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Abstract. Let N be a connected and simply connected 2-step nilpotent Lie group
and K be a compact subgroup of Aut(N). We say that (K,N) is a Gelfand pair
when the set of integrable K-invariant functions on N forms an abelian algebra
under convolution. In this paper, we construct a one-to-one correspondence between
the set ∆(K, N) of bounded spherical functions for such a Gelfand pair and a set
A(K, N) of K-orbits in the dual n∗ of the Lie algebra for N . The construction
involves an application of the Orbit Method to spherical representations of K nN .
We conjecture that the correspondence ∆(K, N) ↔ A(K, N) is a homeomorphism.
Our main result shows that this is the case for the Gelfand pair given by the
action of the orthogonal group on the free 2-step nilpotent Lie group. In addition,
we show how to embed the space ∆(K, N) for this example in a Euclidean space
by taking eigenvalues for an explicit set of invariant differential operators. These
results provide geometric models for the space of bounded spherical functions on
the free 2-step group.

1. Introduction

This paper concerns the topological structure of spectra for Gelfand pairs that
arise in analysis on nilpotent Lie groups. Suppose that N is a connected and simply
connected nilpotent Lie group and that K is a compact Lie group acting smoothly
on N via automorphisms. We say that (K, N) is a Gelfand pair when the algebra
L1

K(N) of integrable K-invariant functions on N is commutative under convolution.
It is shown in [BJR90] that when (K, N) is a Gelfand pair, N is necessarily 2-step
(or abelian). The possibilities have been completely classified for the cases where N
is a Heisenberg group [BR96], [Lea98]. Gelfand pairs of the sort (K, N) where N is a
not a Heisenberg group are classified, subject to certain hypotheses, in [Vin01, Vin03]
and [Yak05, Yak04]. Examples can also be found in [KR83], [Ric85], [Car87], [BJR90]
and [Lau00]. Analysis in the non-Heisenberg setting has, however, not as yet been
highly developed.

Consider the algebra DK(N) of differential operators on N that are simultaneously
invariant under left multiplication by N and under the action of K. It is known that
DK(N) is abelian whenever (K, N) is a Gelfand pair. In this case, a smooth function
φ on N is said to be K-spherical if
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• φ is K-invariant,
• φ is an eigenfunction for all D ∈ DK(N), and
• φ(e) = 1, where e ∈ N denotes the identity element.

We let ∆(K, N) denote the set of all bounded K-spherical functions for the Gelfand
pair (K, N). One can identify ∆(K, N) with the Gelfand space (or spectrum) of the
commutative Banach ?-algebra L1

K(N) via integration against spherical functions
φ ∈ ∆(K,N). The compact-open topology on ∆(K, N) (uniform convergence on
compact sets) corresponds to the weak∗-topology on the Gelfand space.

Below we introduce a correspondence between ∆(K, N) and a set A(K,N) of K-
orbits in the dual n∗ of n (Definition 1.3), which we call K-spherical orbits. The
correspondence ∆(K, N) ↔ A(K,N) is motivated by the Orbit Method in Repre-
sentation Theory, which says that irreducible unitary representations of a Lie group
should correspond to coadjoint orbits in the dual of its Lie algebra.

Let G = KnN be the semidirect product of K with N . Now L1
K(N) coincides with

L1(K\G/K), the K-bi-invariant functions on G, via restriction of functions on G to
N . So (K,N) is a Gelfand pair if and only if L1(K\G/K) is abelian. Equivalently
the space of K-fixed vectors for any irreducible unitary representation of G is at most
one-dimensional [Gel50]. Theorem 1.1 below provides an orbital counterpart to this
representation-theoretic criterion. Here we assume N is 2-step and identify n∗ with
the annihilator of k in g∗. The intersection O ∩ n∗ of any Ad∗(G)-orbit O ⊂ g∗ with
n∗ is K-saturated, i.e. a union of K-orbits.

Theorem 1.1. ([BJR99, Nis01]) (K, N) is a Gelfand pair if and only if every coad-
joint orbit in g∗ meets n∗ in at most one K-orbit.

It is shown in [BJR99] that the orbit condition in Theorem 1.1 holds whenever
(K,N) is a Gelfand pair. The converse is proved in [Nis01]. The result for Heisenberg
groups was obtained first in [BJLR97].

There is an Orbit Method, due to Lipsman [Lip80, Lip82] and Pukanszky [Puk78],
for semidirect products of compact with nilpotent groups. We discuss aspects of
this below in Section 3, here specialized to G = K n N where N is 2-step. The
theory produces a well-defined coadjoint orbit O(ρ) ⊂ g∗ for each irreducible unitary
representation ρ of G. In this context, the orbit mapping

Ĝ → g∗/Ad∗(G), ρ 7→ O(ρ)

is, in general, finite-to-one, a fact which will require our subsequent attention.

Now suppose that (K, N) is a Gelfand pair and let ĜK denote the K-spherical
representations of G:

ĜK = {ρ ∈ Ĝ : ρ has a 1-dimensional space of K-fixed vectors}.
The following proposition is proved in Section 5.2.

Proposition 1.2. O(ρ) ∩ n∗ 6= ∅ for each ρ ∈ ĜK.
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Proposition 1.2 together with Theorem 1.1 show that for each ρ ∈ ĜK the inter-
section

K(ρ) = O(ρ) ∩ n∗

is a K-orbit in n∗.

Definition 1.3. Let A(K,N) denote the set of K-orbits in n∗ given by

A(K,N) = {K(ρ) : ρ ∈ ĜK}.
We call these the K-spherical orbits for the Gelfand pair (K, N).

In Section 5.4 we will prove the following.

Theorem 1.4. The map K : ĜK → A(K, N) is a bijection.

The positive definite spherical functions for (K, N) correspond with ĜK . Given a
K-spherical representation, one obtains a spherical function by forming the diagonal
matrix coefficient for a K-fixed vector of unit length. Such a spherical function is
bounded by 1, its value at the identity element. Conversely it is known that every
bounded spherical function for (K, N) is positive definite [BJR90]. Thus we can lift
K to a mapping Ψ on the space ∆(K, N) of bounded K-spherical functions:

Definition 1.5. Ψ : ∆(K, N) → n∗/K is defined as

Ψ(φ) = K(ρφ)

where ρφ ∈ ĜK is the K-spherical representation of G that yields φ.

The following assertion is now equivalent to Theorem 1.4.

Corollary 1.6. The map Ψ : ∆(K, N) → A(K,N) is a bijection.

We give A(K, N) the subspace topology from n∗/K. Note that n∗/K is metrizable
since K is compact. The compact-open topology on ∆(K, N) corresponds to the

Fell topology on ĜK . It is known that for nilpotent and exponential solvable groups,
the Orbit Method provides a homeomorphism between the unitary dual and the
space of coadjoint orbits [Bro73], [LL94]. Thus it is natural to conjecture that

K : ĜK → A(K, N) is a homeomorphism. Equivalently:

Conjecture 1.7. Ψ : ∆(K, N) → A(K, N) is a homeomorphism

There is a “degenerate” context in which Conjecture 1.7 is easily verified. This is
the situation where N ∼= Rn is abelian, discussed below in Section 6. See also [Wol06].
In this case A(K, N) = n∗/K is the set of all K-orbits in n∗, with K · ` ∈ n∗/K
corresponding, via Ψ, to the K-average of the unitary character χ`(x) = ei`(x). So Ψ

can be viewed as the map obtained from the homeomorphism N̂ ∼= n∗, χ` ↔ ` by
passing to K-orbits.

An alternate description of the map Ψ is preferable for purposes of calculation. As
explained in Section 5.3, the bounded spherical functions φ ∈ ∆(K, N) can be indexed
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by pairs of parameters (π, α). Here π and α are irreducible unitary representations of

N and of the stabilizer Kπ for π ∈ N̂ . (The pair (π, α∗) are Mackey parameters for a
K-spherical representation of G.) In Section 4 we define a moment map τO : O → k∗π
for the action of Kπ on the coadjoint orbit (O = ON(π)) ⊂ n∗ associated to π.
We show that the image of τO includes the Ad∗(Kπ)-orbit OKπ(α) associated to the

representation α ∈ K̂π. Moreover one has

Ψ(φπ,α) = K · `π,α

where `π,α denotes any point in O with τO(`π,α) ∈ OKπ(α). See Proposition 5.3
below.

In [BJR90] it is shown that the orthogonal group O(d) acts on the Fd, the free 2-step
nilpotent Lie group on d generators, to yield a Gelfand pair (O(d), Fd). This example
plays an important role in the theory of Gelfand pairs (K,N) since O(d) is maximal
compact in Aut(Fd) and any 2-step group can be realized as a quotient of some Fd

by a central subgroup. Some results concerning the spherical functions for (O(d), Fd)
can be found in [Str91] and [Fis06]. We discuss this example below, in a coordinate-
free fashion, beginning in Section 8. Our main result is Theorem 8.1, which asserts
that the correspondence ∆(O(d), Fd) ↔ A(O(d), Fd) is indeed a homeomorphism.

There is another approach to constructing topological models for ∆(K, N). One
can use the eigenvalues with respect to some set of operators D ∈ DK(N) to map
∆(K, N) to a Euclidean space. This technique was used in [Wol92] to embed the
spectrum for any Gelfand pair into an infinite dimensional Euclidean space by using
all D ∈ DK(N). For the Gelfand pair (U(n), Hn), given by the action of the unitary
group U(n) on the Heisenberg group Hn, it suffices to use just two operators, the
Heisenberg sub-Laplacian and the central derivative. This yields an embedding of
∆(U(n), Hn) in R2 whose image is called “the Heisenberg fan” [Bou81], [Far87],
[Str91]. In [BJRW96], the Heisenberg fan construction is generalized to encompass
Gelfand pairs of the form (K, Hn) where K is a closed subgroup of U(n). The result
is an embedding into a finite dimensional Euclidean space.

Our proof of Theorem 8.1, contained in Section 11, requires first establishing the
analogous result for (U(n), Hn). This is done in Section 7 by relating the space of
spherical orbits for (U(n), Hn) to the Heisenberg fan. For the case of (O(d), Fd) we
show that there is also a direct analog for the fan construction. That is, we describe
a finite set of operators D ∈ DO(d)(Fd) that can be used to embed ∆(O(d), Fd) in a
finite dimensional Euclidean space. This construction is contained in Sections 9 and
10 below, culminating in Corollary 10.2. In Section 12 we describe our geometric
models for ∆(O(d), Fd) explicitly in the case d = 3.

We conclude this overview of our results by listing the Gelfand pairs for which
Conjecture 1.7 will be established. These are

• (K,N) with N abelian (Section 6),
• (K,N) = (U(n), Hn) (Section 7),
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• (K,N) = (O(d), Fd) (Section 11).

We have also proved Conjecture 1.7 for the pair (SO(d), Fd). In fact, as explained in
Section 8, this can be derived as a corollary to the result for (O(d), Fd).

Acknowledgment: The authors thank two anonymous referees for suggesting improve-
ments to a prior version of this paper.

2. Preliminaries and notation

• Throughout this paper, N denotes a connected and simply connected 2-step
nilpotent Lie group. K is a (possible disconnected) compact Lie group acting
smoothly on N by automorphisms. We let k · x denote the result of applying
k ∈ K to x ∈ N .

• G = K nN is the semidirect product, with group law

(k, x)(k′, x′) = (kk′, x(k · x′)).
• A script letter indicates the Lie algebra for a corresponding group. We identify

N with its Lie algebra n via the exponential map. The derived action of k on
n is written A ·X for A ∈ k and X ∈ n.

• Ĥ denotes the unitary dual of a Lie group H. We identify representations
modulo unitary equivalence and make no notational distinction between a
representation and its equivalence class.

• The coadjoint actions of a Lie group H and its Lie algebra h on h∗ = hom(h,R)
are

Ad∗(h)ϕ = ϕ ◦ Ad(h−1),

ad∗(X)ϕ(Y ) = ϕ ◦ ad(−X)(Y ) = −ϕ([X, Y ])

for h ∈ H, ϕ ∈ h∗, and X,Y ∈ h. When H is nilpotent and is identified with
its Lie algebra h, Ad∗(X) for X ∈ h denotes the coadjoint action of the group
H.

• The symbol O indicates a coadjoint orbit. Given σ ∈ Ĥ, O(σ) is an associated
coadjoint orbit in h∗. Sometimes we write OH(σ) to clarify the group in
question. We assume familiarity with Kirillov’s Orbit Method for nilpotent
Lie groups. (See [Kir62], [Kir04] or [CG90].) This establishes a one-to-one
correspondence

N̂ ↔ n∗/Ad∗(N), π ↔ ON(π).

The Orbit Method for other groups that arise in this paper is discussed in
Section 3.

• We will frequently extend linear functionals ξ ∈ h∗ from subalgebras h of k
to all of k. For this purpose we fix at the outset a definite Ad(K)-invariant
inner product (·, ·)k on k. As an element of k∗, ξ is the unique extension which
vanishes on the (·, ·)k-orthogonal complement of h. For concreteness one can
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realize K as a Lie subgroup of a unitary group U(n), via some faithful unitary
representation, and use the negative definite inner product

(A,B)k = tr(AB).

• Elements of g∗ are denoted ϕ = (ξ, `), where ξ ∈ k∗ and ` ∈ n∗. This means

ϕ(A,X) = ξ(A) + `(X)

for A ∈ k, X ∈ n. The set n∗ can be viewed as the subset {(0, `) : ` ∈ n∗} of
g∗, the annihilator of k in g∗, so that g∗ = k∗ ⊕ n∗.

3. The orbit method for G = K nN

A version of the Orbit Method, due to R. Lipsman [Lip80, Lip82] and L. Pukanszky
[Puk78], associates a coadjoint orbit O(ρ) in g∗ to each irreducible unitary represen-

tation ρ ∈ Ĝ of G = K n N . This construction is described in the current section.
We do not, however, require the full strength of this theory, since N is here a 2-step
group.

3.1. Orbit Method for subgroups of K. Let H be any connected Lie subgroup of

K . Given an irreducible unitary representation ν ∈ Ĥ of H we use the highest weight
theory for compact connected Lie groups to obtain a coadjoint orbit O(ν) ⊂ h∗. To
begin, choose a maximal torus T in H and a system of positive roots. Let iξ : t → iR
be the highest weight for ν. Extend ξ ∈ t∗ to an element of h∗ by using the Ad(K)-
invariant inner product (·, ·)k, as discussed in Section 2. The coadjoint orbitO(ν) ⊂ h∗

is then defined as
O(ν) = OH(ν) = Ad∗(H)ξ.

The map O : Ĥ → h∗/Ad∗(H) is well-defined and injective.
Note that this approach does not incorporate the “ρ-shift” (half the sum of the

positive roots) that appears elsewhere in the literature on the Orbit Method for
compact groups. (See, for example, Chapter 5 in [Kir04].) The approach described
here is better suited to our purposes.

Next suppose H is a disconnected Lie subgroup of K and α ∈ Ĥ. Let ν ∈ Ĥ◦ be an
irreducible representation of the identity component H◦ occurring in the restriction
α to H◦. We let

O(α) = Ad∗(H)OH◦
(ν)

where OH◦
(ν) ⊂ h∗ is the coadjoint orbit for ν ∈ Ĥ◦, as defined above. Equivalently

O(α) = Ad∗(H)ξ

where iξ is any highest weight occurring in α|H◦ .
Suppose that ν ′ is another irreducible representation of H◦ occurring in α|H◦ . As

H◦ is a normal subgroup of finite index in H, it follows that

ν ′(k) = (k◦ · ν)(k) = ν(k−1
◦ kk◦)
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for some k◦ ∈ H. Hence if ξ ∈ OH◦
(ν) then Ad∗(k◦)ξ ∈ OH◦

(ν ′). We conclude that
Ad∗(H)OH◦

(ν) = Ad∗(H)OH◦
(ν ′). This shows thatO(α) is well defined, independent

of the choice of ν ∈ Ĥ◦ occurring in α|H◦ .

When H is disconnected the orbit correspondence O : Ĥ → h∗/Ad∗(H) is, in
general, finite-to-one. That is, finitely many inequivalent representations of H can
yield a common coadjoint orbit. For an example of this phenomenon one need only
consider the situation when H is a finite subgroup of K.

3.2. Aligned points in n∗. Choose a positive definite inner product (·, ·)n on n that
is invariant under the action of K. Let z denote the center of n and let V = z⊥, so
that

n = V ⊕ z.

Let O ⊂ n∗ be a coadjoint orbit and choose any point ` ∈ O, so that O = Ad∗(N)`.
Let BO be the bilinear form

BO(X, Y ) = `([X, Y ])

on n and let

aO = Rad(BO) ∩ V = {X ∈ V : `([X, n]) = 0}.
As suggested by the notation, BO and aO do not depend on the choice of ` ∈ O, since
N is 2-step nilpotent. Let

wO = a⊥O ∩ V
so that

(3.1) n = aO ⊕wO ⊕ z.

Since N is 2-step, we see that the map

wO → O, X 7→ Ad∗(X)` = `− `[X,−]

is a homeomorphism. This identification of wO with O does, however, depend on
the choice of base point ` ∈ O. For our subsequent results, it is crucial that one can
distinguish a canonical base point and use this to obtain a canonical identification
wO ∼= O.

Definition 3.1. A point ` ∈ O is said to be aligned if `|wO = 0.

Lemma 3.2. O contains exactly one aligned point.

Proof. Let ` be any point in O. Since BO is non-degenerate on wO, we have

`|wO = BO(X◦,−)

for some X◦ ∈ wO. One checks easily that `◦ = Ad∗(X◦)` is the unique aligned point
in O. ¤
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The compact group K acts on n∗ via the contragredient of its action on n:

(k · `)(X) = `(k−1 ·X).

Since K acts by automorphisms on n, the action of K on n∗ takes coadjoint orbits to
coadjoint orbits. Moreover

ak·O = k · aO and wk·O = k ·wO

for elements k ∈ K, and coadjoint orbits O ⊂ n∗. The following is now immediate.

Lemma 3.3. If ` is aligned then so is k · `.
Now let KO ⊂ K denote the stabilizer of the coadjoint orbit O:

KO = {k ∈ K : k · O = O}.
The action of KO on n preserves aO and wO. Together Lemmas 3.2 and 3.3 imply:

Lemma 3.4. Let `O be the aligned point in O. Then KO = {k ∈ K : k · `O = `O}.
That is, the stabilizer of a coadjoint orbit coincides with that of its aligned point.

Our definition of aligned point depends, a priori, on the choice of K-invariant inner
product (·, ·)n. Proposition 3.6 below will, however, relate Definition 3.1 to that found
in [Lip80]. The latter does not involve a choice of inner product. In particular, we
emphasize that the orbit method for G, described next, is independent of the chosen
inner product.

3.3. Coadjoint orbits and representations of G. Our goal here is to obtain a

coadjoint orbit O(ρ) in g∗ for each ρ ∈ Ĝ. First we recall how the Mackey machine

describes Ĝ in terms of representations of N and subgroups of K.

The group K acts on the unitary dual N̂ of N via

k · π = π ◦ k−1

for k ∈ K, π ∈ N̂ . Let Kπ denote the stabilizer of π (up to unitary equivalence).
Note that

Kπ = KO
where O = ON(π) ⊂ n∗ is the coadjoint orbit for π.

Lemma 2.3 in [BJR99] shows that there is a (non-projective) unitary representation

Wπ : Kπ → U(Hπ)

of Kπ in the representation space Hπ for π that intertwines k · π with π:

(k · π)(x) = Wπ(k)−1π(x)Wπ(k)

for all k ∈ Kπ, x ∈ N . Given any irreducible unitary representation α of Kπ Mackey
theory ensures that

ρπ,α = IndKnN
KπnN

(
(k, x) 7→ α(k)⊗ π(x)Wπ(k)

)
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is an irreducible unitary representation of G. Moreover, up to unitary equivalence,
all irreducible unitary representations of G have this form. That is:

Ĝ = {ρπ,α : π ∈ N̂ , α ∈ K̂π}.
We say that ρ = ρπ,α has Mackey parameters (π, α). For our purposes it is im-

portant to note that the intertwining representation Wπ can be canonically chosen,
so that the parameters (π, α) completely determine ρπ,α. Corollary 3.2 in [Lip80]
establishes this, via positive polarizations, in the general setting of Lie groups with
co-compact nilradical. In the current context this observation amounts to the proof
of Lemma 2.3 in [BJR99]. In outline one has the following.

Let ` be the aligned point in O and note that π factors through

NO = exp(n/Ker(`|z)).
When `|z 6= 0 the group NO is the product of a Heisenberg group H with the (possibly
trivial) abelian group aO. Working from the inner product (·, ·)n one constructs a
unitary Kπ-space V and and isomorphism ϕ from H to the standard Heisenberg
group HV = V ×R. (See Section 5.1.) The element `ϕ in h∗V which corresponds to `
via ϕ satisfies

`ϕ|V = 0 `ϕ(0, 1) = 1.

So π|H can be realized, via ϕ, as the standard representation of HV in the Fock space
FV on V . Thus also Wπ is realized, via ϕ, as the restriction to Kπ of the standard
representation of U(V ) on FV . The equivalence class of Wπ does not depend on the
choice of inner product (·, ·)n used to produce ϕ.

The coadjoint orbit O(ρ) ⊂ g∗ for ρ = ρπ,α is obtained from the Mackey parameters
(π, α) as follows.

• Let ON(π) ⊂ n∗ be the coadjoint orbit corresponding to π ∈ N̂ and let `π

denote the unique aligned point in ON(π). (See Definition 3.1.)
• Let ξ be any point in the coadjoint orbit OKπ(α). (See Section 3.1.) Use the

Ad(K)-invariant inner product (·, ·)k on k to lift ξ to a linear functional on all
of k.

• Now set

(3.2) O(ρ) = Ad∗(G)(ξ, `π).

To justify this definition, we will verify that O(ρ) does not depend on the various
choices of data involved in its construction.

Lemma 3.5. The coadjoint orbit O(ρ) depends only on ρ (up to unitary equivalence).

Proof. Lemma 3.4 shows that Kπ = KON (π) coincides with the stabilizer of the aligned

point `π ∈ ON(π):

Kπ = {k ∈ K : k · `π = `π}.
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In addition observe that

Ad∗G(k)(ξ, `) = (Ad∗K(k)ξ, k · `)
for k ∈ K and (ξ, `) ∈ g∗.

• O(ρ) does not depend on the choice of ξ ∈ OKπ(α):

Indeed if ξ′ = Ad∗(k◦)ξ for some k◦ ∈ Kπ then

(ξ′, `π) = (Ad∗K(k◦)ξ, k◦ · `π) = Ad∗G(k◦)(ξ, `π)

since k◦ · `π = `π.
• O(ρ) does not depend on the choice of Mackey parameters (π, α) for ρ:

Mackey theory dictates that ρπ,α = ρπ′,α′ if and only if (π, α) and (π′, α′)
differ by the action of K. This means

π′ = k◦ · π, α′ = k◦ · α
for some k◦ ∈ K where

Kk◦·π = k◦Kπk−1
◦ , (k◦ · α)(k) = α(k−1

◦ kk◦).

We have ON(π′) = k◦ · ON(π) and hence

`π′ = k◦ · `π

by Lemma 3.3. Moreover OKk◦·π(α′) = Ad∗(k◦)OKπ(α). Thus if ξ ∈ OKπ(α)
then ξ′ = Ad∗K(k◦)ξ is in OKk◦·π(α′) and finally

(ξ′, `π′) = (Ad∗K(k◦)ξ, k◦ · `π) = Ad∗G(k◦)(ξ, `π).

¤

Note that the orbit correspondence

Ĝ → g∗/Ad∗(G), ρ 7→ O(ρ)

is, in general, finite-to-one. In fact O(ρπ,α) can arise from more than one representa-
tion whenever the stabilizer Kπ fails to be connected.

The following proposition relates Definition 3.1 to Lipsman’s definition of aligned
point in g∗. The point (ξ, `π) ∈ g∗ in Equation 3.2 is, in particular, aligned in g∗.
This reconciles our description of the orbit mapping ρ 7→ O(ρ) with [Lip80, Lip82]
and [Puk78].

Proposition 3.6. Let ` ∈ n∗ be aligned and ξ ∈ k∗` ⊂ k∗ then ϕ = (ξ, `) is an aligned
point in g∗ in the sense of [Lip80]. That is,

G` = K`N`, and Gϕ = KϕNϕ.
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Proof. The adjoint action of G on g can be written as
(3.3)

AdG(k, Y )(U,X) =

(
k · U, k ·X − (k · U) · Y + [Y, k ·X]− 1

2
[Y, (k · U) · Y ]

)

for k ∈ K, U ∈ k, X,Y ∈ n. Here k ·U = AdK(k)U and we have identified N with n.
Let (k, Y ) ∈ G`. Applying (3.3) with U = 0 yields

(3.4) `(k ·X) + `[Y, k ·X] = `(X) for all X ∈ n.

Equivalently k−1 ·(Ad∗N(Y −1)`) = ` and in particular, k ·` ∈ Ad∗N(N)`. As ` is aligned
this implies k · ` = `, in view of Lemmas 3.2 and 3.3. That is k ∈ K`. Moreover (3.4)
now becomes

`[Y, k ·X] = 0 for all X ∈ n,

which implies that Y ∈ N`. So G` = K`N` as stated.
Next let (k, Y ) ∈ Gϕ. As Gϕ ⊂ G` we have k ∈ K`, Y ∈ N`. Now (3.3) with X = 0

yields

(3.5) ξ(k · U)− `((k · U) · Y ) = ξ(U) for all U ∈ k.

This implies ξ(k ·U) = ξ(U) when U ∈ k`. But when U ∈ k⊥` (orthogonal complement
with respect to a definite Ad(K)-invariant inner product on k) we have ξ(k · U) =
0 = ξ(U), since ξ ∈ k∗` ⊂ k∗. So

(3.6) ξ(k · U) = ξ(U) for all U ∈ k.

From this it is easy to see that k ∈ Kϕ. Moreover (3.5) and (3.6) together now give

`(A · Y ) = 0 for all A ∈ k.

Using this and the fact that Y ∈ N` one can apply (3.3) to show

ϕ(Y · (U,X)) = ϕ(U,X) for all U ∈ k, X ∈ N.

That is, Y ∈ Nϕ. So Gϕ = KϕNϕ as stated. ¤

Remark 3.7. The proof for Proposition 3.6 shows that one has G` = K`N` whenever
` = ϕ|n is aligned. The condition that ξ belong to k∗` only enters the proof that
Gϕ = KϕNϕ.

Lemma 3.8. Let ϕ = (ξ, `) ∈ g∗ where ` ∈ n∗ is aligned. Then

Ad∗G(N`)ϕ = ϕ + (k` + n)⊥.

Proof. Lemma 2 in [Puk78] shows that, in any case, Ad∗G(N`)ϕ = ϕ + (g` + n)⊥. But
alignment of ` gives g` + n = k` + n, in view of the preceding remark. ¤



12 C. BENSON AND G. RATCLIFF

4. The moment map for an Ad∗(N)-orbit

Definition 4.1. Let O ⊂ n∗ be a coadjoint orbit for N , KO the stabilizer of O in K
and kO its Lie algebra. The moment map τO : O → k∗O is defined via1

τO(Ad∗(X)`O)(A) = −1

2
BO(X, A ·X) = −1

2
`O[X,A ·X]

for A ∈ kO, X ∈ n. Here `O is the unique aligned point in O.

Lemma 4.2. The map τO is well defined.

Proof. Suppose that Ad∗(X1)`O = Ad∗(X2)`O. It follows that X1 −X2 ∈ Rad(BO).
Let A ∈ kO. We have A · `O = 0 in view of Lemma 3.4 and an easy calculation yields
BO(X1, A ·X1) = BO(X2, A ·X2). ¤

Next note that for k◦ ∈ K and coadjoint orbits O ⊂ n∗ one has

Kk◦·O = k◦KOk−1
◦ , kk◦·O = Ad(k◦)(kO), and k∗k◦·O = Ad∗(k◦)(k∗O).

The following equivariance property for moment maps is fundamental. The proof
involves a routine calculation, which we leave to the reader.

Lemma 4.3. The diagram

O k◦·−−−−→ k◦ · OyτO

yτk◦·O

k∗O
Ad∗(k◦)−−−−→ k∗k◦·O

commutes for any k◦ ∈ K and any coadjoint orbit O ⊂ n∗. In particular, one has
τO(k · `) = Ad∗(k)τO(`) for ` ∈ O, k ∈ KO.

The map Ad∗(k◦) : k∗O → k∗k◦·O in the preceding diagram takes Ad∗(KO)-orbits to

Ad∗(Kk◦·O)-orbits. For π ∈ N̂ , α ∈ K̂π, k◦ ∈ K one has

Kπ = KON (π), Kk◦·π = KON (k◦·π), k◦ · α ∈ K̂k◦·π

and we conclude that

(4.1) OKk◦·π(k◦ · α) = Ad∗(k◦)OKπ(α).

Proposition 4.4. Consider a point ϕ = (ξ, `) in g∗ where ` ∈ n∗ is aligned and let
O = Ad∗(N)`. Then

Ad∗(G)ϕ ∩ n∗ = {k · `′ : k ∈ K, `′ ∈ O with τO(`′) = (−ξ)|kO},
the K-saturation of τ−1

O ((−ξ)|kO). In particular, Ad∗(G)ϕ ∩ n∗ 6= ∅ if and only if
(−ξ)|kO is in the image of τO.

1The minus sign in Definition 4.1 has been included to simplify the form of Equation 5.4 and
Proposition 5.3 below.
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Proof. First note that as ` is aligned we have kO = k`, by Lemma 3.4. For X ∈ n let
X × ` ∈ k∗ be defined as (X × `)(A) = `(A ·X) and set

TXϕ = TX(ξ, `) = ξ + X × ` +
1

2
X × ad∗N(X)`

From Equation 3.3 one obtains (see [BJR99])

Ad∗G(X)ϕ = (TXϕ, Ad∗N(X)`)

and hence

Ad∗(G)ϕ ∩ n∗ = {k · (Ad∗N(X)`) : k ∈ K,X ∈ n with TXϕ = 0}
Observe that in this notation,

τO(Ad∗N(X)`) =
1

2
(X × ad∗N(X)`)

∣∣∣∣
kO=k`

.

Suppose that k ∈ K and `′ = Ad∗N(X◦)` where X◦ ∈ n satisfies TX◦ϕ = 0, so that
k · `′ ∈ Ad∗(G)ϕ ∩ n∗. As X◦ × ` vanishes on k` the identity TX◦ϕ|k`

= 0 becomes
τO(`′) = (−ξ)|k`

. So Ad∗(G)ϕ ∩ n∗ is contained in the K-saturation of τ−1
O ((−ξ)|kO).

Next assume that (−ξ)|k`
= τO(`′) where `′ = Ad∗N(X◦)` ∈ O and set ϕ′ =

Ad∗G(X◦)ϕ. Now ϕ′ vanishes on k`, since X◦×`|k`
= 0, and thus ϕ′ and (0, `′) agree on

k` + n. Lemma 3.8 now implies that there is some X1 ∈ n` with Ad∗G(X1)ϕ
′ = (0, `′).

So X2 = X1 + X◦ + 1
2
[X1, X◦] ∈ n has Ad∗G(X2)ϕ = (0, `′). That is, `′ belongs to

Ad∗(G)ϕ ∩ n∗. As Ad∗(G)ϕ ∩ n∗ is K-saturated we conclude that the K-saturation
of τ−1

O ((−ξ)|kO) is contained in Ad∗(G)ϕ ∩ n∗. ¤

5. The orbit method with Gelfand pairs (K, N)

Henceforth we assume that (K,N) is a Gelfand pair. Our goal here is to prove
Proposition 1.2 and Theorem 1.4.

As in Section 3.3, given π ∈ N̂ ,

Wπ : Kπ → U(Hπ)

denotes the canonical unitary representation of Kπ intertwining k · π with π. The
representation Wπ is necessarily multiplicity free. In fact, (K, N) is a Gelfand pair if

and only if Wπ is a multiplicity free representation of Kπ for all π ∈ N̂ [Car87, BJR90].
Let

(5.1) Hπ =
⊕
α∈Λπ

Pπ,α

denote the decomposition of Hπ into Wπ(Kπ)-irreducible subspaces. This decompo-
sition is canonical because Wπ is multiplicity free. Here Λπ is a countable index set

that depends on π ∈ N̂ . For concreteness we take

Λπ = Spec(Wπ) = {α ∈ K̂π : α occurs in Wπ},
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so that Wπ|Pπ,α = α ∈ K̂π.

Let ρ = ρπ,σ ∈ Ĝ have Mackey parameters π ∈ N̂ , σ ∈ K̂π. By Frobenius
reciprocity

mult(1K , ρ|K) = mult(1K , IndK
Kπ

σ ⊗Wπ) = mult(1Kπ , σ ⊗Wπ) = mult(σ∗,Wπ).

Thus ρ is a K-spherical representation if and only if the representation σ∗, contra-
gredient to σ, occurs in Wπ. Hence

(5.2) ĜK = {ρπ,α∗ : π ∈ N̂ , α ∈ Λπ}.
Lemma 5.1. Let π ∈ N̂ and α ∈ Λπ, so that ρ = ρπ,α∗ belongs to ĜK. Then

O(ρ) ∩ n∗ = K · τ−1
π (OKπ(α)),

where τπ denotes the moment map τON (π) : ON(π) → k∗π. In particular, O(ρ)∩n∗ 6= ∅
if and only if OKπ(α) ⊂ Image(τπ).

Proof. Choose a point ξ ∈ OKπ(α). Then −ξ ∈ OKπ(α∗) and ρ has coadjoint orbit
O(ρ) = Ad∗(G)(−ξ, `π). Proposition 4.4 shows O(ρ) ∩ n∗ = K · τ−1

π (ξ|kπ) and the
result now follows by Kπ-equivariance of τπ. ¤

Recall that Proposition 1.2 asserts that O(ρ) ∩ n∗ 6= ∅ for all ρ ∈ ĜK . Our proof,
given below in Section 5.2, involves reduction to cases where N is a Heisenberg group.

5.1. Gelfand pairs (K, HV ). Let V be a finite dimensional complex vector space and
〈·, ·〉 be a positive definite Hermitian inner product on V . The associated Heisenberg
group HV has Lie algebra

hV = V ⊕ R with Lie bracket [(v, t), (v′, t′)] = (0,−Im〈v, v′〉).
The unitary group U(V ) for (V, 〈·, ·〉) acts on HV via automorphisms as

k · (v, t) = (kv, t).

Let K be a closed Lie subgroup of U(V ). We know that (K, HV ) is a Gelfand pair if
and only if the representation of K on the ring C[V ] of (holomorphic) polynomials,
given by

(5.3) (k · p)(v) = p(k−1v),

is multiplicity free [BJR90]. Gelfand pairs of the sort (K,HV ) have been completely
classified [Kac80, Bri85, BR96, Lea98].

Lemma 5.2. Proposition 1.2 holds for Gelfand pairs (K, HV ).

Proof. Let (K, HV ) be a Gelfand pair as above. In view of Lemma 5.1 it suffices to

check that OKπ(α) ⊂ Image(τπ) for all π ∈ ĤV , α ∈ Λπ. Letting O = OHV (π) we
will write

“ Λπ ⊂ Image(τO) ”
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as shorthand for the statement

OKπ(α) ⊂ Image(τO) for all α ∈ Λπ.

The coadjoint orbits in h∗V are of two sorts. We will describe the moment map τO for
each type of orbit and verify that Λπ ⊂ Image(τO) in each case.

For (v, t) ∈ hV let `(v,t) ∈ h∗V denote the functional

`(v,t)(v
′, t′) = Im〈v, v′〉+ tt′.

One has easily that

k · `(v,t) = `(kv,t) for k ∈ U(V ).

Single Point Orbits: We have single point coadjoint orbits

O = {`(v◦,0)}
for v◦ ∈ V . In this case KO = {k ∈ K : kv◦ = v◦} is the stabilizer of v◦ and

τO : O → k∗O is the zero map (`(v◦,0) 7→ 0). The representation π ∈ ĤV associated to
O is the one dimensional representation

π(v, t) = eiIm〈v◦,v〉

and Wπ is the trivial one dimensional representation 1KO of KO. Thus Λπ = {1KO}.
Since {0} ⊂ k∗O is the coadjoint orbit that corresponds to 1KO , we see that Λπ ⊂
Image(τO).

Planar Orbits: We have coadjoint orbits of the sort

O = {`(v,λ) : v ∈ V }
for fixed λ ∈ R×. The stabilizer of O in K is KO = K. The aligned point in O is
`O = `(0,λ) and one computes that

Ad∗(v)`O = `(λv,λ).

Hence we have

τO
(
`(v,λ)

)
(A) = τO

(
Ad∗

(
1

λ
v

)
`O

)
(A)

= −1

2
`O

([
1

λ
v,

1

λ
Av

])

= − 1

2λ2
`(0,λ)(0,−Im〈v, Av〉)

=
1

2λ
Im〈v, Av〉

for A ∈ k. Thus letting η : V → k∗ be the map

η(v)(A) = Im〈v, Av〉,
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we have that

(5.4) τO(`(v,λ)) =
1

2λ
η(v).

The map η is the (unnormalized) moment map for the action of K on V . Equation
5.4 shows that

τO(O) =

{
η(V ) for λ > 0

−η(V ) for λ < 0
.

The representation π ∈ ĤV that corresponds to O is infinite dimensional. When
λ > 0 we can realize π in a Fock space that contains C[V ] as a dense subspace. The
intertwining representation Wπ is given by Equation 5.3. Thus Λπ is the spectrum
of C[V ]. Proposition 4.1 in [BJLR97] asserts that Λπ ⊂ η(V ). When λ < 0 we can
realize π on the conjugate Fock space and Wπ is contragredient to the representation
given by Equation 5.3. In this case, Λπ is the set of representations contragredient
to those in the spectrum of C[V ]. These correspond to coadjoint orbits contained in
−η(V ). Thus we see that Λπ ⊂ Image(τO) holds in all cases. ¤

5.2. Proof of Proposition 1.2. We can now complete the proof of Proposition 1.2.

Let ρ ∈ ĜK and O(ρ) = Ad∗(G)ϕ, where ϕ ∈ g∗ and ` = ϕ|n is aligned, as usual.

Let π ∈ N̂ be the representation corresponding to Ad∗(N)` ⊂ n∗. This represen-
tation factors through

Nπ = N/Zπ

where Zπ = exp(Ker(`|z)). The action of Kπ preserves Zπ and hence descends to Nπ.
One has (see [BJR99]):

• (Kπ, Nπ) is a Gelfand pair.
• ϕ′ = ϕ|kπ+nπ is a spherical point. That is, the coadjoint orbit Ad∗(KπNπ)ϕ′

corresponds to a Kπ-spherical representation of KπNπ.

Now Nπ is either a Heisenberg group, an abelian group or a product of a Heisenberg
group with an abelian group. In the latter case, the action of Kπ preserves the two
factors. Lemma 5.2 now implies that

Ad∗(KπNπ)ϕ′ ∩ n∗π 6= ∅.
In particular, for some X◦ ∈ n we have

Ad∗G(X◦)ϕ|kπ = 0.

Applying Lemma 3.8, as in the proof for Proposition 4.4, it follows that O(ρ)∩n∗ 6= ∅
as claimed. ¤
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5.3. The map Ψ : ∆(K,N) → A(K,N). Proposition 1.2 and Theorem 1.1 show

that each K-spherical representation ρ ∈ ĜK yields a K-orbit

K(ρ) = O(ρ) ∩ n∗

in n∗. As in Section 1 we let A(K, N) ⊂ n∗/K denote the set

A(K, N) = {K(ρ) : ρ ∈ ĜK}
of K-spherical orbits in n∗ and lift K from ĜK to obtain a map Ψ on the space
∆(K, N) of bounded K-spherical functions. Proposition 5.3 below gives another
point of view on this construction.

Equation 5.2 asserts that ĜK = {ρπ,α∗ : π ∈ N̂ , α ∈ Λπ}. We let φπ,α denote the

K-spherical function associated to ρπ,α∗ ∈ ĜK . This can be written as

(5.5) φπ,α(x) =

∫

K

〈π(k · x)vπ,α, vπ,α〉πdk

where 〈·, ·〉π is the Hilbert space structure on Hπ =
⊕

α∈Λπ
Pπ,α (see Equation 5.1)

and vπ,α is any unit vector in Pπ,α [BJR90]. The following result in an immediate
consequence on Proposition 1.2 and Lemma 5.1.

Proposition 5.3. For any π ∈ N̂ , α ∈ Λπ one has

OKπ(α) ⊂ Image
(
τπ : ON(π) → k∗π

)
.

Moreover Ψ : ∆(K,N) → A(K, N) can be written as

Ψ(φπ,α) = K · `π,α

where `π,α is any point in ON(π) with τπ(`π,α) ∈ OKπ(α).

Proposition 5.3 allows one to compute Ψ(φπ,α) ∈ n∗/K without recourse to the
semidirect product G = K n N . This is useful in connection with the examples
treated below.

5.4. Proof of Theorem 1.4. Theorem 1.4 and Corollary 1.6 assert that the maps
K and Ψ are bijective. Our proof requires the following lemma.

Lemma 5.4. For each π ∈ N̂ the map

Λπ → k∗π/Ad∗(Kπ), α 7→ OKπ(α)

is injective.

Proof. Let π ∈ N̂ . As (K, N) is a Gelfand pair, so is (K◦, N), by Proposition 2.5
in [BJR99]. It follows that Wπ|K◦

π
is a multiplicity free representation. Suppose

that OKπ(α) = OKπ(α′) for some α, α′ ∈ Λπ. This means that some irreducible

representation ν ∈ K̂◦
π of the identity component K◦

π occurs in both α|K◦
π

and α′|K◦
π
.

We conclude that α = α′ since Wπ|K◦
π

is multiplicity free. ¤
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We now turn to the proof of Theorem 1.4. Let π, π′ ∈ N̂ , α ∈ Λπ, α′ ∈ Λπ′ so that

ρ = ρπ,α∗ , ρ′ = ρπ′,(α′)∗

belong to ĜK . By Proposition 5.3 there are points

` = `π,α ∈ ON(π), `′ = `π′,α′ ∈ ON(π′)

with

ξ = τπ(`) ∈ OKπ(α), ξ′ = τπ′(`
′) ∈ OKπ′ (α′)

and one has

K(ρ) = K · `, K(ρ′) = K · `′.
Suppose that K(ρ) = K(ρ′). This means

`′ = k◦ · `
for some k◦ ∈ K. Thus also k◦ · ON(π) = ON(π′) and hence

(5.6) π′ = k◦ · π.

Moreover Lemma 4.3 yields

Ad∗(k◦)ξ = Ad∗(k◦)τπ(`) = τπ′(k◦ · `) = τπ′(`
′) = ξ′

which implies

OKπ′ (α′) = Ad∗(k◦)OKπ(α) = OKπ′ (k◦ · α),

using Equation 4.1. This gives

(5.7) α′ = k◦ · α
in view of Lemma 5.4. Equations 5.6 and 5.7 imply that ρ and ρ′ are unitarily
equivalent, as their Mackey parameters differ by the action of K. ¤

Remark 5.5. Recall that the orbit map O : Ĝ → g∗/Ad∗(G) for a semidirect product
G = KnN can fail to be injective. Theorem 1.4 implies, however, that when (K,N)

is a Gelfand pair, ρ 7→ O(ρ) is one-to-one on ĜK , the K-spherical representations.

5.5. Eigenvalues for invariant differential operators. A basic result concerning
spherical functions and invariant differential operators will be needed in connection
with the examples. Recall that DK(N) denotes the set of differential operators on N
that are invariant under both the action of K and left multiplication. The spherical
functions are eigenfunctions for such operators. Given D ∈ DK(N) and φ ∈ ∆(K, N),

we write D̂(φ) for the eigenvalue of D acting on φ, so that:

Dφ = D̂(φ)φ.

Since the spherical functions are normalized to have value 1 at the identity element
e ∈ N , we have

D̂(φ) = Dφ(e).
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For D ∈ DK(N) and π ∈ N̂ , the operator π(D) commutes with the action of Kπ on
Hπ and hence preserves the subspaces Pπ,α in Decomposition 5.1. Schur’s Lemma
shows, moreover, that π(D)|Pπ,α must be a scalar operator. From Equation 5.5 we
see that

D̂(φπ,α) = Dφπ,α(e) = 〈π(D)vπ,α, vπ,α〉π
and conclude that:

Lemma 5.6. π(D)|Pπ,α = D̂(φπ,α).

6. The case of N abelian

Here we consider the map Ψ : ∆(K, N) → A(K,N) in the “degenerate” situation
where the 2-step group N is in fact abelian. The entire group algebra L1(N) is
now commutative and hence (K,N) is a Gelfand pair for any compact Lie group
K ⊂ Aut(N). One calls G = K n N a generalized Euclidean motion group. A
detailed study of the associated spherical functions can be found in [Wol06].

The unitary dual N̂ consists of characters

N̂ = {χ` : ` ∈ n∗}, χ`(x) = ei`(x).

The space N̂ is homeomorphic to n∗ via χ` ↔ `. One has

Λχ`
= {1K`

}
because the intertwining representation Wχ`

is trivial. We write φ` = φχ`,1K`
so that

∆(K,N) = {φ` : ` ∈ n∗}.
Equation 5.5 here reduces to

φ`(x) =

∫

K

χ`(k · x) dk =

∫

K

ei`(k·x) dk,

the K-average of χ`. Note that φ` = φ`′ if and only if K · ` = K · `′. In fact ∆(K,N)

is homeomorphic to N̂/K via φ` ↔ K · χ`.

Proposition 6.1. Let N be abelian and K be a compact Lie group acting smoothly
on N by automorphisms. In this context the map Ψ is simply

Ψ : ∆(K, N) → n∗/K, Ψ(φ`) = K · `.
This is, moreover, a homeomorphism onto its image A(K, N) = n∗/K

Proof. Fix ` ∈ n∗. The Kirillov orbit for the representation χ` is

O = ON(χ`) = {`},
a single point. Now ` ∈ O is aligned because wO = 0 in Equation 3.1. The moment
map τχ`

: O → k∗` sends ` to 0 since `[·, ·] = 0 in Definition 4.1. Thus Proposition 5.3
yields

Ψ(φ`) = Ψ(φχ`,1K`
) = K · `
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as claimed. Identifying ∆(K,N) with N̂/K we see that Ψ is the mapping on K-orbits
induced by

N̂ → n∗, χ` 7→ `.

As the latter is a homeomorphism, so is Ψ. ¤

7. The Gelfand pair (U(V ), HV )

The bounded spherical functions for (U(V ), HV ) have been computed indepen-
dently by various authors. (See for example [HR80], [Kor80], [Far87], [Ste88], [Str91],
[BJR92].) These spherical functions are of two distinct types, corresponding to the
single point and planar coadjoint orbits discussed in Section 5.1.

Type 1 spherical functions: These are associated to the planar coadjoint orbits in hV .
For each λ ∈ R× and m ∈ Z+ = {0, 1, 2, . . . } we have the U(V )-spherical function

φλ,m(v, t) = L(n−1)
m

(
|λ||v|

2

2
)

e−|λ||v|
2/4eiλt

where L
(n−1)
m (x) denotes the Laguerre polynomial of order n − 1 and degree m nor-

malized to have value 1 at x = 0. This spherical function arises from the infinite
dimensional representation π = πλ of HV with central character (0, t) 7→ eiλt. The
associated coadjoint orbit is O = Oλ = {`(v,λ) : v ∈ V }, with notation as in Section
5.1. For λ > 0 we realize Wπ as the standard representation of U(V ) on C[V ] (see
Equation 5.3). For λ < 0, we have the conjugate of this representation. The space
C[V ] decomposes under the action of U(V ) as

C[V ] =
∞∑

m=0

Pm(V )

where Pm(V ) denotes the space of homogeneous polynomials of degree m. In terms
of the notation used in the preceding section, we have φλ,m = φπλ,αm where αm is the
representation of U(V ) on Pm(V ).

One can use an orthonormal basis to identify V with Cn and U(V ) with the group
U(n) of n×n unitary matrices. The standard maximal torus in U(n) has Lie algebra

t =



Aθ =




iθ1

. . .
iθn


 : θ1, . . . , θn ∈ R



 .

The polynomial (z1, . . . , zn) 7→ zm
1 on V = Cn is a highest weight vector in Pm(V )

with highest weight Aθ 7→ −imθ1. Using Equation 5.4 we compute that for
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v =
(√

2|λ|m, 0, . . . , 0
)
∈ V one has

τO
(
`(v,λ)

)
(Aθ) =

1

2λ
η(v)(Aθ) =

1

2λ
Im〈v,Aθv〉 =

(√
2|λ|m

)

2λ

2

(−θ1)

=

{ −mθ1 for λ > 0
mθ1 for λ < 0

.

Using Proposition 5.3, we conclude that the U(V )-spherical orbit Ψ(φλ,m) is

(7.1) Kλ,m = U(V ) · `(v,λ) =
{

`(v,λ) : |v| =
√

2|λ|m
}

.

Type 2 spherical functions: For each real number r ≥ 0 we have a U(V )-spherical
function

ψr(v, t) =

∫

U(V )

eiRe〈wr,kv〉dk =

∫

U(V )

eiIm〈wr,kv〉dk

where wr ∈ V is any vector with |wr| = r. More explicitly we have

ψr(v, t) =
2n−1(n− 1)!

(r|v|)n−1
Jn−1(r|v|)

for r > 0 and ψ0(v, t) ≡ 1. Here Jn−1 is the Bessel function (of the first kind)
with order n − 1. The function ψr is the U(V )-average of the unitary character
π(v, t) = χwr(v) = eiIm〈wr,v〉. In terms of the notation from Section 5.3, we have
ψr = φπ,1 where 1 is the trivial one-dimensional representation of Kπ = Kwr . As
π is associated to the single point coadjoint orbit O = {`(wr,0)}, we see that the
U(V )-spherical orbit Ψ(ψr) is

(7.2) Kr = U(V ) · `(wr,0) = {`(v,0) : |v| = r}.

In summary, we have shown that

• A(U(V ), HV ) = {Kλ,m : λ ∈ R×, m ∈ Z+} ∪ {Kr : r ≥ 0} where Kλ,m and
Kr are as in Equations 7.1 and 7.2, and

• the map Ψ : ∆(U(V ), HV ) → A(U(V ), HV ) is given by Ψ(φλ,m) = Kλ,m and
Ψ(ψr) = Kr.

We can now establish Conjecture 1.7 for the Gelfand pair (U(V ), HV ).

Proposition 7.1. The map Ψ : ∆(U(V ), HV ) → A(U(V ), HV ) is a homeomorphism.

Proof. From our description of the spherical orbits Kλ,m and Kr we see that the map
F : A(U(V ), HV ) → R+ × R defined by

F (Kλ,m) =
(√

2|λ|m,λ
)

, F (Kr) = (r, 0)
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is a homeomorphism onto its image. On the other hand, the “Heisenberg fan” model
for ∆(U(V ), HV ) ([Far87],[Str91],[BJRW96]) asserts that the map E : ∆(U(V ), HV ) →
R+ × R given by

E(φλ,m) = (|λ|(2m + n), λ), E(ψr) = (r2, 0)

is also a homeomorphism onto its image. The result now follows since F ◦ Ψ and E
differ by the homeomorphism

R+ × R→ R+ × R, (r, λ) 7→ (r2 + n|λ|, λ).

¤

We recall that the map E in the Heisenberg fan construction is

E(φ) =
(
|L̂(φ)|, T̂ (φ)

)

where T = ∂
∂t

and L is the Heisenberg sub-Laplacian. A key point is that πλ(L)
is the quantum harmonic oscillator which acts on Pm(V ) ⊂ C[V ] via the scalar

−|λ|(2m + n). From Lemma 5.6 we see that L̂(φλ,m) = −|λ|(2m + n).

8. Spherical functions on the free 2-step group

Let V ∼= Rd be a d-dimensional real vector space. The free 2-step group FV has
Lie algebra

fV = V ⊕ z = V ⊕ Λ2(V ) with Lie bracket [(u,A), (v, B)] = (0, u ∧ v).

This construction is degenerate when d = 1 and yields a Heisenberg group when
d = 2. Thus we take d ≥ 3 below. Choose any positive definite inner product (·, ·)
on V and identify Λ2(V ) with so(V ) = {A ∈ gl(V ) : At = −A} so that u ∧ v
corresponds to the map

w 7→ (u,w)v − (v, w)u.

Here At denotes the transpose of A ∈ gl(V ) with respect to (·, ·). The group O(V )
acts on N = FV by automorphisms via

k · (v, A) = (kv, kAkt),

yielding a maximal compact subgroup in Aut(FV ).
It is shown in [BJR90] that (O(V ), FV ), and in fact (SO(V ), FV ), is a Gelfand pair,

but that (K, FV ) fails to be a Gelfand pair for proper closed subgroups K of SO(V ).
Our goal is the following result, which will be proved in Section 11.

Theorem 8.1. The map Ψ : ∆(O(V ), FV ) → A(O(V ), FV ) is a homeomorphism.

Likewise Conjecture 1.7 holds for (SO(V ), FV ):

Corollary 8.2. The map Ψ : ∆(SO(V ), FV ) → A(SO(V ), FV ) is a homeomorphism.
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We will not present the proof details for Corollary 8.2 here. The spaces ∆(O(V ), FV )
and ∆(SO(V ), FV ) are, in any case, closely related. Detailed parameterizations for
both spaces were obtained by Fischer in [Fis06]. Corollary 8.2 can be derived from
Theorem 8.1 by reasoning with these parameters. We prefer to work primarily with
O(V ) as this simplifies some aspects of our presentation.

The inner product on V extends to a positive definite O(V )-invariant inner product
on all of fV via

(8.1)
(
(u,A), (v, B)

)
= (u, v) +

1

2
tr(AtB) = (u, v)− 1

2
tr(AB).

For u, v ∈ V and B ∈ so(V ) one has

(8.2)
(
B, [u, v]

)
= (Bu, v).

From this one sees that(
(b, B), Ad(a,A)(u, U)

)
=

(
(b + Ba, B), (u, U)

)
,

and thus we can also write

Ad∗(a,A)(b, B) = (b−Ba,B),

where here we are using the inner product (8.1) to identify f∗V with fV . The coadjoint
orbit O = Ad∗(FV )(b, B) through (b, B) ∈ f∗V is thus

O = {(b + Bu, B) : u ∈ V } = (b, B) + Image(B).

By Image(B) we mean the image as a map from V to V . Using Equation 8.2 one
sees that

aO = Ker(B) and wO = a⊥O ∩ V = Image(B),

with notation as in Section 3. The point (b, B) is aligned if and only if Bb = 0. In
this case the stabilizer KO of O in O(V ) is, by Lemma 3.4,

KO = {k ∈ O(V ) : kb = b, kBkt = B}.
We continue to suppose that (b, B) ∈ f∗V ∼= fV is aligned and thatO = Ad∗(FV )(b, B).

The eigenvalues for B ∈ so(V ) are of the form ±iλ (λ > 0) and perhaps 0. The sym-
metric operator B2 has eigenvalues −λ2. Let Vλ denote the (−λ2)-eigenspace for B2,
so that

(8.3) V =
∑

λ≥0

Vλ, aO = V0, wO =
∑

λ>0

Vλ.

These are orthogonal direct sums. Letting

(8.4) m(λ) =

{
dim(V0) for λ = 0
dim(Vλ)/2 for λ > 0
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we see that

KO = O(b⊥ ∩ V0)×
∏

λ>0

U(Vλ) ∼=
{

O(m(0))×∏
λ>0 U(m(λ)) for b = 0

O(m(0)− 1)×∏
λ>0 U(m(λ)) for b 6= 0

,

where U(Vλ) denotes the unitary group for Vλ equipped with a suitable complex
Hermitian structure.

The space C[wO] decomposes under KO|wO =
∏

λ>0 U(Vλ) as

C[wO] =
⊗

λ>0

C[Vλ] =
⊕

α

(⊗

λ>0

Pα(λ)(Vλ)

)
,

where α = (α(λ) : λ > 0) is a set of non-negative integers. We obtain (KO|wO)-
spherical functions

φ1,α(w, t) = eit
∏

λ>0

L
(m(λ)−1)
α(λ)

( |w(λ)|2
2

)
e−|w(λ)|2/4

on HwO where w =
∑

λ>0 w(λ) ∈ ∑
λ>0 Vλ = wO. Each of these spherical functions

is associated to the coadjoint orbit through `1 ∈ h∗wO . Pulling φ1,α up to FV yields
the following:

Proposition 8.3. (See [Str91], [Fis06].) The bounded O(V )-spherical functions on

FV can be described as follows: Given π ∈ F̂V , there is an aligned point (b, B) in
the coadjoint orbit associated with π. The space V decomposes as V =

∑
λ≥0 Vλ

with respect to B. The representation space of π decomposes, with respect to Kπ, as⊕
α

(⊗
λ>0Pα(λ)(Vλ)

)
, where α = (α(λ) : λ > 0) is a set of non-negative integers.

The spherical function φπ,α is the O(V )-average of

(8.5) (a,A) 7→ ei(b,a(0))ei(B,A)
∏

λ>0

L
(m(λ)−1)
α(λ)

(
λ|a(λ)|

2

2
)

e−λ|a(λ)|2/4

where a = a(0) +
∑

λ>0 a(λ) ∈ V0 +
∑

λ>0 Vλ = V .

We remark that Proposition 8.3 includes cases where B = 0. In such cases,
O = {(b, O)} is a single point, V0 = V has dimension m(0) = d, the representa-
tion space of π has dimension 1, and the product in Proposition 8.3 is empty. We
adopt the convention that the α-parameter in {φπ,α : π, α} is empty when π is
one dimensional. We obtain a single O(V )-spherical function on FV , namely the
O(V )-average of (a,A) 7→ ei(b,a). This is, more explicitly,

(8.6) (a,A) 7→ 2(d−2)/2Γ(d/2)

(r|a|)(d−2)/2
J d−2

2
(r|a|)

when r = |b| is non-zero and (a,A) 7→ 1 when b = 0.
The derivation of Proposition 8.3 is easily adapted to encompass SO(V )-spherical

functions. One obtains an SO(V )-spherical function for each α = (α(λ) : λ > 0) as
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above, namely the SO(V )-average of (8.5). We denote this function by φ◦π,α. Note
that although

∆(O(V ), FV ) = {φπ,α : π, α} , ∆(SO(V ), FV ) =
{
φ◦π,α : π, α

}
,

one has φπ,α = φπ′,α′ (resp. φ◦π,α = φ◦π′,α′) whenever (π′, α′) differs from (π, α)
by the action of O(V ) (resp. SO(V )). Parameterizations for ∆(O(V ), FV ) and
∆(SO(V ), FV ) are given in [Fis06]. The formulation of Proposition 8.3 will, how-
ever, suffice for our proof of Theorem 8.1.

9. Some invariant differential operators on FV

One verifies that the following polynomials on fV = V ⊕ Λ2(V ) = V ⊕ so(V ) are
invariant under the action of O(V ).

• For j = 1, . . . , bd/2c we define cj(a, A) = cj(A) where

det(I − xA) = 1 +

bd/2c∑
j=1

cj(A)x2j.

Here recall that d = dim(V ). The polynomial cj is homogeneous of degree 2j
on z = Λ2(V ) = so(V ). Note that the characteristic polynomial for A can be
written as det(xI − A) = xn +

∑
j cj(A)xn−2j.

• For ` ≥ 0 we have polynomials p` defined by

p`(a,A) =
(
a,A2`a

)
.

Note that p0(a,A) = |a|2, independent of A.

From these polynomials, we obtain differential operators

cj(Z), p`(U,Z) ∈ DO(V )(FV )

as follows.
Let BV = {U1, . . . , Ud} be any orthonormal basis for V and set Zij = Ui∧Uj so that

Bz = {Zij : 1 ≤ i < j ≤ d} is also an orthonormal basis for z = Λ2(V ). We express
cj : fV → R and p` : fV → R as polynomial functions in coordinates (ui, zij) with
respect to the basis BV ∪ Bz for fV . The resulting expressions do not depend on the
choice of basis. Indeed, let B′V = {U ′

1, . . . , U
′
d} be another such basis and B′z = {Z ′

ij}
where Z ′

ij = U ′
i ∧ U ′

j. The coordinates (u′i, z
′
ij) with respect to B′V ∪ B′z are related

to (ui, zij) via (u′, z′) = (ku, kukt) for some k ∈ O(d). Since the polynomials cj, p`

are O(V )-invariant, we see that the expressions for cj and p` in the two coordinate
systems correspond under the change of variables ui 7→ u′i, zij 7→ z′ij.

Since Uj and Zij are elements of fV , we can view these as left-invariant vector fields
on FV . The operators cj(Z) and p`(U,Z) are obtained by replacing the variables uj

and zij by Ui and Zij in the expressions for cj and p` with respect to the basis BV ∪Bz.
The preceding paragraph shows these to be well defined. Since the operators Ui are
non-central, there is, however, an issue regarding the ordering of variables ui within
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monomials in the expression for p`. We specify an ordering as follows. Let a ∈ V
have coordinates (ai) with respect to BV and let A ∈ z. Using the basis BV , A can
be regarded as a d× d skew-symmetric matrix (Aij = (Ui, A(Uj))). Let

A2` =
(
q2`
ij (A)

)
ij

.

That is, q2`
ij (A) is the (i, j)’th entry of the d×d symmetric matrix A2`. The polynomial

q2`
ij : z → R is homogeneous of degree 2` and we have

p`(a,A) =
∑
i,j

aiq
2`
ij (A)aj.

We define the operator p`(U,Z) unambiguously as

(9.1) p`(U,Z) =
∑
i,j

Uiq
2`
ij (Z)Uj =

∑
i,j

UiUjq
2`
ij (Z),

where “q2`
ij (Z)” denotes the central operator obtained by replacing zij by Zij in the

expression for q2`
ij : z → R in the basis Bz.

The following result describes the eigenvalues that arise when cj(Z) and p`(U,Z)
are applied to bounded O(V )-spherical functions on FV .

Lemma 9.1. Let (b, B) be an aligned point in f∗V , π ∈ F̂V be the representation that
corresponds to the coadjoint orbit through (b, B), V =

∑
λ≥0 Vλ be the eigenspace

decomposition of V from Equation 8.3, and m(λ) be as in Equation 8.4. Let α =
(α(λ) : λ > 0) be a set of non-negative integers and φπ,α ∈ ∆(O(V ), FV ) be the
spherical function from Proposition 8.3. We have the following expressions for the
eigenvalues of invariant differential operators:

(a) cj(Z)∧(φπ,α) = (−1)jcj(B).
(b) p0(U,Z)∧(φπ,α) = −∑

λ>0 λ(2α(λ) + m(λ))− |b|2.
(c) p`(U,Z)∧(φπ,α) = −∑

λ>0 λ2`+1(2α(λ) + m(λ)) for ` > 0.

Proof. The representation π has central character π(0, A) = ei(B,A). So for Z ∈ z we
have the scalar operator

π(Z) =
d

dt

∣∣∣∣
t=0

ei(B, tZ) = i(B, Z).

Thus π(Zij) = iBij and if f is any polynomial on z then

(9.2) π(f(Z)) = f(iB).

Using this fact together with Lemma 5.6 gives

cj(Z)∧(φπ,α) = cj(iB) = i2jcj(B) = (−1)jcj(B),

independent of α. This proves (a).
We choose an orthonormal basis BV = {U1, . . . , Ud} for V that is compatible with

the eigenspace decomposition V =
∑

λ≥0 Vλ. That is, each Ui belongs to some Vλ.
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This is possible since the eigenspaces for B2 are mutually orthogonal. The operator
p0(U,Z) is

p0(U,Z) = U2
1 + · · ·+ U2

d ,

the sub-Laplacian for FV . We write this as

p0(U,Z) =
∑

λ≥0

Lλ where Lλ =
∑

{i : Ui∈Vλ}
U2

i .

As explained in Section 8, π can be realized in a Hilbert space completion of
C[wO] =

⊗
λ>0C[Vλ] and φπ,α is associated with the subspace Pα =

⊗
λ>0Pα(λ)(Vλ).

(When B = 0, we just have C[wO] = C.) For λ > 0, π(Lλ) acts on Pα(λ)(Vλ) via the
scalar

−λ(2α(λ) + m(λ))

and annihilates Pα(λ′)(Vλ′) for λ′ 6= λ. Thus π(Lλ) acts on Pα as the scalar

−λ(2α(λ) + m(λ)). For a ∈ V0, π(a) acts on all of C[wO] via the scalar ei(b,a).
As (b, B) is aligned, b ∈ V0 = aO and we see that π(L0) acts by −|b|2. We conclude
that π(p0(U,Z)) =

∑
λ≥0 π(Lλ) acts on Pα by the scalar

−
∑

λ>0

λ(2α(λ) + m(λ))− |b|2.

In view of Lemma 5.6, this proves (b).
Next recall that for ` ≥ 1, p` is defined by p`(U,Z) =

∑
i,j UiUjq

2`
ij (Z), as in

Equation 9.1. From Equation 9.2 we have

π(q2`
ij (Z)) = q2`

ij (iB) = (−1)`q2`
ij (B).

But B2|Vλ
= −λ2 and hence q2`

ij (B) = (−λ2)` for i = j with Ui ∈ Vλ and q2`
ij (B) = 0

for i 6= j. Thus we have

π(p`(U,Z)) =
∑

λ≥0

λ2`π(Lλ) =
∑

λ>0

λ2`π(Lλ).

Since π(Lλ) acts on Pα as −λ(2α(λ) + m(λ)). we conclude that π(p`(U,Z)) acts on
Pα as

−
∑

λ>0

λ2`+1(2α(λ) + m(λ)).

Again using Lemma 5.6, this proves (c). ¤

10. Convergence in the space ∆(O(V ), FV )

Theorem 10.1. Let φ ∈ ∆(O(V ), FV ) and (φn)∞n=1 be a sequence in ∆(O(V ), FV ).
Then (φn)∞n=1 converges to φ in the space ∆(O(V ), FV ) if and only if

lim
n→∞

cj(Z)∧(φn) = cj(Z)∧(φ) and lim
n→∞

p`(U,Z)∧(φn) = p`(U,Z)∧(φ)

for j = 1, . . . , bd/2c and ` = 0, . . . , bd/2c.
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Proof. Convergence in ∆(O(V ), FV ) is uniform convergence on compact sets. If (φn)
converges to φ in ∆(O(V ), FV ) then it follows that

(Dφn)(0, 0) → (Dφ)(0, 0)

so that

D̂(φn) → D̂(φ)

for all D ∈ DO(V )(FV ). It remains to prove the converse.

Let φn = φπn,αn where πn ∈ F̂V is given by the aligned point (bn, Bn) ∈ f∗V ∼= fV .
Similarly, let φ = φπ,α where π is given by the aligned point (b, B). We have

cj(Z)∧(φn) → cj(Z)∧(φ),

so in view of Lemma 9.1(a),

(−1)jcj(Bn) → (−1)jcj(B).

Since the values cj(Bn), cj(B) yield the coefficients in the characteristic polynomials
for Bn and B, we conclude that the characteristic polynomial for Bn converges to
that for B uniformly on compact sets. It follows that the eigenvalues for Bn, together
with their multiplicities, converge to those for B. More precisely, this means the
following. Each Bn has pure imaginary eigenvalues ±iµ and perhaps 0. If we list these
eigenvalues with multiplicity in increasing order in iR then we obtain d = dim(V )
sequences. Each of these converges to an eigenvalue for B and every eigenvalue for
B, together with its multiplicity, is obtained in this way.

Suppose that the non-zero eigenvalues for Bn are ±iµj(n) for j = 1, . . . , I(n) where

0 < µ1(n) < µ2(n) < · · · < µI(n)(n).

Let Vj(n) be the (−µj(n)2)-eigenspace for B2
n and let V0(n) = ker(Bn). The eigenspace

decomposition with respect to Bn, as in Equation 8.3, reads

V =

I(n)∑
j=0

Vj(n).

Note that V0(n) = {0} when 0 is not an eigenvalue for B. We can partition
the sequence (φn)∞n=1 into finitely many subsequences in which the values I(n) and
dim(Vj(n)) are constant in n. It suffices to show that each of these subsequences
converges to φ. Thus we suppose henceforth that

(10.1) I = I(n), mj =
1

2
dim(Vj(n)) (j = 1, . . . , I), m0 = dim(V0(n)),

independent of n. Let

(10.2) S+ = {λ > 0 : −λ2 is an eigenvalue for B2}, and S = S+ ∪ {0}.
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The eigenspace decomposition (8.3) with respect to B is

V =
∑

λ∈S
Vλ.

Recall that m(λ) = 1
2
dim(Vλ) for λ 6= 0 and m(0) = dim(V0). We have now the

following facts.

• limn→∞ µj(n) ∈ S for j = 1, . . . , I.
• If λ ∈ S+ then λ = limn→∞ µj(n) for some j ∈ {1, . . . , I}. We write

Sλ = {j : µj(n) → λ}.
• For each λ ∈ S+, m(λ) =

∑
j∈Sλ

mj.

• m(0) = m0 + 2
∑

j∈S0
mj

Note that the data (πn, αn) and (π, α), which determine the spherical functions φn

and φ, are only unique modulo the action of K = O(V ). By conjugating each Bn by
a suitably chosen element kn ∈ O(V ), we can assume that the subspace Vj(n) does
not depend on n and is contained in V0 for j = 0 and in Vλ where λ = limn µj(n) for
j ≥ 1. In this regard, recall that, by Lemma 3.3, the action of O(V ) takes aligned
points to aligned points. We let

(10.3) Vj = Vj(n)

for j = 0, . . . , I, independent of n, and now have:

• V =
∑I

j=0 Vj is the common eigenspace decomposition for V with respect to

the Bn’s. That is, V0 = ker(Bn) and for j = 1, . . . , I, Vj is the (−µj(n)2)-
eigenspace for B2

n. We have m0 = dim(V0) and mj = dim(Vj)/2 for j =
1, . . . , I.

• For each λ ∈ S+, Vλ =
∑

j∈Sλ
Vj.

• V0 = V0 +
∑

j∈S0
Vj.

Recall that the parameter α for the spherical function φ = φπ,α is a set of non-
negative integers {α(λ) : λ ∈ S+}. For ease of notation, we write

αj(n) = α(µj(n))

for the parameters associated with φn.
Using Lemma 9.1 and the hypotheses that p`(U,Z)∧(φn) → p`(U,Z)∧(φ) for

` = 0, . . . , bd/2c we obtain, as n →∞,

(10.4)
I∑

j=1

µj(n)(2αj(n) + mj) + |bn|2 →
∑

λ∈S+

λ(2α(λ) + m(λ)) + |b|2

and

(10.5)
I∑

j=1

µj(n)2`+1(2αj(n) + mj) →
∑

λ∈S+

λ2`+1(2α(λ) + m(λ))
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for ` = 1, . . . , bd/2c. Since all terms in (10.4) are non-negative, it follows that

(10.6) {µj(n)αj(n) : n = 1 . . .∞} is bounded for j = 1, . . . , I.

Hence for ` ≥ 1 we have limn→∞ µj(n)2`+1αj(n) = 0 whenever limn→∞ µj(n) = 0.
Thus we can write

lim
n→∞

I∑
j=1

µj(n)2`+1(2αj(n) + mj)

=
∑

λ∈S+

lim
n→∞

[∑
j∈Sλ

µj(n)2`+1(2αj(n) + mj)

]

=
∑

λ∈S+

{
lim

n→∞

[∑
j∈Sλ

2µj(n)2`+1αj(n)

]
+ λ2`+1m(λ)

}
,

using the identity m(λ) =
∑

j∈Sλ
mj. Comparing the above with (10.5) we see that

∑

λ∈S+

λ2`+1α(λ) = lim
n→∞

∑

λ∈S+

∑
j∈Sλ

µj(n)2`+1αj(n).

If limn→∞ µj(n) 6= 0, then {αj(n) : n = 1 . . .∞} is bounded by (10.6). Since αj(n)
is an integer, we can suppose, by partitioning (φn)∞n=1 into a finite number of subse-
quences, that

αj(n) = αj

is constant in n for all j with limn→∞ µj(n) 6= 0. We now have

∑

λ∈S+

λ2`+1α(λ) = lim
n→∞

∑

λ∈S+

∑
j∈Sλ

µj(n)2`+1αj =
∑

λ∈S+

λ2`+1

(∑
j∈Sλ

αj

)
.

As this holds for all ` = 1, . . . , bd/2c and |S+| ≤ bd/2c we conclude that

(10.7)
∑
j∈Sλ

αj = α(λ) for all λ ∈ S+.

Recall that φn(a,A) is the O(V )-average of

(10.8) ei(bn,a)ei(Bn,A)

I∏
j=1

L
(mj−1)

αj(n)

(
µj(n)|a(j)|

2

2
)

e−µj(n)|a(j)|2/4

where a =
∑I

j=0 a(j) with a(j) ∈ Vj. For λ ∈ S+ and j ∈ Sλ we have αj(n) = αj in
this expression. The factors

∏
j∈Sλ

L(mj−1)
αj

(
µj(n)|a(j)|

2

2
)

e−µj(n)|a(j)|2/4
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converge as n →∞ to

∏
j∈Sλ

L(mj−1)
αj

(
λ|a(j)|

2

2
)

e−λ|a(j)|2/4.

Averaging over U(Vλ) gives

L
(m(λ)−1)
α(λ)

(
λ|a(λ)|

2

2
)

e−λ|a(λ)|2/4,

where a =
∑

λ∈S a(λ) with a(λ) ∈ Vλ. Here we have used m(λ) =
∑

j∈Sλ
mj. and

Equation 10.7.
It remains to consider the factors

(10.9) ei(bn,a)
∏
j∈S0

L
(mj−1)

αj(n)

(
µj(n)|a(j)|

2

2
)

e−µj(n)|a(j)|2/4

from Formula 10.8. We will show that the O(V0)-average of (10.9) converges to

ψb(a0) =

∫

O(V0)

ei(kb,a0)dk.

Equation (10.4) says that

lim
n→∞

(
I∑

j=1

µj(n)(2αj(n) + mj) + |bn|2
)

=
∑

λ∈S+

λ(2α(λ) + m(λ)) + |b|2.

For λ ∈ S+ we have

lim
n→∞

∑
j∈Sλ

µj(n)(2αj(n) + mj) = λ(2α(λ) + m(λ)),

again using m(λ) =
∑

j∈Sλ
mj and

∑
j∈Sλ

αj = α(λ). Hence we see that

(10.10) lim
n→∞

(∑
j∈S0

2µj(n)αj(n) + |bn|2
)

= |b|2.

For j ∈ S0, it may not be true that the sequence αj(n) is bounded. Since (10.10)
converges and all terms are non-negative, we see that {|bn|2 : n = 1 . . .∞} and
{µj(n)αj(n) : n = 1 . . .∞} must be bounded. Pass to any subsequence of (10.9).
We need only show that this subsequence itself has some subsequence whose O(V )-
average converges to ψb(a0). For this, we use a sub-subsequence for which |bn|2
converges and µj(n)αj(n) converges for each j ∈ S0. Thus we now suppose that

lim
n→∞

2µj(n)αj(n) = hj

say, for each j ∈ S0 and that
lim

n→∞
|bn|2 = h0.
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Choose any vectors cj ∈ Vj with |cj|2 = hj. For j ∈ S0 we have

lim
n→∞

L
(mj−1)

αj(n)

(
µj(n)|a(j)|

2

2
)

e−µj(n)|a(j)|2/4 =

∫

U(Vj)

ei(kcj ,a(j))dk.

This follows from the description of ∆(U(Vj), HVj
) presented in Section 7. We now

see that (10.9) converges to

ei(c0,a)
∏
j∈S0

∫

U(Vj)

ei(kcj ,a(j))dk =

∫

[
∏

j∈S0
U(Vj)]

ei(kc,a)dk,

where c = c0 +
∑

j∈S0
cj. Note that c ∈ V0 since V0 = V0 +

∑
j∈S0

Vj. Averaging over

O(V0) gives ψc(a0). But (10.10) yields

|c|2 = |c0|2 +
∑
j∈S0

|cj|2 = h0 +
∑
j∈S0

hj = |b|2

and hence ψc(a0) = ψb(a0) as desired.
We have now shown that the (O(V0) ×

∏
λ∈S+ U(Vλ))-average of (10.8) converges

to

ψb(a0)e
i(B,A)

∏

λ∈S+

L
(m(λ)−1)
α(λ)

(
λ|a(λ)|

2

2
)

e−λ|a(λ)|2/4.

This is also the O(V0)-average of

ei(b,a)ei(B,A)
∏

λ∈S+

L
(m(λ)−1)
α(λ)

(
λ|a(λ)|

2

2
)

e−λ|a(λ)|2/4,

which is a function whose O(V )-average is φ. Thus φn converges to φ in ∆(O(V ), FV )
as claimed. ¤

Lemma 9.1 shows that the eigenvalues cj(Z)∧(φ) and p`(U,Z)∧(φ) are real numbers
and that p`(U,Z)∧(φ) is non-positive for all φ ∈ ∆(O(V ), FV ). Thus we obtain the
following corollary to Theorem 10.1.

Corollary 10.2. The map

E : ∆(O(V ), FV ) → (R+)bd/2c+1 × (R)bd/2c

defined by

E(φ) =
(
|p0(U,Z)∧(φ)|, . . . , |pbd/2c(U,Z)∧(φ)|, c1(Z)∧(φ), . . . , cbd/2c(Z)∧(φ)

)

is a homeomorphism onto its image.

This provides an analogue for (O(V ), FV ) of the Heisenberg fan model for (U(V ), HV )
and its generalization to Gelfand pairs (K, HV ) [BJRW96].
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11. Proof of Theorem 8.1

As in the proof of Theorem 10.1, we let {φn = φπn,αn : n = 1 . . .∞} and φ =
φπ,α be bounded O(V )-spherical functions on FV . Let On = Ad∗(FV )(bn, Bn) and
O = Ad∗(FV )(b, B) be the coadjoint orbits associated to πn and π, where the points
(bn, Bn) and (b, B) are aligned in f∗V ∼= fV . We have

On = {(bn + v,Bn) : v ∈ wOn}, O = {(b + v, B) : v ∈ wO}
where wOn = Image(Bn), wO = Image(B). Proposition 5.3 ensures that

Ψ(φn) = O(V ) · (bn + un, Bn), Ψ(φ) = O(V ) · (b + u,B),

for some points un ∈ wOn , u ∈ wO which satisfy

τOn(bn + un, Bn) ∈ OO(V )πn (αn), τO(b + u,B) ∈ OO(V )π(α).

We will show that (φn)∞n=1 converges to φ in ∆(O(V ), FV ) if and only if
(O(V ) · (un + bn, Bn))∞n=1 converges to O(V ) · (b + u,B) in A(O(V ), FV ).

First suppose that (φn)∞n=1 converges to φ. Theorem 10.1 shows that cj(Z)∧(φn) →
cj(Z)∧(φ) for j = 1, . . . , bd/2c and p`(U,Z)∧(φn) → p`(U,Z)∧(φ) for ` = 0, . . . , bd/2c.
We will continue to employ the notation for eigenvalues and eigenspaces developed
in the proof of Theorem 10.1. In particular, the proof shows that we can assume V
has a common eigenspace decomposition “V =

∑I
j=0 Vj” with respect to all of the

Bn’s and that this is related to the eigenspace decomposition “V =
∑

λ∈S Vλ” with
respect to B as explained in connection with Equations 10.1, 10.2 and 10.3.

The coadjoint orbits On and O correspond to coadjoint orbits in Heisenberg groups
HwOn

and HwO , as discussed prior to Proposition 8.3. Equation 7.1 now shows that

(11.1) un =
I∑

j=1

ũj(n) where ũj(n) ∈ Vj, |ũj(n)|2 = 2µj(n)αj(n),

(11.2) and u =
∑

λ∈S+

uλ where uλ ∈ Vλ, |uλ|2 = 2λα(λ).

By using the action of
∏I

j=1 U(Vj) ⊂ O(V ), we can suppose that

ũj(n) =
√

2µj(n)αj(n) ẽj

where ẽj ∈ Vj is any fixed unit vector, independent of n.
As in the proof of Theorem 10.1, we can suppose that for j ∈ Sλ with λ > 0 we

have αj(n) = αj, independent of n. Thus for λ ∈ S+, we can define

vλ :=
∑
j∈Sλ

(√
2λαj

)
ẽj = lim

n→∞

∑
j∈Sλ

ũj(n).
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We have vλ ∈ Vλ since Vλ =
∑

j∈Sλ
Vj, and

|vλ|2 = 2λ

[∑
j∈Sλ

αj

]
= 2λα(λ),

in view of Equation 10.7. Thus, using the fact that |vλ|2 = |uλ|2, we see that

lim
n→∞

∑

λ∈S+

∑
j∈Sλ

ũj(n) =
∑

λ∈S+

vλ

∈
( ∏

λ∈S+

U(Vλ)

)( ∑

λ∈S+

uλ

)
=

( ∏

λ∈S+

U(Vλ)

)
u.

Letting u0(n) = bn +
∑

j∈S0
ũj(n), we have u0(n) ∈ V0 since

V0 = V0 +
∑

j∈S0
Vj. Moreover

|u0(n)|2 = |bn|2 +
∑
j∈S0

|ũj(n)|2

= |bn|2 +
∑
j∈S0

2µj(n)αj(n) −−−→
n→∞

|b|2

by (10.10). Thus the
(
O(V0)×

∏
λ∈S+ U(Vλ)

)
-orbit through bn + un = u0(n) +∑

λ∈S+

∑
j∈Sλ

ũj(n) converges to the
(
O(V0)×

∏
λ∈S+ U(Vλ)

)
-orbit through b + u.

Hence also (O(V ) · (un + bn, Bn))∞n=1 converges to O(V ) · (b + u,B).

Conversely, suppose that O(V ) · (un + bn, Bn) → O(V ) · (b+u,B) in A(O(V ), FV ).
Since cj and p` are O(V )-invariant polynomials, it follows that

(11.3) cj(Bn) −−−→
n→∞

cj(B) for j = 1, . . . , bd/2c

(11.4) and p`(bn + un, Bn) −−−→
n→∞

p`(b + u,B) for all l ≥ 0.

From (11.3) and Lemma 9.1(a) we have that

(11.5) cj(Z)∧(φn) −−−→
n→∞

cj(Z)∧(φ)

for j = 1, . . . , bd/2c. Also, as in the proof of Theorem 10.1, it follows from (11.3)
that the eigenvalues for Bn converge to those for B. Thus we can assume that we
have compatible eigenspace decompositions as in the first part of this proof. Since
τOn(bn + un, Bn) = αn and τO(b + u,B) = α, Equations 11.1 and 11.2 hold. Thus we
have

p0(bn + un, Bn) = |bn|2 + |un|2 =
I∑

j=1

2µj(n)αj(n) + |bn|2

and p0(b + u,B) =
∑

λ∈S+

2λα(λ) + |b|2.
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Since p0(bn + un, Bn) → p0(b + u,B) and m(λ) =
∑

j∈Sλ
mj for λ ∈ S+, we conclude

that [
I∑

j=1

µj(n)(2αj(n) + mj) + |bn|2
]
−−−→
n→∞

[ ∑

λ∈S+

λ(2α(λ) + m(λ)) + |b|2
]

.

But this gives

(11.6) p0(U,Z)∧(φn) −−−→
n→∞

p0(U,Z)∧(φ),

via Lemma 9.1(b). For ` ≥ 1 we have

p`(bn + un, Bn) =
(
bn + un, B2`

n (bn + un)
)

=
(
un, B2`

n un

)

since bn ∈ ker(Bn) = V0. As un =
∑I

j=1

(√
2µj(n)αj(n)

)
ẽj and B2

n|Vj
= −µj(n)2 we

conclude that

p`(bn + un, Bn) = (−1)`

I∑
j=1

2µj(n)2`+1αj(n).

Similarly

p`(b + u,B) = (−1)`
∑

λ∈S+

2λ2`+1α(λ).

Using p`(bn + un, Bn) → p`(b + u,B) and Lemma 9.1(c), we conclude that

(11.7) p`(U,Z)∧(φn) −−−→
n→∞

p`(U,Z)∧(φ)

for ` ≥ 1, just as for the case ` = 0 above.
Having established (11.5), (11.6) and (11.7), it now follows from Theorem 10.1 that

φn → φ in ∆(O(V ), FV ). This completes the proof of Theorem 8.1. ¤

12. Spherical functions on F3

In this section we examine the models for ∆(O(V ), FV ) provided by Corollary 10.2
and Theorem 8.1 in the simplest case: d = dim(V ) = 3. We will write

K = O(3), n = R3 × Λ2(R3) = R3 × so(3), N = exp(n)

and for λ ∈ R let

Bλ =




0 0 0
0 0 λ
0 −λ 0


 .

One can check that each K-orbit in n∗ ∼= n through an aligned point contains a
unique aligned point with one of two possible forms:(

(r, 0, 0), Bλ

)
with r ≥ 0, λ > 0 or

(
(r, 0, 0), 0

)
with r ≥ 0.

The space ∆(O(V ), FV ) can be parameterized by the set

P = {(r, λ, m) : r ≥ 0, λ > 0, m ∈ Z+} ∪ {(r, 0) : r ≥ 0}.



36 C. BENSON AND G. RATCLIFF

The spherical function φr,λ,m for parameter (r, λ, m) ∈ P is the K-average of

(a,A) 7→ eira1eiλA2,3L(0)
m

(
λ(a2

2 + a2
3)

2

)
e−λ(a2

2+a2
3)/4.

This follows from Proposition 8.3, since (Bλ, A) = −tr(BλA)/2 = λA2,3. The spher-
ical functions φr,0 associated to parameters (r, 0) ∈ P are φ0,0 = 1 and

φr,0(a,A) =
21/2Γ(3/2)

(r|a|)1/2
J 1

2
(r|a|) =

sin(r|a|)
r|a|

for r > 0. Here we have used (8.6) together with the classical identities

Γ

(
3

2

)
=

1

2
Γ

(
1

2

)
=

√
π

2
, J 1

2
(x) =

√
2

πx
sin(x).

We now consider the map

E : ∆(K, N) → (R+)2 × R, E(φ) = (|p0(U,Z)∧(φ)|, |p1(U,Z)∧(φ)|, c1(Z)∧(φ))

given by Corollary 10.2. Using Lemma 9.1 we compute

p0(U,Z)∧(φr,λ,m) = −λ(2m + 1)− r2

p0(U,Z)∧(φr,0) = −r2

p1(U,Z)∧(φr,λ,m) = −λ3(2m + 1)

p1(U,Z)∧(φr,0) = 0

c1(Z)∧(φr,λ,m) = −c1(Bλ) = −λ2

c1(Z)∧(φr,0) = −c1(0) = 0.

Thus we have

E(φr,λ,m) = (λ(2m + 1) + r2, λ3(2m + 1), −λ2), E(φr,0) = (r2, 0, 0).

For m ∈ Z+ let Sm ⊂ (R+)3 be defined as

Sm = {(λ(2m + 1) + r2, λ3(2m + 1), λ2) : r ≥ 0, λ ≥ 0}
We see that the image E(∆(K, N)) of ∆(K,N) in (R+)2 × R is homeomorphic to

(12.1) E =
∞⋃

m=0

Sm ⊂ (R+)3

Finally we consider the space A(K,N), which is homeomorphic to ∆(K, N) by

Theorem 8.1. From Equation 11.2 we see that ` = ((r,
√

2λm, 0), Bλ) is a spherical
point in O = Ad∗(N)((r, 0, 0), Bλ) with τO(`) = m. Thus we have

Ψ(φr,λ,m) = K · ((r, (2λm)1/2, 0), Bλ), Ψ(φr,0) = K · ((r, 0, 0), 0).
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So A(K,N) = X/K where X is the closed subset of n∗ = n given by

X = (R3 × {0}) ∪
{

(b, B) :
||b1||2
2||B|| ∈ Z

}

and b = b0+b1 denotes the Fitting decomposition for b ∈ R3 with respect to B ∈ so(3).
The inverse mapping for Ψ is given on X /K by

K · (b, B) 7→
{

φ||b0||, ||B||, ||b1||2/2||B|| for B 6= 0
φ||b||, 0 for B = 0

and the model X /K is homeomorphic to E via

X /K → E , K · (b, B) 7→ (||b||2 + ||B||, ||b1||2||B||+ ||B||3, ||B||2).
From either model one sees, for example, that a sequence of spherical functions

(φrn,λn,mn)∞n=1 converges in ∆(K, N) to φr,0 when (rn), (λn) and (λnmn) are convergent
with lim λn = 0 and lim(r2

n + 2λnmm) = r2.
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