

$$
N_{\pi} = N/Z_{\pi}
$$

where $Z_{\pi} = \exp(\text{Ker}(\ell|_{\mathfrak{z}}))$. The action of K_{π} preserves Z_{π} and hence descends to N_{π} . One has (see [BJR99]):

- (K_{π}, N_{π}) is a Gelfand pair.
- $\varphi' = \varphi|_{\mathfrak{k}_{\pi} + \mathfrak{n}_{\pi}}$ is a spherical point. That is, the coadjoint orbit $Ad^*(K_{\pi}N_{\pi})\varphi'$ corresponds to a K_{π} -spherical representation of $K_{\pi}N_{\pi}$.

Now N_{π} is either a Heisenberg group, an abelian group or a product of a Heisenberg group with an abelian group. In the latter case, the action of K_{π} preserves the two factors. Lemma 5.2 now implies that

$$
Ad^*(K_{\pi}N_{\pi})\varphi'\cap \mathfrak{n}_{\pi}^*\neq\emptyset.
$$

In particular, for some $X_{\circ} \in \mathfrak{n}$ we have

$$
Ad^*_G(X_\circ)\varphi|_{k_\pi}=0.
$$

Applying Lemma 3.8, as in the proof for Proposition 4.4, it follows that $\mathcal{O}(\rho) \cap \mathfrak{n}^* \neq \emptyset$ as claimed. \Box

5.3. The map $\Psi : \Delta(K, N) \to \mathcal{A}(K, N)$. Proposition 1.2 and Theorem 1.1 show that each K-spherical representation $\rho \in \widehat{G}_K$ yields a K-orbit

$$
\mathcal{K}(\rho) = \mathcal{O}(\rho) \cap \mathfrak{n}^*
$$

in \mathfrak{n}^* . As in Section 1 we let $\mathcal{A}(K,N) \subset \mathfrak{n}^*/K$ denote the set

$$
\mathcal{A}(K,N) = \{ \mathcal{K}(\rho) \ : \ \rho \in \widehat{G}_K \}
$$

of K-spherical orbits in \mathfrak{n}^* and lift K from \widehat{G}_K to obtain a map Ψ on the space $\Delta(K, N)$ of bounded K-spherical functions. Proposition 5.3 below gives another point of view on this construction.

Equation 5.2 asserts that $\widehat{G}_K = \{\rho_{\pi,\alpha^*} : \pi \in \widehat{N}, \alpha \in \Lambda_{\pi}\}\.$ We let $\phi_{\pi,\alpha}$ denote the K-spherical function associated to $\rho_{\pi,\alpha^*} \in \widehat{G}_K$. This can be written as

(5.5)
$$
\phi_{\pi,\alpha}(x) = \int_K \langle \pi(k \cdot x) v_{\pi,\alpha}, v_{\pi,\alpha} \rangle_{\pi} dk
$$

where $\langle \cdot, \cdot \rangle_{\pi}$ is the Hilbert space structure on $\mathcal{H}_{\pi} =$ $_{\alpha\in\Lambda_{\pi}}$ $P_{\pi,\alpha}$ (see Equation 5.1) and $v_{\pi,\alpha}$ is any unit vector in $P_{\pi,\alpha}$ [BJR90]. The following result in an immediate consequence on Proposition 1.2 and Lemma 5.1.

Proposition 5.3. For any $\pi \in \widehat{N}$, $\alpha \in \Lambda_{\pi}$ one has

$$
\mathcal{O}^{K_{\pi}}(\alpha) \subset Image(\tau_{\pi}: \mathcal{O}^{N}(\pi) \to \mathfrak{k}_{\pi}^{*}).
$$

Moreover $\Psi : \Delta(K, N) \to \mathcal{A}(K, N)$ can be written as

 $\Psi(\phi_{\pi,\alpha}) = K \cdot \ell_{\pi,\alpha}$

where $\ell_{\pi,\alpha}$ is any point in $\mathcal{O}^N(\pi)$ with $\tau_{\pi}(\ell_{\pi,\alpha}) \in \mathcal{O}^{K_{\pi}}(\alpha)$.

Proposition 5.3 allows one to compute $\Psi(\phi_{\pi,\alpha}) \in \mathfrak{n}^*/K$ without recourse to the semidirect product $G = K \times N$. This is useful in connection with the examples treated below.

5.4. Proof of Theorem 1.4. Theorem 1.4 and Corollary 1.6 assert that the maps $\mathcal K$ and Ψ are bijective. Our proof requires the following lemma.

Lemma 5.4. For each $\pi \in \widehat{N}$ the map

$$
\Lambda_{\pi} \to \mathfrak{k}_{\pi}^* / Ad^*(K_{\pi}), \quad \alpha \mapsto \mathcal{O}^{K_{\pi}}(\alpha)
$$

is injective.

Proof. Let $\pi \in \hat{N}$. As (K, N) is a Gelfand pair, so is (K°, N) , by Proposition 2.5 in [BJR99]. It follows that $W_{\pi}|_{K^{\circ}_{\pi}}$ is a multiplicity free representation. Suppose that $\mathcal{O}^{K_{\pi}}(\alpha) = \mathcal{O}^{K_{\pi}}(\alpha')$ for some $\alpha, \alpha' \in \Lambda_{\pi}$. This means that some irreducible representation $\nu \in \widehat{K}_{\pi}^{\circ}$ of the identity component K_{π}° occurs in both $\alpha|_{K_{\pi}^{\circ}}$ and $\alpha'|_{K_{\pi}^{\circ}}$. We conclude that $\alpha = \alpha'$ since $W_{\pi}|_{K^{\alpha}_{\pi}}$ is multiplicity free. We now turn to the proof of Theorem 1.4. Let $\pi, \pi' \in \widehat{N}$, $\alpha \in \Lambda_{\pi}$, $\alpha' \in \Lambda_{\pi'}$ so that

$$
\rho = \rho_{\pi,\alpha^*}, \quad \rho' = \rho_{\pi',(\alpha')^*}
$$

belong to \widehat{G}_K . By Proposition 5.3 there are points

$$
\ell = \ell_{\pi,\alpha} \in \mathcal{O}^N(\pi), \quad \ell' = \ell_{\pi',\alpha'} \in \mathcal{O}^N(\pi')
$$

with

$$
\xi = \tau_{\pi}(\ell) \in \mathcal{O}^{K_{\pi}}(\alpha), \quad \xi' = \tau_{\pi'}(\ell') \in \mathcal{O}^{K_{\pi'}}(\alpha')
$$

and one has

$$
\mathcal{K}(\rho) = K \cdot \ell, \quad \mathcal{K}(\rho') = K \cdot \ell'.
$$

Suppose that $\mathcal{K}(\rho) = \mathcal{K}(\rho')$. This means

$$
\ell'=k_\circ\cdot\ell
$$

for some $k_{\circ} \in K$. Thus also $k_{\circ} \cdot \mathcal{O}^{N}(\pi) = \mathcal{O}^{N}(\pi')$ and hence

$$
\pi' = k_{\circ} \cdot \pi.
$$

Moreover Lemma 4.3 yields

$$
Ad^*(k_{\circ})\xi = Ad^*(k_{\circ})\tau_{\pi}(\ell) = \tau_{\pi'}(k_{\circ} \cdot \ell) = \tau_{\pi'}(\ell') = \xi'
$$

which implies

$$
\mathcal{O}^{K_{\pi'}}(\alpha')=Ad^*(k_{\circ})\mathcal{O}^{K_{\pi}}(\alpha)=\mathcal{O}^{K_{\pi'}}(k_{\circ}\cdot\alpha),
$$

using Equation 4.1. This gives

$$
\alpha' = k_{\circ} \cdot \alpha
$$

in view of Lemma 5.4. Equations 5.6 and 5.7 imply that ρ and ρ' are unitarily equivalent, as their Mackey parameters differ by the action of K .

Remark 5.5. Recall that the orbit map $\mathcal{O}: \widehat{G} \to \mathfrak{g}^*/Ad^*(G)$ for a semidirect product $G = K \ltimes N$ can fail to be injective. Theorem 1.4 implies, however, that when (K, N) is a Gelfand pair, $\rho \mapsto \mathcal{O}(\rho)$ is one-to-one on \widehat{G}_K , the K-spherical representations.

5.5. Eigenvalues for invariant differential operators. A basic result concerning spherical functions and invariant differential operators will be needed in connection with the examples. Recall that $\mathbb{D}_K(N)$ denotes the set of differential operators on N that are invariant under both the action of K and left multiplication. The spherical functions are eigenfunctions for such operators. Given $D \in \mathbb{D}_K(N)$ and $\phi \in \Delta(K, N)$, we write $\widehat{D}(\phi)$ for the eigenvalue of D acting on ϕ , so that:

$$
D\phi = \widehat{D}(\phi)\phi.
$$

Since the spherical functions are normalized to have value 1 at the identity element $e \in N$, we have

$$
\widehat{D}(\phi) = D\phi(e).
$$

For $D \in \mathbb{D}_K(N)$ and $\pi \in \widehat{N}$, the operator $\pi(D)$ commutes with the action of K_{π} on \mathcal{H}_{π} and hence preserves the subspaces $P_{\pi,\alpha}$ in Decomposition 5.1. Schur's Lemma shows, moreover, that $\pi(D)|_{P_{\pi,\alpha}}$ must be a scalar operator. From Equation 5.5 we see that

$$
\widehat{D}(\phi_{\pi,\alpha}) = D\phi_{\pi,\alpha}(e) = \langle \pi(D)v_{\pi,\alpha}, v_{\pi,\alpha} \rangle_{\pi}
$$

and conclude that:

Lemma 5.6. $\pi(D)|_{P_{\pi,\alpha}} = \widehat{D}(\phi_{\pi,\alpha}).$

6. The case of N abelian

Here we consider the map $\Psi : \Delta(K, N) \to \mathcal{A}(K, N)$ in the "degenerate" situation where the 2-step group N is in fact abelian. The entire group algebra $L^1(N)$ is now commutative and hence (K, N) is a Gelfand pair for any compact Lie group $K \subset Aut(N)$. One calls $G = K \ltimes N$ a generalized Euclidean motion group. A detailed study of the associated spherical functions can be found in [Wol06].

The unitary dual \widehat{N} consists of characters

$$
\widehat{N} = \{ \chi_{\ell} \ : \ \ell \in \mathfrak{n}^* \}, \quad \chi_{\ell}(x) = e^{i\ell(x)}.
$$

The space \widehat{N} is homeomorphic to \mathfrak{n}^* via $\chi_{\ell} \leftrightarrow \ell$. One has

$$
\Lambda_{\chi_{\ell}} = \{1_{K_{\ell}}\}
$$

because the intertwining representation $W_{\chi_{\ell}}$ is trivial. We write $\phi_{\ell} = \phi_{\chi_{\ell},1_{K_{\ell}}}$ so that

$$
\Delta(K, N) = \{ \phi_{\ell} : \ell \in \mathfrak{n}^* \}.
$$

Equation 5.5 here reduces to

$$
\phi_{\ell}(x) = \int_K \chi_{\ell}(k \cdot x) \, dk = \int_K e^{i\ell(k \cdot x)} \, dk,
$$

the K-average of χ_{ℓ} . Note that $\phi_{\ell} = \phi_{\ell'}$ if and only if $K \cdot \ell = K \cdot \ell'$. In fact $\Delta(K, N)$ is homeomorphic to \widehat{N}/K via $\phi_{\ell} \leftrightarrow K \cdot \chi_{\ell}$.

Proposition 6.1. Let N be abelian and K be a compact Lie group acting smoothly on N by automorphisms. In this context the map Ψ is simply

$$
\Psi: \Delta(K, N) \to \mathfrak{n}^*/K, \quad \Psi(\phi_\ell) = K \cdot \ell.
$$

This is, moreover, a homeomorphism onto its image $\mathcal{A}(K,N) = \mathfrak{n}^*/K$

Proof. Fix $\ell \in \mathfrak{n}^*$. The Kirillov orbit for the representation χ_{ℓ} is

$$
\mathcal{O}=\mathcal{O}^N(\chi_{\ell})=\{\ell\},
$$

a single point. Now $\ell \in \mathcal{O}$ is aligned because $\mathfrak{w}_{\mathcal{O}} = 0$ in Equation 3.1. The moment map $\tau_{\chi_{\ell}} : \mathcal{O} \to \mathfrak{k}_{\ell}^*$ sends ℓ to 0 since $\ell[\cdot, \cdot] = 0$ in Definition 4.1. Thus Proposition 5.3 yields

$$
\Psi(\phi_{\ell}) = \Psi(\phi_{\chi_{\ell},1_{K_{\ell}}}) = K \cdot \ell
$$

as claimed. Identifying $\Delta(K, N)$ with \widehat{N}/K we see that Ψ is the mapping on K-orbits induced by

$$
\widehat{N} \to \mathfrak{n}^*, \quad \chi_{\ell} \mapsto \ell.
$$

As the latter is a homeomorphism, so is Ψ .

7. THE GELFAND PAIR $(U(V), H_V)$

The bounded spherical functions for $(U(V), H_V)$ have been computed independently by various authors. (See for example [HR80], [Kor80], [Far87], [Ste88], [Str91], [BJR92].) These spherical functions are of two distinct types, corresponding to the single point and planar coadjoint orbits discussed in Section 5.1.

Type 1 spherical functions: These are associated to the planar coadjoint orbits in \mathfrak{h}_V . For each $\lambda \in \mathbb{R}^\times$ and $m \in \mathbb{Z}^+ = \{0, 1, 2, \dots\}$ we have the $U(V)$ -spherical function

$$
\phi_{\lambda,m}(v,t) = L_m^{(n-1)}\left(\frac{|\lambda||v|^2}{2}\right)e^{-|\lambda||v|^2/4}e^{i\lambda t}
$$

where $L_m^{(n-1)}(x)$ denotes the Laguerre polynomial of order $n-1$ and degree m normalized to have value 1 at $x = 0$. This spherical function arises from the infinite dimensional representation $\pi = \pi_{\lambda}$ of H_V with central character $(0, t) \mapsto e^{i\lambda t}$. The associated coadjoint orbit is $\mathcal{O} = \mathcal{O}_{\lambda} = \{ \ell_{(v,\lambda)} : v \in V \}$, with notation as in Section 5.1. For $\lambda > 0$ we realize W_π as the standard representation of $U(V)$ on $\mathbb{C}[V]$ (see Equation 5.3). For $\lambda < 0$, we have the conjugate of this representation. The space $\mathbb{C}[V]$ decomposes under the action of $U(V)$ as

$$
\mathbb{C}[V] = \sum_{m=0}^{\infty} \mathcal{P}_m(V)
$$

where $\mathcal{P}_m(V)$ denotes the space of homogeneous polynomials of degree m. In terms of the notation used in the preceding section, we have $\phi_{\lambda,m} = \phi_{\pi_\lambda,\alpha_m}$ where α_m is the representation of $U(V)$ on $\mathcal{P}_m(V)$.

One can use an orthonormal basis to identify V with \mathbb{C}^n and $U(V)$ with the group $U(n)$ of $n \times n$ unitary matrices. The standard maximal torus in $U(n)$ has Lie algebra

$$
\mathfrak{t} = \left\{ A_{\theta} = \begin{bmatrix} i\theta_1 & & \\ & \ddots & \\ & & i\theta_n \end{bmatrix} \; : \; \theta_1, \ldots, \theta_n \in \mathbb{R} \right\}.
$$

The polynomial $(z_1, \ldots, z_n) \mapsto z_1^m$ on $V = \mathbb{C}^n$ is a highest weight vector in $\mathcal{P}_m(V)$ with highest weight $A_{\theta} \mapsto -im\theta_1$. Using Equation 5.4 we compute that for

$$
v = \left(\sqrt{2|\lambda|m}, 0, ..., 0\right) \in V \text{ one has}
$$

$$
\tau_{\mathcal{O}}\left(\ell_{(v,\lambda)}\right)(A_{\theta}) = \frac{1}{2\lambda}\eta(v)(A_{\theta}) = \frac{1}{2\lambda}Im\langle v, A_{\theta}v\rangle = \frac{\left(\sqrt{2|\lambda|m}\right)^2}{2\lambda}(-\theta_1)
$$

$$
= \begin{cases} -m\theta_1 & \text{for } \lambda > 0 \\ m\theta_1 & \text{for } \lambda < 0 \end{cases}.
$$

Using Proposition 5.3, we conclude that the $U(V)$ -spherical orbit $\Psi(\phi_{\lambda,m})$ is

(7.1)
$$
K_{\lambda,m} = U(V) \cdot \ell_{(v,\lambda)} = \left\{ \ell_{(v,\lambda)} : |v| = \sqrt{2|\lambda|m} \right\}.
$$

Type 2 spherical functions: For each real number $r \geq 0$ we have a $U(V)$ -spherical function

$$
\psi_r(v,t) = \int_{U(V)} e^{iRe\langle w_r, kv \rangle} dk = \int_{U(V)} e^{iIm\langle w_r, kv \rangle} dk
$$

where $w_r \in V$ is any vector with $|w_r| = r$. More explicitly we have

$$
\psi_r(v,t) = \frac{2^{n-1}(n-1)!}{(r|v|)^{n-1}} J_{n-1}(r|v|)
$$

for $r > 0$ and $\psi_0(v, t) \equiv 1$. Here J_{n-1} is the Bessel function (of the first kind) with order $n-1$. The function ψ_r is the $U(V)$ -average of the unitary character $\pi(v,t) = \chi_{w_r}(v) = e^{iIm\langle w_r,v\rangle}$. In terms of the notation from Section 5.3, we have $\psi_r = \phi_{\pi,1}$ where 1 is the trivial one-dimensional representation of $K_\pi = K_{w_r}$. As π is associated to the single point coadjoint orbit $\mathcal{O} = \{\ell_{(w_r,0)}\}\,$, we see that the $U(V)$ -spherical orbit $\Psi(\psi_r)$ is

(7.2)
$$
K_r = U(V) \cdot \ell_{(w_r,0)} = \{\ell_{(v,0)} : |v| = r\}.
$$

In summary, we have shown that

- $\mathcal{A}(U(V), H_V) = \{K_{\lambda,m} : \lambda \in \mathbb{R}^\times, m \in \mathbb{Z}^+\} \cup \{K_r : r \geq 0\}$ where $K_{\lambda,m}$ and K_r are as in Equations 7.1 and 7.2, and
- the map $\Psi : \Delta(U(V), H_V) \to \mathcal{A}(U(V), H_V)$ is given by $\Psi(\phi_{\lambda,m}) = K_{\lambda,m}$ and $\Psi(\psi_r) = K_r.$

We can now establish Conjecture 1.7 for the Gelfand pair $(U(V), H_V)$.

Proposition 7.1. The map $\Psi : \Delta(U(V), H_V) \to \mathcal{A}(U(V), H_V)$ is a homeomorphism.

Proof. From our description of the spherical orbits $K_{\lambda,m}$ and K_r we see that the map $F: \mathcal{A}(U(V), H_V) \to \mathbb{R}^+ \times \mathbb{R}$ defined by

$$
F(K_{\lambda,m}) = \left(\sqrt{2|\lambda|m}, \lambda\right), \quad F(K_r) = (r, 0)
$$

is a homeomorphism onto its image. On the other hand, the "Heisenberg fan" model for $\Delta(U(V), H_V)$ ([Far87],[Str91],[BJRW96]) asserts that the map $E : \Delta(U(V), H_V) \rightarrow$ $\mathbb{R}^+ \times \mathbb{R}$ given by

$$
E(\phi_{\lambda,m}) = (|\lambda|(2m+n), \lambda), \quad E(\psi_r) = (r^2, 0)
$$

is also a homeomorphism onto its image. The result now follows since $F \circ \Psi$ and E differ by the homeomorphism

$$
\mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}^+ \times \mathbb{R}, \quad (r, \lambda) \mapsto (r^2 + n|\lambda|, \lambda).
$$

We recall that the map E in the Heisenberg fan construction is

$$
E(\phi) = (\hat{L}(\phi), \hat{T}(\phi))
$$

where $T = \frac{\partial}{\partial t}$ and $\mathcal L$ is the Heisenberg sub-Laplacian. A key point is that $\pi_\lambda(\mathcal L)$ is the quantum harmonic oscillator which acts on $\mathcal{P}_m(V) \subset \mathbb{C}[V]$ via the scalar $-\frac{\lambda}{2m+n}$. From Lemma 5.6 we see that $\hat{\mathcal{L}}(\phi_{\lambda,m}) = -\frac{\lambda}{2m+n}$.

8. Spherical functions on the free 2-step group

Let $V \cong \mathbb{R}^d$ be a d-dimensional real vector space. The free 2-step group F_V has Lie algebra

$$
\mathfrak{f}_V = V \oplus \mathfrak{z} = V \oplus \Lambda^2(V)
$$
 with Lie bracket $[(u, A), (v, B)] = (0, u \wedge v)$.

This construction is degenerate when $d = 1$ and yields a Heisenberg group when $d = 2$. Thus we take $d \geq 3$ below. Choose any positive definite inner product (\cdot, \cdot) on V and identify $\Lambda^2(V)$ with $so(V) = \{A \in gl(V) : A^t = -A\}$ so that $u \wedge v$ corresponds to the map

$$
w \mapsto (u, w)v - (v, w)u.
$$

Here A^t denotes the transpose of $A \in gl(V)$ with respect to (\cdot, \cdot) . The group $O(V)$ acts on $N = F_V$ by automorphisms via

$$
k \cdot (v, A) = (kv, kAk^t),
$$

yielding a maximal compact subgroup in $Aut(F_V)$.

It is shown in [BJR90] that $(O(V), F_V)$, and in fact $(SO(V), F_V)$, is a Gelfand pair, but that (K, F_V) fails to be a Gelfand pair for proper closed subgroups K of $SO(V)$. Our goal is the following result, which will be proved in Section 11.

Theorem 8.1. The map $\Psi : \Delta(O(V), F_V) \to \mathcal{A}(O(V), F_V)$ is a homeomorphism.

Likewise Conjecture 1.7 holds for $(SO(V), F_V)$:

Corollary 8.2. The map $\Psi : \Delta(SO(V), F_V) \to \mathcal{A}(SO(V), F_V)$ is a homeomorphism.

We will not present the proof details for Corollary 8.2 here. The spaces $\Delta(O(V), F_V)$ and $\Delta(SO(V), F_V)$ are, in any case, closely related. Detailed parameterizations for both spaces were obtained by Fischer in [Fis06]. Corollary 8.2 can be derived from Theorem 8.1 by reasoning with these parameters. We prefer to work primarily with $O(V)$ as this simplifies some aspects of our presentation.

The inner product on V extends to a positive definite $O(V)$ -invariant inner product on all of \mathfrak{f}_V via

(8.1)
$$
\left((u, A), (v, B) \right) = (u, v) + \frac{1}{2} tr(A^t B) = (u, v) - \frac{1}{2} tr(AB).
$$

For $u, v \in V$ and $B \in so(V)$ one has

(8.2)
$$
\left(B, [u, v]\right) = (Bu, v).
$$

From this one sees that

$$
((b, B), Ad(a, A)(u, U)) = ((b + Ba, B), (u, U)),
$$

and thus we can also write

$$
Ad^*(a, A)(b, B) = (b - Ba, B),
$$

where here we are using the inner product (8.1) to identify f_V^* with f_V . The coadjoint orbit $\mathcal{O} = Ad^*(F_V)(b, B)$ through $(b, B) \in \mathfrak{f}_V^*$ is thus

$$
\mathcal{O} = \{ (b + Bu, B) : u \in V \} = (b, B) + Image(B).
$$

By $Image(B)$ we mean the image as a map from V to V. Using Equation 8.2 one sees that

$$
\mathfrak{a}_{\mathcal{O}} = Ker(B) \text{ and } \mathfrak{w}_{\mathcal{O}} = \mathfrak{a}_{\mathcal{O}}^{\perp} \cap V = Image(B),
$$

with notation as in Section 3. The point (b, B) is aligned if and only if $Bb = 0$. In this case the stabilizer $K_{\mathcal{O}}$ of \mathcal{O} in $O(V)$ is, by Lemma 3.4,

$$
K_{\mathcal{O}} = \{ k \in O(V) : kb = b, kBk^t = B \}.
$$

We continue to suppose that $(b, B) \in \mathfrak{f}_V^* \cong \mathfrak{f}_V$ is aligned and that $\mathcal{O} = Ad^*(F_V)(b, B)$. The eigenvalues for $B \in so(V)$ are of the form $\pm i\lambda$ $(\lambda > 0)$ and perhaps 0. The symmetric operator B^2 has eigenvalues $-\lambda^2$. Let V_λ denote the $(-\lambda^2)$ -eigenspace for B^2 , so that

(8.3)
$$
V = \sum_{\lambda \geq 0} V_{\lambda}, \quad \mathfrak{a}_{\mathcal{O}} = V_0, \quad \mathfrak{w}_{\mathcal{O}} = \sum_{\lambda > 0} V_{\lambda}.
$$

These are orthogonal direct sums. Letting

(8.4)
$$
m(\lambda) = \begin{cases} \dim(V_0) & \text{for } \lambda = 0\\ \dim(V_\lambda)/2 & \text{for } \lambda > 0 \end{cases}
$$

24 C. BENSON AND G. RATCLIFF

we see that

$$
K_{\mathcal{O}} = O(b^{\perp} \cap V_0) \times \prod_{\lambda > 0} U(V_{\lambda}) \cong \left\{ \begin{array}{ll} O(m(0)) \times \prod_{\lambda > 0} U(m(\lambda)) & \text{for } b = 0 \\ O(m(0) - 1) \times \prod_{\lambda > 0} U(m(\lambda)) & \text{for } b \neq 0 \end{array} \right.,
$$

where $U(V_\lambda)$ denotes the unitary group for V_λ equipped with a suitable complex Hermitian structure. \overline{a}

The space $\mathbb{C}[\mathfrak{w}_{\mathcal{O}}]$ decomposes under $K_{\mathcal{O}}|_{\mathfrak{w}_{\mathcal{O}}} =$ $_{\lambda>0} U(V_\lambda)$ as

$$
\mathbb{C}[\mathfrak{w}_{\mathcal{O}}] = \bigotimes_{\lambda > 0} \mathbb{C}[V_{\lambda}] = \bigoplus_{\alpha} \left(\bigotimes_{\lambda > 0} \mathcal{P}_{\alpha(\lambda)}(V_{\lambda}) \right),
$$

where $\alpha = (\alpha(\lambda) : \lambda > 0)$ is a set of non-negative integers. We obtain $(K_{\mathcal{O}}|_{\mathfrak{w}_{\mathcal{O}}})$ spherical functions

$$
\phi_{1,\alpha}(w,t) = e^{it} \prod_{\lambda>0} L_{\alpha(\lambda)}^{(m(\lambda)-1)} \left(\frac{|w(\lambda)|^2}{2} \right) e^{-|w(\lambda)|^2/4}
$$

on $H_{\mathfrak{w}_\mathcal{O}}$ where $w =$ $\lambda>0$ $w(\lambda) \in$ $\lambda_{\geq 0} V_{\lambda} = \mathfrak{w}_{\mathcal{O}}$. Each of these spherical functions is associated to the coadjoint orbit through $\ell_1 \in \mathfrak{h}_{\mathfrak{w}_\mathcal{O}}^*$. Pulling $\phi_{1,\alpha}$ up to F_V yields the following:

Proposition 8.3. (See [Str91], [Fis06].) The bounded $O(V)$ -spherical functions on F_V can be described as follows: Given $\pi \in \widehat{F}_V$, there is an aligned point (b, B) in the coadjoint orbit associated with π . The space V decomposes as $V = \sum_{\lambda \geq 0} V_{\lambda}$ with respect to B. The representation space of π decomposes, with respect to K_{π} , as $\alpha_{\alpha}(\bigotimes_{\lambda>0}\mathcal{P}_{\alpha(\lambda)}(V_{\lambda}))$, where $\alpha=(\alpha(\lambda)\;:\;\lambda>0)$ is a set of non-negative integers. The spherical function $\phi_{\pi,\alpha}$ is the $O(V)$ -average of $\frac{1}{\sqrt{2}}$!
}

(8.5)
$$
(a, A) \mapsto e^{i(b,a(0))} e^{i(B,A)} \prod_{\lambda > 0} L_{\alpha(\lambda)}^{(m(\lambda)-1)} \left(\frac{\lambda |a(\lambda)|^2}{2}\right) e^{-\lambda |a(\lambda)|^2/4}
$$

where $a = a(0) + \sum_{\lambda > 0} a(\lambda) \in V_0 +$ $\lambda > 0$ $V_{\lambda} = V$.

We remark that Proposition 8.3 includes cases where $B = 0$. In such cases, $\mathcal{O} = \{(b, O)\}\$ is a single point, $V_0 = V$ has dimension $m(0) = d$, the representation space of π has dimension 1, and the product in Proposition 8.3 is empty. We adopt the convention that the α -parameter in $\{\phi_{\pi,\alpha} : \pi, \alpha\}$ is empty when π is one dimensional. We obtain a single $O(V)$ -spherical function on F_V , namely the $O(V)$ -average of $(a, A) \mapsto e^{i(b,a)}$. This is, more explicitly,

(8.6)
$$
(a, A) \mapsto \frac{2^{(d-2)/2} \Gamma(d/2)}{(r|a|)^{(d-2)/2}} J_{\frac{d-2}{2}}(r|a|)
$$

when $r = |b|$ is non-zero and $(a, A) \mapsto 1$ when $b = 0$.

The derivation of Proposition 8.3 is easily adapted to encompass $SO(V)$ -spherical functions. One obtains an $SO(V)$ -spherical function for each $\alpha = (\alpha(\lambda) : \lambda > 0)$ as

above, namely the $SO(V)$ -average of (8.5). We denote this function by $\phi_{\pi,\alpha}^{\circ}$. Note that although

$$
\Delta(O(V), F_V) = \{ \phi_{\pi,\alpha} : \pi, \alpha \}, \qquad \Delta(SO(V), F_V) = \{ \phi_{\pi,\alpha}^{\circ} : \pi, \alpha \},
$$

one has $\phi_{\pi,\alpha} = \phi_{\pi',\alpha'}$ (resp. $\phi_{\pi,\alpha}^{\circ} = \phi_{\pi',\alpha'}^{\circ}$) whenever (π',α') differs from (π,α) by the action of $O(V)$ (resp. $SO(V)$). Parameterizations for $\Delta(O(V), F_V)$ and $\Delta(SO(V), F_V)$ are given in [Fis06]. The formulation of Proposition 8.3 will, however, suffice for our proof of Theorem 8.1.

9. SOME INVARIANT DIFFERENTIAL OPERATORS ON F_V

One verifies that the following polynomials on $f_V = V \oplus \Lambda^2(V) = V \oplus so(V)$ are invariant under the action of $O(V)$.

• For $j = 1, \ldots, |d/2|$ we define $c_i (a, A) = c_i (A)$ where

$$
\det(I - xA) = 1 + \sum_{j=1}^{\lfloor d/2 \rfloor} c_j(A) x^{2j}.
$$

Here recall that $d = \dim(V)$. The polynomial c_j is homogeneous of degree $2j$ on $\mathfrak{z} = \Lambda^2(V) = so(V)$. Note that the characteristic polynomial for A can be written as $\det(xI - A) = x^n + \sum_j c_j(A)x^{n-2j}$.

• For $\ell \geq 0$ we have polynomials p_{ℓ} defined by

$$
p_{\ell}(a, A) = \left(a, A^{2\ell}a\right).
$$

Note that $p_0(a, A) = |a|^2$, independent of A. From these polynomials, we obtain differential operators

$$
c_j(Z), \ p_\ell(U, Z) \in \mathbb{D}_{O(V)}(F_V)
$$

as follows.

Let $\mathcal{B}_V = \{U_1, \ldots, U_d\}$ be any orthonormal basis for V and set $Z_{ij} = U_i \wedge U_j$ so that $\mathcal{B}_3 = \{Z_{ij} : 1 \leq i < j \leq d\}$ is also an orthonormal basis for $\mathfrak{z} = \Lambda^2(V)$. We express $c_j : f_V \to \mathbb{R}$ and $p_\ell : f_V \to \mathbb{R}$ as polynomial functions in coordinates (u_i, z_{ij}) with respect to the basis $\mathcal{B}_V \cup \mathcal{B}_3$ for f_V . The resulting expressions do not depend on the choice of basis. Indeed, let $\mathcal{B}'_V = \{U'_1, \ldots, U'_d\}$ be another such basis and $\mathcal{B}'_3 = \{Z'_{ij}\}\$ where $Z'_{ij} = U'_i \wedge U'_j$. The coordinates (u'_i, z'_{ij}) with respect to $\mathcal{B}'_V \cup \mathcal{B}'_3$ are related to (u_i, z_{ij}) via $(u', z') = (ku, kuk^t)$ for some $k \in O(d)$. Since the polynomials c_j, p_ℓ are $O(V)$ -invariant, we see that the expressions for c_j and p_ℓ in the two coordinate systems correspond under the change of variables $u_i \mapsto u'_i$, $z_{ij} \mapsto z'_{ij}$.

Since U_j and Z_{ij} are elements of f_V , we can view these as left-invariant vector fields on F_V . The operators $c_i(Z)$ and $p_\ell(U, Z)$ are obtained by replacing the variables u_j and z_{ij} by U_i and Z_{ij} in the expressions for c_j and p_ℓ with respect to the basis $\mathcal{B}_V \cup \mathcal{B}_3$. The preceding paragraph shows these to be well defined. Since the operators U_i are non-central, there is, however, an issue regarding the ordering of variables u_i within

monomials in the expression for p_ℓ . We specify an ordering as follows. Let $a \in V$ have coordinates (a_i) with respect to \mathcal{B}_V and let $A \in \mathfrak{z}$. Using the basis \mathcal{B}_V , A can be regarded as a $d \times d$ skew-symmetric matrix $(A_{ij} = (U_i, A(U_j)))$. Let \overline{f}

$$
A^{2\ell} = (q_{ij}^{2\ell}(A))_{ij}.
$$

That is, $q_{ij}^{2\ell}(A)$ is the (i, j) 'th entry of the $d \times d$ symmetric matrix $A^{2\ell}$. The polynomial $q_{ij}^{2\ell} : \mathfrak{z} \to \mathbb{R}$ is homogeneous of degree 2ℓ and we have

$$
p_{\ell}(a, A) = \sum_{i,j} a_i q_{ij}^{2\ell}(A) a_j.
$$

We define the operator $p_{\ell}(U, Z)$ unambiguously as

(9.1)
$$
p_{\ell}(U, Z) = \sum_{i,j} U_i q_{ij}^{2\ell}(Z) U_j = \sum_{i,j} U_i U_j q_{ij}^{2\ell}(Z),
$$

where " $q_{ij}^{2\ell}(Z)$ " denotes the central operator obtained by replacing z_{ij} by Z_{ij} in the expression for $q_{ij}^{2\ell} : \mathfrak{z} \to \mathbb{R}$ in the basis $\mathcal{B}_{\mathfrak{z}}$.

The following result describes the eigenvalues that arise when $c_i(Z)$ and $p_{\ell}(U, Z)$ are applied to bounded $O(V)$ -spherical functions on F_V .

Lemma 9.1. Let (b, B) be an aligned point in \mathfrak{f}_V^* , $\pi \in \widehat{F_V}$ be the representation that corresponds to the coadjoint orbit through (b, B) , $V = \sum_{\lambda \geq 0} V_{\lambda}$ be the eigenspace decomposition of V from Equation 8.3, and $m(\lambda)$ be as in Equation 8.4. Let $\alpha =$ $(\alpha(\lambda) : \lambda > 0)$ be a set of non-negative integers and $\phi_{\pi,\alpha} \in \Delta(O(V), F_V)$ be the spherical function from Proposition 8.3. We have the following expressions for the eigenvalues of invariant differential operators:

(a)
$$
c_j(Z)^\wedge(\phi_{\pi,\alpha}) = (-1)^j c_j(B)
$$
.
\n(b) $p_0(U,Z)^\wedge(\phi_{\pi,\alpha}) = -\sum_{\lambda>0} \lambda(2\alpha(\lambda) + m(\lambda)) - |b|^2$.
\n(c) $p_\ell(U,Z)^\wedge(\phi_{\pi,\alpha}) = -\sum_{\lambda>0} \lambda^{2\ell+1}(2\alpha(\lambda) + m(\lambda))$ for $\ell > 0$.

Proof. The representation π has central character $\pi(0, A) = e^{i(B,A)}$. So for $Z \in \mathfrak{z}$ we have the scalar operator \overline{a}

$$
\pi(Z) = \frac{d}{dt}\bigg|_{t=0} e^{i(B, tZ)} = i(B, Z).
$$

Thus $\pi(Z_{ij}) = iB_{ij}$ and if f is any polynomial on z then

$$
\pi(f(Z)) = f(iB).
$$

Using this fact together with Lemma 5.6 gives

$$
c_j(Z)^{\wedge}(\phi_{\pi,\alpha}) = c_j(iB) = i^{2j}c_j(B) = (-1)^j c_j(B),
$$

independent of α . This proves (a).

We choose an orthonormal basis $\mathcal{B}_V = \{U_1, \ldots, U_d\}$ for V that is compatible with the eigenspace decomposition $V = \sum_{\lambda \geq 0} V_{\lambda}$. That is, each U_i belongs to some V_{λ} . This is possible since the eigenspaces for $B²$ are mutually orthogonal. The operator $p_0(U, Z)$ is

$$
p_0(U, Z) = U_1^2 + \dots + U_d^2,
$$

the sub-Laplacian for F_V . We write this as

$$
p_0(U, Z) = \sum_{\lambda \ge 0} \mathcal{L}_{\lambda}
$$
 where $\mathcal{L}_{\lambda} = \sum_{\{i : U_i \in V_{\lambda}\}} U_i^2$.

As explained in Section 8, π can be realized in a Hilbert space completion of As explained in Section 8, π can be realized in a Hilbert space completion of $\mathbb{C}[\mathfrak{w}_{\mathcal{O}}] = \bigotimes_{\lambda > 0} \mathbb{C}[V_{\lambda}]$ and $\phi_{\pi,\alpha}$ is associated with the subspace $P_{\alpha} = \bigotimes_{\lambda > 0} \mathcal{P}_{\alpha(\lambda)}(V_{\lambda})$. (When $B = 0$, we just have $\mathbb{C}[\mathfrak{w}_{\mathcal{O}}] = \mathbb{C}$.) For $\lambda > 0$, $\pi(\mathcal{L}_{\lambda})$ acts on $\mathcal{P}_{\alpha(\lambda)}(V_{\lambda})$ via the scalar

$$
-\lambda(2\alpha(\lambda)+m(\lambda))
$$

and annihilates $\mathcal{P}_{\alpha(\lambda)}(V_{\lambda})$ for $\lambda' \neq \lambda$. Thus $\pi(\mathcal{L}_{\lambda})$ acts on P_{α} as the scalar $-\lambda(2\alpha(\lambda) + m(\lambda))$. For $a \in V_0$, $\pi(a)$ acts on all of $\mathbb{C}[\mathfrak{w}_0]$ via the scalar $e^{i(b,a)}$. As (b, B) is aligned, $b \in V_0 = \mathfrak{a}_{\mathcal{O}}$ and we see that $\pi(\mathcal{L}_0)$ acts by $-|b|^2$. We conclude As (v, B) is angled, $v \in V_0 = \mathfrak{a}_{\mathcal{O}}$ and we see that $\pi(\mathcal{L}_0)$
that $\pi(p_0(U, Z)) = \sum_{\lambda \geq 0} \pi(\mathcal{L}_{\lambda})$ acts on P_{α} by the scalar

$$
-\sum_{\lambda>0}\lambda(2\alpha(\lambda)+m(\lambda))-|b|^2.
$$

In view of Lemma 5.6, this proves (b).

Next recall that for $\ell \geq 1$, p_{ℓ} is defined by $p_{\ell}(U, Z) = \sum_{i,j} U_i U_j q_{ij}^{2\ell}(Z)$, as in Equation 9.1. From Equation 9.2 we have

$$
\pi(q_{ij}^{2\ell}(Z)) = q_{ij}^{2\ell}(iB) = (-1)^{\ell} q_{ij}^{2\ell}(B).
$$

But $B^2|_{V_\lambda} = -\lambda^2$ and hence $q_{ij}^{2\ell}(B) = (-\lambda^2)^{\ell}$ for $i = j$ with $U_i \in V_\lambda$ and $q_{ij}^{2\ell}(B) = 0$ for $i \neq j$. Thus we have

$$
\pi(p_{\ell}(U,Z)) = \sum_{\lambda \geq 0} \lambda^{2\ell} \pi(\mathcal{L}_{\lambda}) = \sum_{\lambda > 0} \lambda^{2\ell} \pi(\mathcal{L}_{\lambda}).
$$

Since $\pi(\mathcal{L}_{\lambda})$ acts on P_{α} as $-\lambda(2\alpha(\lambda) + m(\lambda))$. we conclude that $\pi(p_{\ell}(U, Z))$ acts on P_{α} as $\overline{}$

$$
-\sum_{\lambda>0}\lambda^{2\ell+1}(2\alpha(\lambda)+m(\lambda)).
$$

Again using Lemma 5.6, this proves (c). \Box

10. CONVERGENCE IN THE SPACE $\Delta(O(V), F_V)$

Theorem 10.1. Let $\phi \in \Delta(O(V), F_V)$ and $(\phi_n)_{n=1}^{\infty}$ be a sequence in $\Delta(O(V), F_V)$. Then $(\phi_n)_{n=1}^{\infty}$ converges to ϕ in the space $\Delta(O(V), F_V)$ if and only if

$$
\lim_{n \to \infty} c_j(Z)^{\wedge}(\phi_n) = c_j(Z)^{\wedge}(\phi) \quad \text{and} \quad \lim_{n \to \infty} p_\ell(U, Z)^{\wedge}(\phi_n) = p_\ell(U, Z)^{\wedge}(\phi)
$$

for $j = 1, ..., \lfloor d/2 \rfloor$ and $\ell = 0, ..., \lfloor d/2 \rfloor$.

Proof. Convergence in $\Delta(O(V), F_V)$ is uniform convergence on compact sets. If (ϕ_n) converges to ϕ in $\Delta(O(V), F_V)$ then it follows that

$$
(D\phi_n)(0,0) \to (D\phi)(0,0)
$$

so that

$$
\widehat{D}(\phi_n) \to \widehat{D}(\phi)
$$

for all $D \in \mathbb{D}_{O(V)}(F_V)$. It remains to prove the converse.

Let $\phi_n = \phi_{\pi_n,\alpha_n}$ where $\pi_n \in \widehat{F}_V$ is given by the aligned point $(b_n, B_n) \in \mathfrak{f}_V^* \cong \mathfrak{f}_V$. Similarly, let $\phi = \phi_{\pi,\alpha}$ where π is given by the aligned point (b, B) . We have

$$
c_j(Z)^\wedge(\phi_n) \to c_j(Z)^\wedge(\phi),
$$

so in view of Lemma $9.1(a)$,

$$
(-1)^{j}c_j(B_n) \to (-1)^{j}c_j(B).
$$

Since the values $c_i(B_n)$, $c_i(B)$ yield the coefficients in the characteristic polynomials for B_n and B, we conclude that the characteristic polynomial for B_n converges to that for B uniformly on compact sets. It follows that the eigenvalues for B_n , together with their multiplicities, converge to those for B . More precisely, this means the following. Each B_n has pure imaginary eigenvalues $\pm i\mu$ and perhaps 0. If we list these eigenvalues with multiplicity in increasing order in $i\mathbb{R}$ then we obtain $d = \dim(V)$ sequences. Each of these converges to an eigenvalue for B and every eigenvalue for B, together with its multiplicity, is obtained in this way.

Suppose that the non-zero eigenvalues for B_n are $\pm i\mu_i(n)$ for $j=1,\ldots,I(n)$ where

$$
0 < \mu_1(n) < \mu_2(n) < \cdots < \mu_{I(n)}(n).
$$

Let $\mathcal{V}_j(n)$ be the $(-\mu_j(n)^2)$ -eigenspace for B_n^2 and let $\mathcal{V}_0(n) = \text{ker}(B_n)$. The eigenspace decomposition with respect to B_n , as in Equation 8.3, reads

$$
V = \sum_{j=0}^{I(n)} \mathcal{V}_j(n).
$$

Note that $V_0(n) = \{0\}$ when 0 is not an eigenvalue for B. We can partition the sequence $(\phi_n)_{n=1}^{\infty}$ into finitely many subsequences in which the values $I(n)$ and $\dim(V_i(n))$ are constant in n. It suffices to show that each of these subsequences converges to ϕ . Thus we suppose henceforth that

(10.1)
$$
I = I(n), \quad m_j = \frac{1}{2} \dim(\mathcal{V}_j(n)) \quad (j = 1, ..., I), \quad m_0 = \dim(\mathcal{V}_0(n)),
$$

independent of n. Let

(10.2)
$$
\mathcal{S}^+ = \{ \lambda > 0 : -\lambda^2 \text{ is an eigenvalue for } B^2 \}, \text{ and } \mathcal{S} = \mathcal{S}^+ \cup \{0\}.
$$

The eigenspace decomposition (8.3) with respect to B is

$$
V = \sum_{\lambda \in \mathcal{S}} V_{\lambda}.
$$

Recall that $m(\lambda) = \frac{1}{2} \dim(V_\lambda)$ for $\lambda \neq 0$ and $m(0) = \dim(V_0)$. We have now the following facts.

- $\lim_{n\to\infty}\mu_j(n)\in\mathcal{S}$ for $j=1,\ldots,I$.
- If $\lambda \in S^+$ then $\lambda = \lim_{n \to \infty} \mu_i(n)$ for some $i \in \{1, \ldots, I\}$. We write
- $S_{\lambda} = \{j : \mu_j(n) \to \lambda\}.$
• For each $\lambda \in S^+$, $m(\lambda) = \sum_{j \in S_{\lambda}} m_j$. • For each $\lambda \in S^{\perp}$, $m(\lambda) =$
• $m(0) = m_0 + 2\sum_{j \in S_0} m_j$
-

Note that the data (π_n, α_n) and (π, α) , which determine the spherical functions ϕ_n and ϕ , are only unique modulo the action of $K = O(V)$. By conjugating each B_n by a suitably chosen element $k_n \in O(V)$, we can assume that the subspace $\mathcal{V}_j(n)$ does not depend on n and is contained in V_0 for $j = 0$ and in V_λ where $\lambda = \lim_n \mu_i(n)$ for $j \geq 1$. In this regard, recall that, by Lemma 3.3, the action of $O(V)$ takes aligned points to aligned points. We let

$$
(10.3) \t\t\t V_j = V_j(n)
$$

for $j = 0, \ldots, I$, independent of n, and now have:

- $V = \sum_{i=1}^{N}$ $\mathcal{V}_{j=0}$ \mathcal{V}_j is the common eigenspace decomposition for V with respect to the B_n 's. That is, $\mathcal{V}_0 = \ker(B_n)$ and for $j = 1, \ldots, I, \mathcal{V}_j$ is the $(-\mu_j(n)^2)$ eigenspace for B_n^2 . We have $m_0 = \dim(V_0)$ and $m_j = \dim(V_j)/2$ for $j =$ $1, \ldots, I$.
- For each $\lambda \in S^+$, $V_{\lambda} = \sum$ $y \in S^+, V_\lambda = \sum_{j \in S_\lambda} \mathcal{V}_j.$
- $V_0 = \mathcal{V}_0 + \sum_{j \in S_0} \mathcal{V}_j$.

Recall that the parameter α for the spherical function $\phi = \phi_{\pi,\alpha}$ is a set of nonnegative integers $\{\alpha(\lambda): \lambda \in S^+\}$. For ease of notation, we write

$$
\alpha_j(n) = \alpha(\mu_j(n))
$$

for the parameters associated with ϕ_n .

Using Lemma 9.1 and the hypotheses that $p_{\ell}(U, Z)^{\wedge}(\phi_n) \to p_{\ell}(U, Z)^{\wedge}(\phi)$ for $\ell = 0, \ldots, |d/2|$ we obtain, as $n \to \infty$,

(10.4)
$$
\sum_{j=1}^{I} \mu_j(n) (2\alpha_j(n) + m_j) + |b_n|^2 \to \sum_{\lambda \in \mathcal{S}^+} \lambda(2\alpha(\lambda) + m(\lambda)) + |b|^2
$$

and

(10.5)
$$
\sum_{j=1}^{I} \mu_j(n)^{2\ell+1} (2\alpha_j(n) + m_j) \to \sum_{\lambda \in \mathcal{S}^+} \lambda^{2\ell+1} (2\alpha(\lambda) + m(\lambda))
$$

for $\ell = 1, \ldots, \lfloor d/2 \rfloor$. Since all terms in (10.4) are non-negative, it follows that

(10.6)
$$
\{\mu_j(n)\alpha_j(n): n=1...\infty\} \text{ is bounded for } j=1,\ldots,I.
$$

Hence for $\ell \geq 1$ we have $\lim_{n\to\infty} \mu_j(n)^{2\ell+1}\alpha_j(n) = 0$ whenever $\lim_{n\to\infty} \mu_j(n) = 0$. Thus we can write

$$
\lim_{n \to \infty} \sum_{j=1}^{I} \mu_j(n)^{2\ell+1} (2\alpha_j(n) + m_j)
$$
\n
$$
= \sum_{\lambda \in S^+} \lim_{n \to \infty} \left[\sum_{j \in S_{\lambda}} \mu_j(n)^{2\ell+1} (2\alpha_j(n) + m_j) \right]
$$
\n
$$
= \sum_{\lambda \in S^+} \left\{ \lim_{n \to \infty} \left[\sum_{j \in S_{\lambda}} 2\mu_j(n)^{2\ell+1} \alpha_j(n) \right] + \lambda^{2\ell+1} m(\lambda) \right\},
$$

using the identity $m(\lambda) = \sum_{j \in S_{\lambda}} m_j$. Comparing the above with (10.5) we see that

$$
\sum_{\lambda \in S^+} \lambda^{2\ell+1} \alpha(\lambda) = \lim_{n \to \infty} \sum_{\lambda \in S^+} \sum_{j \in S_{\lambda}} \mu_j(n)^{2\ell+1} \alpha_j(n).
$$

If $\lim_{n\to\infty}\mu_j(n)\neq 0$, then $\{\alpha_j(n):n=1\ldots\infty\}$ is bounded by (10.6). Since $\alpha_j(n)$ is an integer, we can suppose, by partitioning $(\phi_n)_{n=1}^{\infty}$ into a finite number of subsequences, that

$$
\alpha_j(n) = \alpha_j
$$

is constant in *n* for all *j* with $\lim_{n\to\infty}\mu_j(n)\neq 0$. We now have

$$
\sum_{\lambda \in \mathcal{S}^+} \lambda^{2\ell+1} \alpha(\lambda) = \lim_{n \to \infty} \sum_{\lambda \in \mathcal{S}^+} \sum_{j \in S_{\lambda}} \mu_j(n)^{2\ell+1} \alpha_j = \sum_{\lambda \in \mathcal{S}^+} \lambda^{2\ell+1} \left(\sum_{j \in S_{\lambda}} \alpha_j \right).
$$

As this holds for all $\ell = 1, \ldots, \lfloor d/2 \rfloor$ and $|\mathcal{S}^+| \leq \lfloor d/2 \rfloor$ we conclude that

(10.7)
$$
\sum_{j \in S_{\lambda}} \alpha_j = \alpha(\lambda) \text{ for all } \lambda \in \mathcal{S}^+.
$$

Recall that $\phi_n(a, A)$ is the $O(V)$ -average of

(10.8)
$$
e^{i(b_n, a)} e^{i(B_n, A)} \prod_{j=1}^I L_{\alpha_j(n)}^{(m_j - 1)} \left(\frac{\mu_j(n) |a(j)|^2}{2} \right) e^{-\mu_j(n) |a(j)|^2/4}
$$

where $a = \sum_{i=1}^{N} a_i$ $j=0$ $a(j)$ with $a(j) \in \mathcal{V}_j$. For $\lambda \in \mathcal{S}^+$ and $j \in S_\lambda$ we have $\alpha_j(n) = \alpha_j$ in this expression. The factors λ : λ

$$
\prod_{j \in S_{\lambda}} L_{\alpha_j}^{(m_j - 1)} \left(\frac{\mu_j(n) |a(j)|^2}{2} \right) e^{-\mu_j(n) |a(j)|^2/4}
$$

converge as $n \to \infty$ to

$$
\prod_{j\in S_{\lambda}} L_{\alpha_j}^{(m_j-1)}\left(\frac{\lambda |a(j)|^2}{2}\right) e^{-\lambda |a(j)|^2/4}.
$$

Averaging over $U(V_\lambda)$ gives

$$
L_{\alpha(\lambda)}^{(m(\lambda)-1)}\left(\frac{\lambda|a(\lambda)|^2}{2}\right)e^{-\lambda|a(\lambda)|^2/4},
$$

where $a =$ $\sum_{\lambda \in S} a(\lambda)$ with $a(\lambda) \in V_{\lambda}$. Here we have used $m(\lambda) = \sum_{j \in S_{\lambda}} m_j$. and Equation 10.7.

It remains to consider the factors

(10.9)
$$
e^{i(b_n, a)} \prod_{j \in S_0} L_{\alpha_j(n)}^{(m_j - 1)} \left(\frac{\mu_j(n) |a(j)|^2}{2} \right) e^{-\mu_j(n) |a(j)|^2/4}
$$

from Formula 10.8. We will show that the $O(V_0)$ -average of (10.9) converges to

$$
\psi_b(a_0) = \int_{O(V_0)} e^{i(kb, a_0)} dk.
$$

Equation (10.4) says that

$$
\lim_{n \to \infty} \left(\sum_{j=1}^{I} \mu_j(n) (2\alpha_j(n) + m_j) + |b_n|^2 \right) = \sum_{\lambda \in \mathcal{S}^+} \lambda(2\alpha(\lambda) + m(\lambda)) + |b|^2.
$$

For $\lambda \in \mathcal{S}^+$ we have

$$
\lim_{n \to \infty} \sum_{j \in S_{\lambda}} \mu_j(n) (2\alpha_j(n) + m_j) = \lambda(2\alpha(\lambda) + m(\lambda)),
$$

again using $m(\lambda) = \sum_{j \in S_{\lambda}} m_j$ and $\sum_{j \in S_{\lambda}} \alpha_j = \alpha(\lambda)$. Hence we see that

(10.10)
$$
\lim_{n \to \infty} \left(\sum_{j \in S_0} 2\mu_j(n) \alpha_j(n) + |b_n|^2 \right) = |b|^2.
$$

For $j \in S_0$, it may not be true that the sequence $\alpha_j(n)$ is bounded. Since (10.10) converges and all terms are non-negative, we see that $\{|b_n|^2 : n = 1...\infty\}$ and $\{\mu_i(n)\alpha_i(n) : n = 1...\infty\}$ must be bounded. Pass to any subsequence of (10.9). We need only show that this subsequence itself has some subsequence whose $O(V)$ average converges to $\psi_b(a_0)$. For this, we use a sub-subsequence for which $|b_n|^2$ converges and $\mu_i(n)\alpha_i(n)$ converges for each $j \in S_0$. Thus we now suppose that

$$
\lim_{n \to \infty} 2\mu_j(n)\alpha_j(n) = h_j
$$

say, for each $j \in S_0$ and that

$$
\lim_{n \to \infty} |b_n|^2 = h_0.
$$

32 C. BENSON AND G. RATCLIFF

Choose any vectors $c_j \in V_j$ with $|c_j|^2 = h_j$. For $j \in S_0$ we have λ λ

$$
\lim_{n \to \infty} L_{\alpha_j(n)}^{(m_j - 1)} \left(\frac{\mu_j(n) |a(j)|^2}{2} \right) e^{-\mu_j(n) |a(j)|^2/4} = \int_{U(V_j)} e^{i(kc_j, a(j))} dk.
$$

This follows from the description of $\Delta(U(V_j), H_{V_j})$ presented in Section 7. We now see that (10.9) converges to

$$
e^{i(c_0,a)}\prod_{j\in S_0}\int_{U(\mathcal{V}_j)}e^{i(kc_j,a(j))}dk=\int_{\left[\prod_{j\in S_0}U(\mathcal{V}_j)\right]}e^{i(kc,a)}dk,
$$

where $c = c_0 +$ $j \in S_0$ c_j . Note that $c \in V_0$ since $V_0 = V_0 +$ $j\in S_0$ \mathcal{V}_j . Averaging over $O(V_0)$ gives $\psi_c(a_0)$. But (10.10) yields

$$
|c|^2 = |c_0|^2 + \sum_{j \in S_0} |c_j|^2 = h_0 + \sum_{j \in S_0} h_j = |b|^2
$$

and hence $\psi_c(a_0) = \psi_b(a_0)$ as desired.

We have now shown that the $(O(V_0) \times$ \overline{a} $_{\lambda \in \mathcal{S}^+}$ $U(V_\lambda)$)-average of (10.8) converges to \overline{a} !
}

$$
\psi_b(a_0)e^{i(B,A)}\prod_{\lambda\in\mathcal{S}^+}L_{\alpha(\lambda)}^{(m(\lambda)-1)}\left(\frac{\lambda|a(\lambda)|^2}{2}\right)e^{-\lambda|a(\lambda)|^2/4}.
$$

This is also the $O(V_0)$ -average of

$$
e^{i(b,a)}e^{i(B,A)}\prod_{\lambda\in\mathcal{S}^+}L_{\alpha(\lambda)}^{(m(\lambda)-1)}\left(\frac{\lambda|a(\lambda)|^2}{2}\right)e^{-\lambda|a(\lambda)|^2/4},
$$

which is a function whose $O(V)$ -average is ϕ . Thus ϕ_n converges to ϕ in $\Delta(O(V), F_V)$ as claimed. \Box

Lemma 9.1 shows that the eigenvalues $c_j(Z)^\wedge(\phi)$ and $p_\ell(U, Z)^\wedge(\phi)$ are real numbers and that $p_{\ell}(U, Z)^{\wedge}(\phi)$ is non-positive for all $\phi \in \Delta(O(V), F_V)$. Thus we obtain the following corollary to Theorem 10.1.

Corollary 10.2. The map

$$
E: \Delta(O(V), F_V) \to (\mathbb{R}^+)^{\lfloor d/2 \rfloor + 1} \times (\mathbb{R})^{\lfloor d/2 \rfloor}
$$

defined by

$$
E(\phi) = (|p_0(U, Z)^\wedge(\phi)|, \dots, |p_{\lfloor d/2 \rfloor}(U, Z)^\wedge(\phi)|, \ c_1(Z)^\wedge(\phi), \dots, c_{\lfloor d/2 \rfloor}(Z)^\wedge(\phi))
$$

is a homeomorphism onto its image.

This provides an analogue for $(O(V), F_V)$ of the Heisenberg fan model for $(U(V), H_V)$ and its generalization to Gelfand pairs (K, H_V) [BJRW96].

11. Proof of Theorem 8.1

As in the proof of Theorem 10.1, we let $\{\phi_n = \phi_{\pi_n,\alpha_n} : n = 1...\infty\}$ and $\phi =$ $\phi_{\pi,\alpha}$ be bounded $O(V)$ -spherical functions on F_V . Let $\mathcal{O}_n = Ad^*(F_V)(b_n, B_n)$ and $\mathcal{O} = Ad^*(F_V)(b, B)$ be the coadjoint orbits associated to π_n and π , where the points (b_n, B_n) and (b, B) are aligned in $f_V^* \cong f_V$. We have

$$
\mathcal{O}_n = \{ (b_n + v, B_n) : v \in \mathfrak{w}_{\mathcal{O}_n} \}, \qquad \mathcal{O} = \{ (b + v, B) : v \in \mathfrak{w}_{\mathcal{O}} \}
$$

where $\mathfrak{w}_{\mathcal{O}_n} = Image(B_n)$, $\mathfrak{w}_{\mathcal{O}} = Image(B)$. Proposition 5.3 ensures that

$$
\Psi(\phi_n) = O(V) \cdot (b_n + u_n, B_n), \qquad \Psi(\phi) = O(V) \cdot (b + u, B),
$$

for some points $u_n \in \mathfrak{w}_{\mathcal{O}_n}$, $u \in \mathfrak{w}_{\mathcal{O}}$ which satisfy

$$
\tau_{\mathcal{O}_n}(b_n + u_n, B_n) \in \mathcal{O}^{O(V)\pi_n}(\alpha_n), \qquad \tau_{\mathcal{O}}(b + u, B) \in \mathcal{O}^{O(V)\pi}(\alpha).
$$

We will show that $(\phi_n)_{n=1}^{\infty}$ converges to ϕ in $\Delta(O(V), F_V)$ if and only if $(O(V) \cdot (u_n + b_n, B_n))_{n=1}^{\infty}$ converges to $O(V) \cdot (b + u, B)$ in $\mathcal{A}(O(V), F_V)$.

First suppose that $(\phi_n)_{n=1}^{\infty}$ converges to ϕ . Theorem 10.1 shows that $c_j(Z)^{\wedge}(\phi_n) \to$ $c_j(Z)^\wedge(\phi)$ for $j = 1, \ldots, \lfloor d/2 \rfloor$ and $p_\ell(U, Z)^\wedge(\phi_n) \to p_\ell(U, Z)^\wedge(\phi)$ for $\ell = 0, \ldots, \lfloor d/2 \rfloor$. We will continue to employ the notation for eigenvalues and eigenspaces developed in the proof of Theorem 10.1. In particular, the proof shows that we can assume V In the proof of Theorem 10.1. In particular, the pro-
has a common eigenspace decomposition $V = \sum_{i=1}^{N}$ $\mathcal{V}_j = 0$ \mathcal{V}_j " with respect to all of the B_n 's and that this is related to the eigenspace decomposition " $V = \sum_{\lambda \in S} V_{\lambda}$ " with respect to B as explained in connection with Equations 10.1, 10.2 and 10.3.

The coadjoint orbits \mathcal{O}_n and $\mathcal O$ correspond to coadjoint orbits in Heisenberg groups $H_{\mathfrak{w}_{\mathcal{O}_n}}$ and $H_{\mathfrak{w}_{\mathcal{O}}}$, as discussed prior to Proposition 8.3. Equation 7.1 now shows that

(11.1)
$$
u_n = \sum_{j=1}^I \widetilde{u}_j(n) \quad \text{where} \quad \widetilde{u}_j(n) \in \mathcal{V}_j, \ |\widetilde{u}_j(n)|^2 = 2\mu_j(n)\alpha_j(n),
$$

(11.2) and
$$
u = \sum_{\lambda \in S^+} u_{\lambda}
$$
 where $u_{\lambda} \in V_{\lambda}$, $|u_{\lambda}|^2 = 2\lambda \alpha(\lambda)$.

By using the action of $\prod_{j=1}^{I} U(\mathcal{V}_j) \subset O(V)$, we can suppose that

$$
\widetilde{u}_j(n) = \sqrt{2\mu_j(n)\alpha_j(n)}\,\,\widetilde{e}_j
$$

where $\tilde{e}_j \in V_j$ is any fixed unit vector, independent of n.

As in the proof of Theorem 10.1, we can suppose that for $j \in S_\lambda$ with $\lambda > 0$ we have $\alpha_j(n) = \alpha_j$, independent of n. Thus for $\lambda \in S^+$, we can define

$$
v_{\lambda} := \sum_{j \in S_{\lambda}} \left(\sqrt{2\lambda \alpha_{j}} \right) \widetilde{e}_{j} = \lim_{n \to \infty} \sum_{j \in S_{\lambda}} \widetilde{u}_{j}(n).
$$

We have $v_{\lambda} \in V_{\lambda}$ since $V_{\lambda} =$ $\overline{ }$ $j\in S_{\lambda}$, \mathcal{V}_j , and

$$
|v_{\lambda}|^{2} = 2\lambda \left[\sum_{j \in S_{\lambda}} \alpha_{j}\right] = 2\lambda \alpha(\lambda),
$$

in view of Equation 10.7. Thus, using the fact that $|v_\lambda|^2 = |u_\lambda|^2$, we see that

$$
\lim_{n \to \infty} \sum_{\lambda \in S^+} \sum_{j \in S_{\lambda}} \widetilde{u}_j(n) = \sum_{\lambda \in S^+} v_{\lambda}
$$
\n
$$
\in \left(\prod_{\lambda \in S^+} U(V_{\lambda})\right) \left(\sum_{\lambda \in S^+} u_{\lambda}\right) = \left(\prod_{\lambda \in S^+} U(V_{\lambda})\right) u.
$$

Letting $u_0(n) = b_n +$ $u_0(n) = b_n + \sum_{j \in S_0} \tilde{u}_j(n)$, we have $u_0(n) \in V_0$ since $V_0 = \mathcal{V}_0 + \sum_{j \in S_0} \mathcal{V}_j$. Moreover $\overline{}$

$$
|u_0(n)|^2 = |b_n|^2 + \sum_{j \in S_0} |\tilde{u}_j(n)|^2
$$

= $|b_n|^2 + \sum_{j \in S_0} 2\mu_j(n)\alpha_j(n) \xrightarrow[n \to \infty]{} |b|^2$

by (10.10). Thus the $(O(V_0) \times$ $\lambda \in S^+} U(V_\lambda)$ by (10.10). Thus the $(O(V_0) \times \prod_{\lambda \in S^+} U(V_\lambda))$ -orbit through $b_n + u_n = u_0(n) +$ (10.10). Thus the $(U(V_0) \times \prod_{\lambda \in S^+} U(V_\lambda))$ -orbit through $v_n + u_n = u_0(n) + \lambda \in S^+ \sum_{j \in S_\lambda} \widetilde{u}_j(n)$ converges to the $(U(V_0) \times \prod_{\lambda \in S^+} U(V_\lambda))$ -orbit through $b + u$. Hence also $(\hat{O}(V) \cdot (u_n + b_n, B_n))_{n=1}^{\infty}$ converges to $O(V) \cdot (b + u, B)$.

Conversely, suppose that $O(V) \cdot (u_n + b_n, B_n) \to O(V) \cdot (b + u, B)$ in $\mathcal{A}(O(V), F_V)$. Since c_i and p_ℓ are $O(V)$ -invariant polynomials, it follows that

(11.3)
$$
c_j(B_n) \xrightarrow[n \to \infty]{} c_j(B) \text{ for } j = 1, \dots, \lfloor d/2 \rfloor
$$

(11.4) and
$$
p_{\ell}(b_n + u_n, B_n) \xrightarrow[n \to \infty]{} p_{\ell}(b + u, B)
$$
 for all $l \ge 0$.

From (11.3) and Lemma $9.1(a)$ we have that

(11.5)
$$
c_j(Z)^{\wedge}(\phi_n) \xrightarrow[n \to \infty]{} c_j(Z)^{\wedge}(\phi)
$$

for $j = 1, \ldots, \lfloor d/2 \rfloor$. Also, as in the proof of Theorem 10.1, it follows from (11.3) that the eigenvalues for B_n converge to those for B. Thus we can assume that we have compatible eigenspace decompositions as in the first part of this proof. Since $\tau_{\mathcal{O}_n}(b_n + u_n, B_n) = \alpha_n$ and $\tau_{\mathcal{O}}(b + u, B) = \alpha$, Equations 11.1 and 11.2 hold. Thus we have

$$
p_0(b_n + u_n, B_n) = |b_n|^2 + |u_n|^2 = \sum_{j=1}^I 2\mu_j(n)\alpha_j(n) + |b_n|^2
$$

and
$$
p_0(b + u, B) = \sum_{\lambda \in \mathcal{S}^+} 2\lambda \alpha(\lambda) + |b|^2.
$$

Since $p_0(b_n + u_n, B_n) \to p_0(b + u, B)$ and $m(\lambda) = \sum_{j \in S_{\lambda}} m_j$ for $\lambda \in S^+$, we conclude that \overline{a} #

$$
\left[\sum_{j=1}^{I} \mu_j(n) (2\alpha_j(n) + m_j) + |b_n|^2\right] \longrightarrow \left[\sum_{\lambda \in \mathcal{S}^+} \lambda(2\alpha(\lambda) + m(\lambda)) + |b|^2\right].
$$

But this gives

(11.6)
$$
p_0(U, Z)^{\wedge}(\phi_n) \xrightarrow[n \to \infty]{} p_0(U, Z)^{\wedge}(\phi),
$$

via Lemma 9.1(b). For $\ell \geq 1$ we have

$$
p_{\ell}(b_n + u_n, B_n) = (b_n + u_n, B_n^{2\ell}(b_n + u_n)) = (u_n, B_n^{2\ell}u_n)
$$

since $b_n \in \text{ker}(B_n) = \mathcal{V}_0$. As $u_n = \sum_{j=1}^I \left(\sqrt{2\mu_j(n) \alpha_j(n)} \right)$ \widetilde{e}_j and $B_n^2|_{\mathcal{V}_j} = -\mu_j(n)^2$ we conclude that

$$
p_{\ell}(b_n + u_n, B_n) = (-1)^{\ell} \sum_{j=1}^{I} 2\mu_j(n)^{2\ell+1} \alpha_j(n).
$$

Similarly

$$
p_{\ell}(b+u,B) = (-1)^{\ell} \sum_{\lambda \in S^+} 2\lambda^{2\ell+1} \alpha(\lambda).
$$

Using $p_{\ell}(b_n + u_n, B_n) \to p_{\ell}(b + u, B)$ and Lemma 9.1(c), we conclude that

(11.7)
$$
p_{\ell}(U, Z)^{\wedge}(\phi_n) \xrightarrow[n \to \infty]{} p_{\ell}(U, Z)^{\wedge}(\phi)
$$

for $\ell \geq 1$, just as for the case $\ell = 0$ above.

Having established (11.5), (11.6) and (11.7), it now follows from Theorem 10.1 that $\phi_n \to \phi$ in $\Delta(O(V), F_V)$. This completes the proof of Theorem 8.1.

12. SPHERICAL FUNCTIONS ON F_3

In this section we examine the models for $\Delta(O(V), F_V)$ provided by Corollary 10.2 and Theorem 8.1 in the simplest case: $d = \dim(V) = 3$. We will write

$$
K = O(3), \quad \mathfrak{n} = \mathbb{R}^3 \times \Lambda^2(\mathbb{R}^3) = \mathbb{R}^3 \times so(3), \quad N = \exp(\mathfrak{n})
$$

and for $\lambda \in \mathbb{R}$ let

$$
B_{\lambda} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \lambda \\ 0 & -\lambda & 0 \end{bmatrix}.
$$

One can check that each K-orbit in $\mathbf{n}^* \cong \mathbf{n}$ through an aligned point contains a unique aligned point with one of two possible forms: ¢

$$
((r,0,0), B_\lambda) \text{ with } r \ge 0, \lambda > 0 \quad \text{or} \quad ((r,0,0), 0) \text{ with } r \ge 0.
$$

The space $\Delta(O(V), F_V)$ can be parameterized by the set

$$
\mathcal{P} = \{ (r, \lambda, m) : r \ge 0, \lambda > 0, m \in \mathbb{Z}^+ \} \cup \{ (r, 0) : r \ge 0 \}.
$$

36 C. BENSON AND G. RATCLIFF

The spherical function $\phi_{r,\lambda,m}$ for parameter $(r, \lambda, m) \in \mathcal{P}$ is the K-average of

$$
(a, A) \mapsto e^{ira_1} e^{i\lambda A_{2,3}} L_m^{(0)} \left(\frac{\lambda (a_2^2 + a_3^2)}{2} \right) e^{-\lambda (a_2^2 + a_3^2)/4}
$$

.

This follows from Proposition 8.3, since $(B_{\lambda}, A) = -tr(B_{\lambda}A)/2 = \lambda A_{2,3}$. The spherical functions $\phi_{r,0}$ associated to parameters $(r, 0) \in \mathcal{P}$ are $\phi_{0,0} = 1$ and

$$
\phi_{r,0}(a,A) = \frac{2^{1/2}\Gamma(3/2)}{(r|a|)^{1/2}} J_{\frac{1}{2}}(r|a|) = \frac{\sin(r|a|)}{r|a|}
$$

for $r > 0$. Here we have used (8.6) together with the classical identities

$$
\Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2}, \qquad J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}}\sin(x).
$$

We now consider the map

$$
E: \Delta(K, N) \to (\mathbb{R}^+)^2 \times \mathbb{R}, \quad E(\phi) = (|p_0(U, Z)^\wedge(\phi)|, |p_1(U, Z)^\wedge(\phi)|, c_1(Z)^\wedge(\phi))
$$

given by Corollary 10.2. Using Lemma 9.1 we compute

$$
p_0(U, Z)^{\wedge}(\phi_{r,\lambda,m}) = -\lambda(2m+1) - r^2
$$

\n
$$
p_0(U, Z)^{\wedge}(\phi_{r,0}) = -r^2
$$

\n
$$
p_1(U, Z)^{\wedge}(\phi_{r,\lambda,m}) = -\lambda^3(2m+1)
$$

\n
$$
p_1(U, Z)^{\wedge}(\phi_{r,0}) = 0
$$

\n
$$
c_1(Z)^{\wedge}(\phi_{r,\lambda,m}) = -c_1(B_{\lambda}) = -\lambda^2
$$

\n
$$
c_1(Z)^{\wedge}(\phi_{r,0}) = -c_1(0) = 0.
$$

Thus we have

$$
E(\phi_{r,\lambda,m}) = (\lambda(2m+1) + r^2, \lambda^3(2m+1), -\lambda^2), \quad E(\phi_{r,0}) = (r^2, 0, 0).
$$

For $m \in \mathbb{Z}^+$ let $\mathcal{S}_m \subset (\mathbb{R}^+)^3$ be defined as

$$
S_m = \{ (\lambda(2m+1) + r^2, \ \lambda^3(2m+1), \ \lambda^2) : r \ge 0, \ \lambda \ge 0 \}
$$

We see that the image $E(\Delta(K, N))$ of $\Delta(K, N)$ in $(\mathbb{R}^+)^2 \times \mathbb{R}$ is homeomorphic to

(12.1)
$$
\mathcal{E} = \bigcup_{m=0}^{\infty} \mathcal{S}_m \subset (\mathbb{R}^+)^3
$$

Finally we consider the space $\mathcal{A}(K, N)$, which is homeomorphic to $\Delta(K, N)$ by Finally we consider the space $A(N, N)$, which is nomeomorphic to $\Delta(N, N)$ by
Theorem 8.1. From Equation 11.2 we see that $\ell = ((r, \sqrt{2\lambda m}, 0), B_\lambda)$ is a spherical point in $\mathcal{O} = Ad^*(N)((r, 0, 0), B_\lambda)$ with $\tau_{\mathcal{O}}(\ell) = m$. Thus we have

$$
\Psi(\phi_{r,\lambda,m}) = K \cdot ((r, (2\lambda m)^{1/2}, 0), B_{\lambda}), \quad \Psi(\phi_{r,0}) = K \cdot ((r, 0, 0), 0).
$$

So $\mathcal{A}(K,N) = \mathcal{X}/K$ where X is the closed subset of $\mathfrak{n}^* = \mathfrak{n}$ given by

$$
\mathcal{X} = (\mathbb{R}^3 \times \{0\}) \cup \left\{ (b, B) : \frac{||b_1||^2}{2||B||} \in \mathbb{Z} \right\}
$$

and $b = b_0 + b_1$ denotes the Fitting decomposition for $b \in \mathbb{R}^3$ with respect to $B \in so(3)$. The inverse mapping for Ψ is given on \mathcal{X}/K by

$$
K \cdot (b, B) \mapsto \begin{cases} \phi_{||b_0||, ||B||, ||b_1||^2/2||B||} & \text{for } B \neq 0 \\ \phi_{||b||, 0} & \text{for } B = 0 \end{cases}
$$

and the model \mathcal{X}/K is homeomorphic to $\mathcal E$ via

$$
\mathcal{X}/K \to \mathcal{E}
$$
, $K \cdot (b, B) \mapsto (||b||^2 + ||B||, ||b_1||^2||B|| + ||B||^3, ||B||^2)$.

From either model one sees, for example, that a sequence of spherical functions $(\phi_{r_n,\lambda_n,m_n})_{n=1}^{\infty}$ converges in $\Delta(K,N)$ to $\phi_{r,0}$ when $(r_n), (\lambda_n)$ and $(\lambda_n m_n)$ are convergent with $\lim_{n \to \infty} \lambda_n^{\infty} = 0$ and $\lim_{n \to \infty} (r_n^2 + 2\lambda_n m_m) = r^2$.

REFERENCES

- [BJLR97] C. Benson, J. Jenkins, R. Lipsman, and G. Ratcliff. A geometric criterion for Gelfand pairs associated with the Heisenberg group. Pacific J. Math., 178:1–36, 1997.
- [BJR90] C. Benson, J. Jenkins, and G. Ratcliff. On Gelfand pairs associated with solvable Lie groups. Trans. Amer. Math. Soc., 321:85–116, 1990.
- [BJR92] C. Benson, J. Jenkins, and G. Ratcliff. Bounded K-spherical functions on Heisenberg groups. J. Funct. Anal., 105:409–443, 1992.
- [BJR99] C. Benson, J. Jenkins, and G. Ratcliff. The orbit method and Gelfand pairs associated with nilpotent groups. J. Geometric Analysis, 9:569–582, 1999.
- [BJRW96] C. Benson, J. Jenkins, G. Ratcliff, and T. Worku. Spectra for Gelfand pairs associated with the Heisenberg group. Colloq. Math., 71:305–328, 1996.
- [Bou81] P. Bougerol. Théorème central limite local sur certains groupes de Lie. Ann. Scient. $\acute{E}c$. Norm. Sup., 14:403–432, 1981.
- [BR96] C. Benson and G. Ratcliff. A classification for multiplicity free actions. J. Algebra, 181:152–186, 1996.
- [Bri85] M. Brion. Représentations exceptionnelles des groupes semi-simples. Ann. Sci. École Norm. Sup. (4), 18(2):345–387, 1985.
- [Bro73] I. D. Brown. Dual topology of a nilpotent lie group. Ann. Sci. École Norm. Sup., 6:407– 411, 1973.
- [Car87] G. Carcano. A commutativity condition for algebras of invariant functions. Boll. Un. Mat. Italiano, 7:1091–1105, 1987.
- [CG90] L. Corwin and F. Greenleaf. Representations of nilpotent Lie groups and their applications, Part 1: Basic theory and examples, volume 18 of Studies in advanced math. Cambridge Univ. Press, Cambridge, 1990.
- [Far87] J. Faraut. Analyse harmonique et fonctions speciales. In Deux Courses d'Analyse Harmonique. Birkhäuser, Boston, 1987.
- [Fis06] V. Fischer. The bounded spherical functions on the free two-step nilpotent Lie group. J. Lie Theory, 16:351–370, 2006.
- [Gel50] I. M. Gelfand. Spherical functions on symmetric spaces. Dokl. Akad. Nauk USSR, 70:5–8, 1950. Amer. Math. Soc. Transl. 37 (1964), 39-44.

- [HR80] A. Hulanicki and F. Ricci. A tauberian theorem and tangential convergence of bounded harmonic functions on balls in \mathbb{C}^n . Inventiones Math., 62:325-331, 1980.
- [Kac80] V. Kac. Some remarks on nilpotent orbits. J. Algebra, 64:190–213, 1980.
- [Kir62] A. A. Kirillov. Unitary representations of nilpotent Lie groups. Uspeki Mat. Nauk, 17:57– 110, 1962. Russian Math. Surveys 17 (1962), 57-110.
- [Kir04] A. A. Kirillov. Lectures on the Orbit Method, volume 64 of Graduate Studies in Math. Amer. Math. Soc., Providence, Rhode Island, 2004.
- [Kor80] A. Koranyi. Some applications of Gelfand pairs in classical analysis. C.I.M.E., 1980.
- [KR83] A. Kaplan and F. Ricci. *Harmonic analysis on groups of Heisenberg type*, pages 416–435. Lecture Notes in Math. 992. Springer Verlag, Berlin, 1983.
- [Lau00] J. Lauret. Gelfand pairs attached to representations of compact Lie groups. Transformation Groups, 5:307-324, 2000.
- [Lea98] A. Leahy. A classification of multiplicity free representations. J. Lie Theory, 8:367–391, 1998.
- [Lip80] R. Lipsman. Orbit theory and harmonic analysis on Lie groups with co-compact nilradical. J. Math. Pure Appl., 59:337–374, 1980.
- [Lip82] R. Lipsman. Orbit theory and representations of Lie groups with co-compact radical. J. Math. Pure Appl., 61:17–39, 1982.
- [LL94] H. Leptin and J. Ludwig. Unitary Representation Theory of Exponential Lie Groups. Walter de Gruyter and Co., Berlin, 1994.
- [Nis01] N. Nishihara. A geometric criterion for Gelfand pairs associated with nilpotent Lie groups. J. Funct. Anal., 183:148–163, 2001.
- [Puk78] L. Pukanszky. Unitary representations on Lie groups with co-compact radical and applications. Trans. Amer. Math. Soc., 236:1–49, 1978.
- [Ric85] F. Ricci. Commutative algebras of invariant functions on groups of Heisenberg type. J. London Math. Soc., 32:265–271, 1985.
- [Ste88] K. Stempac. An agebra associated with the generalized sublaplacian. Studia Math., 88:245–256, 1988.
- $[Str91]$ R. Strichartz. L^p harmonic analysis and Radon transforms on the Heisenberg group. J. Funct. Anal., 96:350–406, 1991.
- [Vin01] E. B. Vinberg. Commutative homogeneous spaces and co-isotropic symplectic actions. Russian Math. Surveys, 56:1–60, 2001.
- [Vin03] E. B. Vinberg. Commutative homogeneous spaces of Heisenberg type. Trans. Moscow Math. Soc., 64:45–78, 2003.
- [Wol92] J. Wolf. The uncertainty principle for Gelfand pairs. Nova J. Algebra Geom., 1:383–396, 1992.
- [Wol06] J. Wolf. Spherical functions on Euclidean space. J. Funct. Anal., 239(1):127–136, 2006.
- [Yak04] O. S. Yakimova. Saturated commutative homogeneous spaces of Heisenberg type. Acta Applicandae Math., 81:339–345, 2004.
- [Yak05] O. S. Yakimova. Gelfand pairs. Bonner Mathematische Schriften [Bonn Mathematical Publications], 374. Universität Bonn Mathematisches Institut, Bonn, 2005. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2004.

Dept of Mathematics, East Carolina University, Greenville, NC 27858 E-mail address: bensonf@ecu.edu, ratcliffg@ecu.edu