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Spherical Functions for the Action of a Finite Unitary
Group on a Finite Heisenberg Group

Chal Benson and Gail Ratcliff

Abstract. The action of the unitary group on the real Heisenberg group
yields a Gelfand pair. The associated spherical functions are well known and
have been computed independently by many authors. In this paper we develop
a discrete counterpart to this story by replacing the real numbers by a finite
field of odd characteristic. This produces a finite Gelfand pair whose spherical
functions are computed explicitly. Our formulae resemble classical Gauss sums.

1. Introduction and overview of results

Given any field F of characteristic not equal to 2 one can form the (2n)-
dimensional symplectic vector space

(W = Fn × Fn, [·, ·]) where

[z, z′] =
[
(x,y), (x′,y′)

]
= x · y′ − y · x′.

The associated polarized Heisenberg group is Hn(F) = W × F with product

(z, t)(z′, t′) =
(
z + z′, t + t′ + 2−1[z, z′]

)
.

This is a two-step nilpotent group with center F. The symplectic group Sp(n,F)
acts by automorphisms on Hn(F) via

k · (z, t) = (kz, t).

In the classical situation one has F = R. Identifying W = Rn × Rn with
Cn realizes the unitary group U(n) = U(n,C) as a maximal compact connected
subgroup of Sp(n,R). The action of U(n) on Hn = Hn(R) yields a Gelfand pair
(U(n) n Hn, U(n)) whose bounded spherical functions are well known [1, 4, 5,
10, 12, 20, 21]. They amount to certain U(n)-invariant functions on Hn which
restrict to an additive character on the center. One has two distinct types of
behavior according to whether or not this central character is trivial:

Type 1: (Non-trivial on the center.) For each pair (λ,m) ∈ R× × (Z≥0) one has a
spherical function φλ,m(z, t) = L

(n−1)
m

(|λ||z|2/2
)
e−|λ||z|

2/4eiλt. Here L
(n−1)
m is the

order (n − 1) Laguerre polynomial of degree m normalized so that L
(n−1)
m (0) = 1.

The polynomials {L(n−1)
m | m ∈ Z≥0} are orthogonal on (0,∞) with respect to the

measure xn−1e−x dx. Explicitly L
(n−1)
m (x) = (n− 1)!

∑m
j=0

(
m
j

)
(−x)j/(j + n− 1)!.
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Type 2: (Trivial on the center.) These are obtained by U(n)-averaging additive
unitary characters on W. One has ηr(z, t) = 2n−1(n− 1)!Jn−1(r|z|)/(r|z|)n−1 for
each r > 0 together with η0 ≡ 1.

In this paper we derive a counterpart to these formulae in the context of finite
fields. Throughout we let F = Fq denote the field with q elements where

q = pm

for some odd prime p and positive integer m. Choose any non-square

ε ∈ F× − (F×)2

in F and form the quadratic extension field

F̃ = F(
√

ε).

We adapt “complex notation” to F̃, writing, for (z = x + y
√

ε) ∈ F̃,

Re(z) = x, Im(z) = y, z = x− y
√

ε.

Now
〈z, z′〉 = z1z′1 + · · ·+ znz′n

is a Hermitian inner product on F̃n. (That is, non-degenerate F-bilinear and F̃-
linear in the first variable with 〈z, z′〉 = 〈z′, z〉.) The unitary group U(n, F̃) is the
set of F̃-linear transformations on F̃n preserving 〈·, ·〉. This is a finite group of order

|U(n, F̃)| =
∏n

j=1((q
2 − q − 1)j − 1)
(q − 2)n

.

Identifying W with F̃n embeds U(n, F̃) in Sp(n,F) because [z, z′] = −Im(〈z, z′〉).
It is known that (U(n, F̃)nHn(F), U(n, F̃)) is a finite Gelfand pair [2].

As in the classical situation we can regard spherical functions for the pair
(U(n, F̃) n Hn(F), U(n, F̃)) as U(n, F̃)-invariant functions on Hn(F) given on the
center by additive characters of F. The type 2 spherical functions, having trivial
central character, are obtained by U(n, F̃)-averaging additive characters ψ̃ ∈ Ŵ:

ηψ̃(z, t) =
1

|U(n, F̃)|
∑

k∈U(n,F̃)

ψ̃(kz).

One obtains a distinct type 2 spherical function for each U(n, F̃)-orbit in W. When
n = 1 this gives q such spherical functions and for n ≥ 2 there are q + 1 in all. See
Lemma 4.1 below.

The type 2 spherical functions for (U(n, F̃)nHn(F), U(n, F̃)) are obvious ana-
logues for their classical counterparts. The type 1 spherical functions (non-trivial
on the center) are less transparent. We will describe them first for the case n = 1.
Note that U(1, F̃) = {z ∈ F̃ : zz = 1} is the kernel of the norm mapping

N : F̃× → F×, N(z) = zz = x2 − y2ε

for the field extension F̃/F. As N is surjective U(1, F̃) is a cyclic subgroup of F̃×
with order q + 1.



SPHERICAL FUNCTIONS ON FINITE HEISENBERG GROUPS 3

Theorem 1.1. The U(1, F̃)-spherical functions of type 1 on H1(F) are given
as follows. Let ψ ∈ F̂ be a non-trivial additive character on F and χ̃ ∈ (F̃×/F×)̂
a non-trivial multiplicative character on F̃ whose restriction to F× is trivial. One
has a spherical function φψ,χ̃(z, t) = φψ,χ̃(z)ψ(t) where φψ,χ̃(0) = 1 and

(1.1) φψ,χ̃(z) =
−1

q2 − 1

∑

w∈F̃−F
χ̃(w)ψ

(
− 1

4ε

Re(w)
Im(w)

N(z)
)

for z 6= 0. Distinct pairs (ψ, χ̃) yield distinct spherical functions φψ,χ̃. So there are
(q − 1)q = q2 − q spherical functions of type 1.

Our description of the type 1 spherical functions when n ≥ 2 is less concise.
We will show, however, that they are computable in terms of the corresponding
functions for the case n = 1:

Theorem 1.2. For n ≥ 2 the U(n, F̃)-spherical functions of type 1 on Hn(F)
may be indexed by pairs

(
ψ ∈ F̂ − {1}, χ̃ ∈ (F̃×/F×)̂

)
. One has φψ,χ̃(z, t) =

φψ,χ̃(z)ψ(t) where

φψ,χ̃(z) =
1

dn(χ̃)

∑
φ1

ψ,χ̃1
(z1) · · ·φ1

ψ,χ̃n
(zn).

Here
• φ1

ψ,χ̃j
(zj) is a U(1, F̃)-spherical function (as in Theorem 1.1),

• the sum is over all (χ̃1, . . . , χ̃n) with χ̃j 6≡ 1 and χ̃1 · · · χ̃n = χ̃,

• dn(χ̃) =

{
qn+(−1)n−1

q+1 for χ̃ 6≡ 1
qn+(−1)nq

q+1 for χ̃ ≡ 1
.

Distinct pairs (ψ, χ̃) yield distinct spherical functions φψ,χ̃. So there are
(q − 1)(q + 1) = q2 − 1 spherical functions of type 1.

Recall that a Gauss sum, in the context of finite fields F, is a sum of the sort

(1.2) G(χ, ψ) =
∑

α∈F×
χ(α)ψ(α),

for some multiplicative character χ ∈ (F×)̂ and additive character ψ ∈ F̂. Equation
1.1 presents φχ̃,ψ as a “modified Gauss sum” over the extension field F̃. The sum
contains an honest multiplicative character but the additive character has been
altered. Working from (1.1) we will derive another expression for φχ̃,ψ, as a “modi-
fied Gauss sum” over F. In this form we have an honest additive character but the
multiplicative character has been altered:

Corollary 1.3. The U(1, F̃)-spherical functions of type 1 on H1(F) may be
written as φψ,χ′(z, t) = φψ,χ′(z)ψ(t) where φψ,χ′(0) = 1 and

(1.3) φψ,χ′(z) =
−1

q + 1

∑

a∈F
χ′(a)ψ

(
− a

4ε
N(z)

)

for z 6= 0. Here ψ ∈ F̂ is a non-trivial additive character on F and χ′ : F → C
satisfies χ′ 6≡ 1 and

(1.4) χ′(a)χ′(b) =

{
1 if b = −a

χ′
(

ab+ε
a+b

)
if b 6= −a

.
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Gauss sums and their variants arise frequently in connection with representa-
tion theory and analysis on finite groups ([16], [22]). So the general flavor of our
formulae is not surprising. They also bear some resemblance to Soto-Andrade’s
spherical functions on the finite Poincaré upper half plane [18, 19].

The remainder of this paper is organized as follows. The next section summa-
rizes background material concerning finite Gelfand pairs, spherical functions and
the representation theory of Heisenberg groups and related semidirect products.
Section 3 contains the proofs for Theorem 1.1 and Corollary 1.3. The proof for
Theorem 1.2 is given in Section 4.

2. Preliminaries

For a finite set S, the symbol C[S] will denote the set of all C-valued functions
on S. This is a complex vector space of dimension |S| which carries a Hermitian
inner product

〈f, g〉S =
1
|S|

∑

x∈S

f(x)g(x).

When S = G, a finite group, C[G] is the group algebra with convolution product

f ? g(x) =
∑

y∈G

f(xy−1)g(y).

The symbol Ĝ denotes the set of irreducible unitary representations of a group
G, modulo unitary equivalence. For ρ ∈ Ĝ we write Hρ for the representation space
of ρ and let dρ = dim(Hρ).

2.1. Generalities on finite Gelfand pairs and spherical functions. We
recall briefly the definition and basic properties of Gelfand pairs and associated
spherical functions in the context of finite groups. Proofs may be found in [14,
Chapter 7], [22, Chapter 20].

Let G be a finite group and K a subgroup of G. One says that (G,K) is a
Gelfand pair when the set C[K\G/K] of K-bi-invariant complex valued functions on
G is a commutative subalgebra of the group algebra C[G]. Equivalently IndG

K(1K)
is a multiplicity free representation of G and

dim(HK
ρ ) ≤ 1 for each ρ ∈ Ĝ.

Suppose that (G, K) is a finite Gelfand pair. For each representation ρ ∈ Ĝ
one obtains a C-valued function on G via

(2.1) φρ(x) =
1
|K|

∑

k∈K

Tr(ρ(kx)) =
1
|K|

∑

k∈K

Tr(ρ(xk)),

the K-average of the trace character for ρ. The K-spherical representations are

ĜK = {ρ ∈ Ĝ : dim(HK
ρ ) = 1} = {ρ ∈ Ĝ : φρ(e) = 1},

the spectrum of IndG
K(1K), and {φρ : ρ ∈ ĜK} are the spherical functions for

(G,K). These are precisely the functions φ : G → C for which f 7→ (f ? φ)(e) is a
non-zero algebra mapping from C[K\G/K] to C. They form an orthogonal basis
for C[K\G/K] with 〈φρ, φρ〉G = 1/dρ. An alternate formula for φρ reads

(2.2) φρ(x) = 〈ρ(x)vρ, vρ〉
where vρ is a unit K-fixed vector in Hρ.
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2.2. Semidirect products. Now suppose K and H are finite groups and that
K acts on H via automorphisms. We call (K, H) a Gelfand pair when (G,K) is a
Gelfand pair with G = KnH, the semidirect product of K with H. The restriction
mapping C[G] → C[H] gives an isometry from C[K\G/K] onto C[H]K , the K-
invariant functions on H, compatible with convolution. So (K, H) is a Gelfand pair
if and only if C[H]K is a commutative subalgebra of C[H]. In this case we regard
the spherical functions as elements of C[H]K , via restriction.

2.3. Schrödinger and oscillator representations. Now let F = Fq as in
Section 1. The unitary dual of H = Hn(F) is well understood. Each irreducible
representation is of dimension 1 or qn. The qn-dimensional representations are those
with non-trivial central characters. Let ψ ∈ F̂ be a non-trivial additive character
on F. The Schrödinger representation πψ is realized on the space C[Fn] as

(2.3) πψ(x,y, t)f(u) = ψ
(
t + y · u + 2−1x · y)

f(u + x).

Now if k ∈ Sp(n,F) then πψ ◦ k has central character ψ and hence is unitarily
equivalent to πψ. The oscillator representation ωψ of Sp(n,F) (also called the
metaplectic or Weil representation) intertwines πψ ◦ k with πψ:

(2.4) πψ(kz, t) = ωψ(k)πψ(z, t)ωψ(k)−1 (k ∈ Sp(n,F), (z, t) ∈ H).

This completely characterizes the representation ωψ except when n = 1 and q = 3
[8]. The oscillator representation is given explicitly in [15] and [3].

2.4. Type 1 representations of G = KnH. Now let H = Hn(F), let K be
a subgroup of Sp(n,F) and set G = KnH. An application of the Mackey machine
gives a description of Ĝ. The type 1 representations ρ ∈ Ĝ are those non-trivial on
the center of H. These have the form

(2.5) ρ(k, z, t) = ρψ,σ(k, z, t) = σ(k)⊗ πψ(z, t)ωψ(k),

where ψ ∈ F̂ − {1}, σ ∈ K̂.

2.5. Gelfand pairs (K,H). Let ρ = ρψ,σ be as in (2.5). Now dim(HK
ρ ) is

the multiplicity of the contragredient representation σ∗ ∈ K̂ in ωψ|K . So if (K, H)
is a Gelfand pair we must have that ωψ|K is multiplicity free. On the other hand
one can check that dim(HK

ρ ) ≤ 1 holds for all type 2 representations ρ ∈ Ĝ. So
one has:

Proposition 2.1. [2] Let H = Hn(F) and K be a subgroup of Sp(n,F). Then
(K,H) is a Gelfand pair if and only if ωψ|K is a multiplicity free representation of
K for every ψ ∈ F̂ − {1}.

In practice it can be difficult to obtain the decomposition of ωψ|K into irre-
ducible components. When (K, H) is a Gelfand pair the total number of irreducibles
that occur is, however, determined by the following:

Lemma 2.2. Let K be a subgroup of Sp(n,F) for which (K,H) is a Gelfand
pair. The number of irreducible components in ωψ|K (ψ ∈ F̂− {1}) coincides with
|W/K|, the number of K-orbits in W.

This follows easily from the fact that the tensor product ωψ ⊗ ω∗ψ of the oscilla-
tor representation for Sp(n,F) with its contragredient can be identified with its
permutation representation in C[W] [8, 9].
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2.6. Type 1 spherical functions for (K, H). The preceding discussion
shows that the type 1 spherical functions for a Gelfand pair of the sort (K,H),
(H = Hn(F), K ⊂ Sp(n,F)) are

(2.6)
{

φψ,σ : ψ ∈ F̂− {1}, σ ∈ K̂, σ∗ ≤ ωψ|K
}

where φψ,σ = φρψ,σ
(see (2.1)) and “σ∗ ≤ ωψ|K” means σ∗ occurs in ωψ|K .

For σ ∈ K̂ with σ∗ ≤ ωψ|K let Pσ ⊂ C[Fn] denote the (unique) subspace on
which ωψ|K acts by a copy of σ∗. Working from Equation 2.2 one can show that

(2.7) φψ,σ(z, t) =
1
dσ

dσ∑

j=1

〈πψ(z, t)uj , uj〉

where {uj} is any orthonormal basis for Pσ [1, Corollary 2.3].

2.7. Restricting to subgroups of K. Suppose that K and K ′ are subgroups
of Sp(n,F) with K ′ ⊂ K and that (K ′,H) is a Gelfand pair. Clearly (K, H) is also a
Gelfand pair. The type 1 K-spherical functions φψ,σ are related to the K ′-spherical
functions φ′ψ,σ′ via

(2.8) φψ,σ =
1
dσ

∑

σ′≤σ|K′
dσ′φ

′
ψ,σ′ .

This follows easily from (2.7) by using an orthonormal basis for Pσ compatible with
its decomposition into K ′-irreducible subspaces Pσ′ [1, Proposition 2.4].

3. Type 1 spherical functions for (U(1, F̃), H1(F))

In this section we will prove Theorem 1.1 and Corollary 1.3. We adopt the
notation

H1 = H1(F), U1 = U(1, F̃) = {k ∈ F̃ : N(k) = kk = 1}
and take G = U1 nH1. It is shown in [2] that (U1, H1) is a Gelfand pair. Another
proof of this fact will be given below, in Remark 3.3, as a byproduct of our spherical
function calculation.

As U1 is abelian (in fact cyclic of order q + 1) the type 1 representations of G
(see (2.5)) become

(3.1) ρψ,χ(k, z, t) = χ(k)πψ(z, t)ωψ(k)

for characters ψ ∈ F̂ − {1}, χ ∈ Û1. To apply Equation 2.1 we must compute
Tr(ρψ,χ(k, z, t)). Letting πψ(z) = πψ(z, 0), one has πψ(z, t) = πψ(z)ψ(t) and hence

(3.2) Tr(ρψ,χ(k, z, t)) = χ(k)Tr
(
πψ(z)ωψ(k)

)
ψ(t).

Calculation of Tr
(
πψ(z)ωψ(k)

)
is the key technical step in this paper. We write

SgnF× for the sign character on the multiplicative group F×,

SgnF×(t) =
{

+1 if t is a square in the group F×
−1 otherwise .

Lemma 3.1.

Tr(πψ(z)ωψ(k)) =





qδz,0 if k = 1
SgnF×(−1) if k = −1
SgnF×

(
a−1
2

)
ψ

(− 1+a
4bε N(z)

)
if (k = a + b

√
ε) 6= ±1



 .
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Proof. The additive characters ψ on F can be written explicitly as

(3.3) ψλ(x) = exp

(
2πi

p
TrF/Fp

(λx)
)

for λ ∈ F

where TrF/Fp
is the trace mapping for the field extension F/Fp (F = Fq = Fpm).

Throughout this proof we take ψ = ψλ with λ ∈ F× and write πλ, ωλ in place of
πψλ

, ωψλ
. Also let z = x + y

√
ε here and δu ∈ C[F] denote the function

δu(s) = δu,s =
{

1 if s = u
−1 if s 6= u

.

Note that {δu : u ∈ F} is an (orthogonal) basis for C[F]. Formula 2.3 gives

(3.4) πλ(z)δu = ψλ(yu− xy/2)δu−x.

The calculations for k = 1 and k = −1 are straightforward and left to the
reader. Below we consider k = a + b

√
ε where k 6= ±1 and N(k) = a2 − b2ε = 1,

so b 6= 0. Also assume, for the moment, that a 6= 0. (Pure imaginary elements
k = b

√
ε in U1 will be treated separately.)

Viewed as an element of Sp(1,F) = SL(2,F), k factors as
[

a bε
b a

]
=

[
1 0

a−1b 1

] [
a 0
0 a−1

] [
0 1
−1 0

] [
1 0

−a−1bε 1

] [
0 −1
1 0

]

= La−1bDaJL−a−1bεJ
−1.

where Lc =
[

1 0
c 1

]
. We now apply the following formulae from [15]:

(3.5)
ωλ(Da)f(s) = SgnF×(a)f(a−1s)
ωλ(Lc)f(s) = ψλ(−cs2/2)f(s)

ωλ(J)f(s) = (−1)m+1(−i)m(p−1)/2SgnF×(λ) 1√
q

∑
α∈F f(α)ψλ(αs)

.

These give

ωλ(k)f(s) = ψλ(−a−1bs2/2)SgnF×(a)
(
ωλ(JL−a−1bεJ

−1)f
)
(a−1s)

=
SgnF×(a)

q
ψλ

(
− b

2a
s2

) ∑

α,β∈F
ψλ

(
bε

2a
α2 + α

( s

a
− β

))
f(β).

Setting f = δu and completing the square in α yields

ωλ(k)δu(s) =
SgnF×(a)

q
ψλ

(
− b

2a
s2

) ∑

α∈F
ψλ

(
bε

2a
α2 +

( s

a
− u

)
α

)

=
SgnF×(a)

q
ψλ

(
− a

2bε
u2 +

1
bε

us− a

2bε
s2

)
Gλ

(
bε

2a

)

where Gλ(c) denotes the quadratic Gauss sum1

(3.6) Gλ(c) =
∑

α∈F
ψλ(cα2)

1Quadratic Gauss sums are special cases of Equation 1.2. Indeed Gλ(c) = G(SgnF× , ψcλ).
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for c ∈ F×. So now, applying (3.4),

πλ(z)ωλ(k)δu =
SgnF×(a)

q
Gλ

(
bε

2a

) ∑

v∈F
ψλ

(
− a

2bε
u2 +

1
bε

uv − a

2bε
v2

)
πλ(z)δv

=
SgnF×(a)

q
Gλ

(
bε

2a

) ∑

v∈F
ψλ

(
− a

2bε
u2 +

1
bε

uv − a

2bε
v2 + vy − 1

2
xy

)
δv−x

and hence

Tr(πλ(z)ωλ(k)) =
SgnF×(a)

q
Gλ

(
bε

2a

)
ψλ

(
1
2
xy

)
×

∑

u∈F
ψλ

(
− a

2bε
u2 +

1
bε

u(u + x)− a

2bε
(u + x)2 + uy

)

Upon completing the square in u the last summation becomes

∑

u∈F
ψλ

((
1− a

bε

)(
u +

x

2
+

byε

2(1− a)

)2

− 1
4

[(
1− a

bε

)
x2 + 2xy +

(
bε

1− a

)
y2

]
− ax2

2bε

)

= Gλ

(
1− a

bε

)
ψλ

(
−1

2
xy

)
ψλ

(
−1

4

[(
1 + a

bε

)
x2 +

(
bε

1− a

)
y2

])
.

But bε/(1− a) = −(1 + a)/b since a2 − b2ε = 1 and so
(

1 + a

bε

)
x2 +

(
bε

1− a

)
y2 =

1 + a

bε
(x2 − y2ε) =

1 + a

bε
N(z).

We obtain

Tr(πλ(z)ωλ(k)) =
SgnF×(a)

q
Gλ

(
bε

2a

)
Gλ

(
1− a

bε

)
ψλ

(
−1 + a

4bε
N(z)

)
.

The quadratic Gauss sum Gλ(c) has been famously evaluated. In fact (see [13,
Section 5.2])

(3.7) Gλ(c) = G1(λc) = SgnF×(λc)G1(1)

where

(3.8) G1(1) =
{

(−1)m−1√q if p ≡ 1 ( mod 4)
(−1)m−1im

√
q if p ≡ 3 ( mod 4) .

Applying these facts and multiplicativity of SgnF× we obtain

SgnF×(a)Gλ

(
bε

2a

)
Gλ

(
1− a

bε

)
= SgnF×

(
1− a

2

)
(G1(1))2

where

(G1(1))2 =
{

q if p ≡ 1 (mod 4)
(−1)mq if p ≡ 3 (mod 4)

}
= SgnF×(−1)q.

So finally

Tr(πλ(z)ωλ(k)) = SgnF×

(
a− 1

2

)
ψλ

(
−1 + a

4bε
N(z)

)

as in the statement of our Lemma.



SPHERICAL FUNCTIONS ON FINITE HEISENBERG GROUPS 9

To complete the proof it remains to consider pure imaginary elements k = b
√

ε
in U1. As −b2ε = N(k) = 1 the element −1 must fail to be a square in F×. That
is SgnF×(−1) = −1 and q ≡ 3 (mod 4). Equivalently

p ≡ 3 ( mod 4) and m is odd.

In this case U1 contains exactly two such pure imaginary elements.
As bε = −b−1, one can factor k in Sp(1,F) as

[
0 bε
b 0

]
=

[
b−1 0
0 b

] [
0 −1
1 0

]
= Db−1J−1.

Equations 3.4 and 3.5 yield

πλ(z)ωλ(k)δu = SgnF×(b)SgnF×(λ)(+i)m(p−1)/2 1√
q

∑

v∈F
ψλ(−buv)πλ(z)δv

=
im(p−1)/2SgnF×(bλ)√

q

∑

v∈F
ψλ

(
−buv + yv − 1

2
xy

)
δv−x

and hence

Tr(πλ(z)ωλ(k)) =
im(p−1)/2SgnF×(bλ)√

q

∑

u∈F
ψλ

(
−bu(x + u) + y(x + u)− 1

2
xy

)

=
im(p−1)/2SgnF×(bλ)√

q
ψλ

(
1
2
xy +

1
4b

(bx− y)2
) ∑

u∈F
ψλ

(
−b

[
u +

bx− y

2b

]2
)

=
im(p−1)/2SgnF×(bλ)√

q
Gλ(−b)ψλ

(
b

4

[
x2 +

y2

b2

])
.

But 1/b2 = −ε, so x2 + y2/b2 = x2 − y2ε = N(z) and hence

(3.9) Tr(πλ(z)ωλ(k)) =
im(p−1)/2SgnF×(bλ)√

q
Gλ(−b)ψλ

(
b

4
N(z)

)
.

Now applying (3.7) and (3.8) gives

Gλ(−b) = SgnF×(−λb)G1(1) = −SgnF×(bλ)im
√

q

as p ≡ 3 (mod 4) and m is odd. The coefficient in (3.9) is thus −im(p+1)/2 =
−i(p+1)/2, again using p ≡ 3 (mod 4), m odd. So finally

(3.10) Tr(πλ(z)ωλ(k)) = −i(p+1)/2ψλ

(
b

4
N(z)

)
.

On the other hand setting a = 0 in the formula given for Tr(πλ(z)ωλ(k)) with
k 6= ±1 in the statement of Lemma 3.1 produces

SgnF×

(
−1

2

)
ψλ

(
− 1

4bε
N(z)

)
= −SgnF×(2)ψλ

(
b

4
N(z)

)
,

as SgnF×(−1) = −1 and −1/bε = b here. This coincides with (3.10) because, in
fact,

SgnF×(2) = i(p+1)/2

when p ≡ 3 (mod 4) and m odd. Indeed 2 is a square in F×(q=pm) if and only if 2 is
a square in F×p . For if 2 were a square in F×q but not a square in F×p then a square
root for 2 in Fq would be an element of degree 2 over Fp. But this is not possible
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as the field extension Fq/Fp has odd degree m. So now SgnF×(2) coincides with
the Legendre symbol, which for p ≡ 3 (mod 4) is (see [7, Theorem 95])

(
2
p

)
=

{
1 if p ≡ 7 (mod 8)

−1 if p ≡ 3 (mod 8)

}
= i(p+1)/2.

This completes the proof. ¤

Remark 3.2. Setting z = 0 in the formula from Lemma 3.1 gives the following
expression for the trace character of ωψ|U1 .

Tr(ωψ(k)) =
{

q if k = 1
SgnF×

(
a−1
2

)
for k = a + b

√
ε 6= 1 .

The character for the oscillator representation of Sp(n,F) is the subject of [9, 6, 17].

Let ρψ,χ be a type 1 representation of G (see (3.1)) and write

φψ,χ(z, t) =
1

q + 1

∑

k∈U1

Tr(ρψ,χ(k, z, t)).

In view of (3.2) one has φψ,χ(z, t) = φψ,χ(z)ψ(t) where

(3.11) φψ,χ(z) =
1

q + 1

∑

k∈U1

χ(k)Tr(πψ(z)ωψ(k)).

The result is a spherical function when ρψ,χ ∈ ĜU1 . We will now complete the
proof for Theorem 1.1 by deriving Formula 1.1 for the type 1 spherical functions.
The parameter χ̃ in (1.1) is related to χ in a simple way, Equation 3.14 below. We
will show that the condition that ρψ,χ be U1-spherical requires χ̃ to be non-trivial.

Proof of Theorem 1.1. The group homomorphism

(3.12) η : F̃× → U1, η(w) =
w

w
=

w2

N(w)

has kernel F× and hence image of order |F̃×|/|F×| = q + 1 = |U1|. So η is a group
epimorphism.2 We use the map η to lift the summation over U1 in (3.11) to a
summation over F̃×. Lemma 3.1 now yields

φψ,χ(z) =
1

q2 − 1

∑

w∈F̃×
χ(η(w))Tr[πψ(z)ωψ(η(w))]

=
1

q2 − 1

[
(q − 1)qδz,0 + (q − 1)χ(−1)SgnF×(−1)

+
∑

w∈F̃×−(F×∪F×√ε)

χ(η(w))SgnF×

(
Re(η(w))− 1

2

)
ψ

(
−1 + Re(η(w))

4Im(η(w))ε
N(z)

)]
.

Taking (w = x + y
√

ε) ∈ F̃× one computes

SgnF×

(
Re(η(w))− 1

2

)
= SgnF×

(
y2ε

x2 − y2ε

)
= −SgnF×(N(w)),

2This observation is a special case of Hilbert’s Satz 90 concerning cyclic field extensions. See
[11, Theorem 4.28] for the general result.
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1 + Re(η(w))
Im(η(w))

=
x

y
=

Re(w)
Im(w)

for Im(w) 6= 0.

So now

φψ,χ(z) =
1

q2 − 1

[
(q − 1)qδz,0 + (q − 1)SgnF×(−1)χ(−1)

−
∑

w∈F̃×−(F×∪F×√ε)

SgnF×(N(w))χ(η(w))ψ
(
− 1

4ε

Re(w)
Im(w)

N(z)
)]

.

But for the (q − 1) pure imaginary elements w = y
√

ε in F̃× one has

SgnF×(N(w))χ(η(w))ψ
(
− 1

4ε

Re(w)
Im(w)

N(z)
)

= SgnF×(−y2ε)χ(−1)ψ(0)

= −SgnF×(−1)χ(−1).

So we can write φψ,χ = φψ,χ̃ where

(3.13) φψ,χ̃(z) =
1

q2 − 1

[
(q − 1)qδz,0 −

∑

w∈F̃−F
χ̃(w)ψ

(
− 1

4ε

Re(w)
Im(w)

N(z)
)]

and

(3.14) χ̃(w) = SgnF×(N(w))χ(η(w)) = SgnF̃×(w)χ(η(w)).

Each χ̃ is a multiplicative character on F̃ whose restriction to F× is trivial. Dis-
tinct characters χ ∈ Û1 yield distinct characters χ̃ ∈ (F̃×)̂ because η is surjective.
As |F̃×/F×| = q + 1 = |U1| we conclude that

{χ̃ : χ ∈ Û1} = (F̃×/F×)̂ ,

the set of all multiplicative characters on F̃ whose restrictions to F× are trivial.
Thus (3.13) is precisely the formula given for type 1 spherical functions in the
statement of Theorem 1.1. In fact, however, (3.13) is a spherical function only
when ρψ,χ is a spherical representation. It remains to verify that this corresponds
to the condition that χ̃ be non-trivial. For this it suffices to evaluate φψ,χ̃ at the
identity in H1. The result must be 1 or 0, depending on whether or not ρψ,χ is a
spherical representation.

Equation 3.13 yields

φψ,χ̃(0) =
q

q + 1
− 1

q2 − 1

∑

w∈F̃−F
χ̃(w).

When χ̃ ≡ 1 this gives φψ,χ̃(0) = 0. When χ̃ is non-trivial one has

0 =
∑

w∈F̃×
χ̃(w) =

∑

w∈F̃−F
χ̃(w) +

∑

w∈F×
χ̃(w) =

∑

w∈F̃−F
χ̃(w) + (q − 1),

so
∑

w∈F̃−F χ̃(w) = −(q− 1) and φψ,χ̃(0) = 1. Hence the type 1 spherical functions
are obtained by taking χ̃ ∈ (F̃×/F×)̂ non-trivial as claimed. This completes the
proof for Theorem 1.1. ¤
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Remark 3.3. As φψ,χ̃(0) = dim(HU1
ρψ,χ

) the proof shows dim(HU1
ρ ) ≤ 1 for all

type 1 representations ρ ∈ Ĝ. This gives another proof of the fact that (U1,H1) is a
Gelfand pair. Now in view of Proposition 2.1 the restriction ωψ|U1 of the oscillator
representation to U1 is multiplicity free for each non-trivial ψ ∈ F̂. Hence the q-
dimensional representation ωψ|U1 decomposes as the sum of all but one of the q +1
distinct characters χ ∈ Û1. But the sign characters for U1 and F̃× are related via
SgnU1 ◦ η = SgnF̃× and hence S̃gnU1 =

(
SgnF̃×

)2 ≡ 1. The proof shows that ρψ,χ

is U1-spherical if and only if χ̃ 6= 1. Equivalently χ occurs in ωψ|U1 if and only if
χ 6= SgnU1 . This proves the following result of Gérardin.3

Lemma 3.4. [6, Theorem 3.3(c)] The representation ωψ|U1 decomposes as the
sum of all characters χ 6= SgnU1 in Û1.

Proof of Corollary 1.3. Working from (1.1) one has, for z 6= 0,

φψ,χ̃(z) = − 1
q2 − 1

∑

w∈F̃−F
χ̃(w)ψ

(
− 1

4ε

Re(w)
Im(w)

N(z)
)

= − 1
q2 − 1

∑

a∈F

∑

b∈F×
χ̃
(
b(a +

√
ε)

)
ψ

(
− 1

4ε

ba

b
N(z)

)

= − q − 1
q2 − 1

∑

a∈F
χ̃(a +

√
ε)ψ

(
− a

4ε
N(z)

)

= − 1
q + 1

∑

a∈F
χ′(a)ψ

(
− a

4ε
N(z)

)
,

where now

(3.15) χ′(a) = χ̃(a +
√

ε).

As χ̃ is non-trivial one has χ′ 6≡ 1 and one can check that χ′ satisfies condition
(1.4) in the statement of Corollary 1.3.

To complete the proof we will show that every map χ′ : F→ C satisfying (1.4)
has the form (3.15) for some character χ̃ ∈ (F̃×/F×)̂ . Let χ′ satisfy (1.4) and
define χ̃ : F̃× → C as

χ̃(x + y
√

ε) =
{

1 if y = 0
χ′(x/y) if y 6= 0 .

By construction χ′(a) = χ̃(a +
√

ε) for a ∈ F and χ̃|F× ≡ 1. Finally a routine
computation shows that χ̃ is a multiplicative character on F̃. ¤

4. Type 1 spherical functions for (U(n, F̃), Hn(F))

We now write Hn = Hn(F), Un = U(n,F) and let ω
(n)
ψ denote the restriction

of the oscillator representation from Sp(n,F) to Un. Lemma 3.4 asserts that ω
(1)
ψ

3A different convention for the oscillator representation on U(1, F̃) is employed in [6]. In our
context this amounts to replacing ωψ|U1 by SgnU1 ⊗ ωψ |U1 . This twisted variant of ωψ |U1 then

decomposes as the sum of all non-trivial characters for U1.
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decomposes with q irreducible components,

(4.1) ω
(1)
ψ '

⊕

χ∈S
χ where S = Û1 − {SgnU1}.

When n ≥ 2, however, ω
(n)
ψ has q+1 irreducible constituents. This is a consequence

of Lemma 2.2 together with the following:

Lemma 4.1. For n ≥ 2 the group Un = U(n,Fq) has q + 1 orbits on W = F̃n.

Proof. Equivalently the non-zero vectors in W form q orbits. We will outline
an argument, omitting details. To begin it can be shown that each Un-orbit in
W = F̃n meets F̃2 ⊂ F̃n. So it suffices to consider the case n = 2.

Suppose that z 6= 0 is not an isotropic vector in W = F̃2. That is, 〈z, z〉 6= 0.
One shows that U2 · z contains a vector of the form (λ, 0) with λ ∈ F̃×. Moreover
U2 · (λ, 0) = Un · (λ′, 0) if and only if N(λ) = N(λ′). As the norm mapping is
surjective it follows that the non-isotropic vectors form |F×| = q − 1 orbits.

Next let
N = {z ∈ W : z 6= 0, 〈z, z〉 = 0}

denote the set of non-zero isotropic vectors. One has N 6= ∅ since, for example,
(1, λ) ∈ N for any λ ∈ F̃× with N(λ) = −1. It can be shown that U2 · (1, λ) = N .
Thus N is a single U2-orbit, completing the proof. ¤

Now take n ≥ 2, let Tn denote the torus

Tn = U1 × · · · × U1︸ ︷︷ ︸
n times

,

and identify U1 with the scalar matrices kIn in Un (k ∈ U1) so that

U1 ⊂ Tn ⊂ Un.

As U1 is a central subgroup in Un each irreducible representation σ ∈ Ûn is given
on U1 by some character χσ ∈ Û1:

σ(kIn) = χσ(k)IHσ (k ∈ U1).

We will refer to χσ as the central character for σ.

Lemma 4.2. Let σ ∈ Ûn and suppose that σ occurs in ω
(n)
ψ . Then

σ|T n '
⊕(

χ1 ⊗ χ2 ⊗ · · · ⊗ χn

)

where the sum is over all (χ1, . . . , χn) ∈ Sn (S = Û1 − {SgnU1}) with product
χ1χ2 · · ·χn = χσ. Moreover each character χ ∈ Û1 arises as the central character
χ = χσ for precisely one irreducible representation σ ≤ ω

(n)
ψ .

Proof. The restriction of ω
(n)
ψ to Tn can be identified with the tensor product

representation ω
(1)
ψ ⊗ · · · ⊗ ω

(1)
ψ . So, by (4.1),

(4.2) ω
(n)
ψ |T n '

⊕

χj∈S
(χ1 ⊗ · · · ⊗ χn

)
.
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Each representation χ1 ⊗ · · · ⊗ χn in ω
(n)
ψ |T n occurs in the restriction of exactly

one σ ≤ ω
(n)
ψ . As the restriction of χ1 ⊗ · · · ⊗ χn to the scalar matrices is given by

kIn 7→ χ1(k) · · ·χn(k) we have that

χ1 ⊗ · · · ⊗ χn ≤ σ|T n =⇒ χ1χ2 · · ·χn = χσ.

On the other hand it is easy to see that each of the q + 1 characters χ for U1

can be obtained as a product χ = χ1 · · ·χn with each factor χj 6= SgnU1 . So all
characters χ ∈ Û1 appear as central characters χσ for irreducible representations
σ ≤ ω

(n)
ψ . As we know ω

(n)
ψ has exactly q +1 irreducible constituents it now follows

that the mapping

Spec(ω(n)
ψ ) → Û1, σ 7→ χσ

is a bijection. So now

• each σ ≤ ω
(n)
ψ is determined by its central character χσ,

• every χ ∈ Û1 has the form χ = χσ for just one σ ≤ ω
(n)
ψ , and

• for χ1, . . . , χn ∈ S we have χ1⊗ · · · ⊗χn ≤ σ|T n if and only if χ1 · · ·χn =
χσ.

This completes the proof. ¤

In view of Lemma 4.2 we now let σ
(n)
χ ∈ Ûn denote the unique irreducible

representation occurring in ω
(n)
ψ with central character χσ = χ.

Lemma 4.3. For n ≥ 2 the dimension dn(χ) of σ
(n)
χ is given by

dn(χ) =

{
qn+(−1)n−1

q+1 for χ 6= (SgnU1)
n

qn+(−1)nq
q+1 for χ = (SgnU1)

n
.

Here (SgnU1)
n = 1 or SgnU1 according to the parity of n. In any case ω

(n)
ψ

decomposes a a sum of q irreducibles of dimension (qn + (−1)n−1)/(q + 1) and
one of dimension (qn + (−1)nq)/(q + 1). This is consistent with the fact that
dim(C[Fn]) = qn.

Proof. For n = 2 we have

d2(χ) =
∣∣∣{(χ1, χ2) ∈ S2 : χ1χ2 = χ}

∣∣∣ =
∣∣∣{χ1 ∈ Û1 : χ1 6= SgnU1 , χ · SgnU1}

∣∣∣

=
{

q − 1 for χ 6= 1
q for χ = 1 ,

which agrees with the formula in the statement of the lemma. For n ≥ 3 one has
the recurrence

dn(χ) =
∣∣∣{(χ1, . . . , χn) ∈ Sn : χ1 · · ·χn = χ}

∣∣∣

=

∣∣∣∣∣∣
⋃

χ′∈S
{(χ1, . . . , χn−1) ∈ Sn−1 : χ1 · · ·χn−1 = χχ′}

∣∣∣∣∣∣
=

∑

χ′∈S
dn−1(χχ′),
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which can be used to complete the proof using induction on n. When χ = (SgnU1)
n

we have χχ′ 6= (SgnU1)
n−1 for each χ′ ∈ S. In this case the sum yields

dn(χ) = q

[
qn−1 + (−1)n−2

q + 1

]
=

qn + (−1)nq

q + 1
.

When χ 6= (SgnU1)
n we have χχ′ = (SgnU1)

n−1 for exactly one χ′ ∈ S, namely
χ′ = χ−1(SgnU1)

n−1. In this case the sum yields

dn(χ) = (q − 1)
[
qn−1 + (−1)n−2

q + 1

]
+

qn−1 + (−1)n−1q

q + 1
=

qn + (−1)n−1

q + 1
as claimed. ¤

Now (Tn,Hn) is a Gelfand pair since (4.2) shows ωψ|T n to be multiplicity free.
As Tn is a subgroup of Un it follows that (Un,Hn) is also a Gelfand pair.

Proof of Theorem 1.2. We will apply Equation 2.8 with K = Un, K ′ = Tn.
The type 1 spherical functions for (Tn,Hn) are indexed by (F̂−{1})×Sn and can
be written as

φψ;χ1,...,χn(z, t) = φ1
ψ,χ1

(z1) · · ·φ1
ψ,χn

(zn)ψ(t)

where φ1
ψ,χj

denotes the type 1 spherical function for (U1,H1) with parameters
(ψ, χj). On the other hand the type 1 spherical functions for (Un,Hn) are indexed
by

(F̂− {1})× Spec(ω(n)
ψ ) = (F̂− {1})× {σ(n)

χ : χ ∈ Û1}.
Lemma 4.2 in combination with (2.8) shows that φψ,χ = φ

ψ,σ
(n)
χ

satisfies

φψ,χ(z) =
1

dn(χ)

∑
φ1

ψ,χ1
(z1) · · ·φ1

ψ,χn
(zn)

where the sum is over all (χ1, . . . , χn) ∈ Sn with χ1 · · ·χn = χ and dn(χ) =
dim(σ(n)

χ ) is as in Lemma 4.3. Finally lifting each χ ∈ Û1 to a character χ̃ on F̃×,
via Formula 3.14, puts the type 1 spherical functions for (Un,Hn) in the form given
in the statement of Theorem 1.2. ¤
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