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A topological group G together with a compact subgroup K are said to form
a Gelfand pair if the set L1(K\G/K) of K-bi-invariant integrable functions
on G is a commutative algebra under convolution. The situation where G and
K are Lie groups has been the focus of extensive and ongoing investigation.
Riemannian symmetric spaces G/K furnish the most widely studied and best
understood examples. ([Hel84] is a standard reference.) Apart from these, key
examples arise as semi-direct products G = K n N , of compact Lie groups
K with two-step nilpotent Lie groups N . Such pairs are the focus of [BJR90],
[Vin03] and [Yak06], among other works. There are many examples where
N = Hn(R), a (real) Heisenberg group, and K is a subgroup of the unitary
group U(n).

Gelfand pairs also arise in connection with analysis on finite groups, but,
to our knowledge, have been studied less extensively. Known examples include
the symmetric group modulo the hyperoctahedral group [Mac] and finite ana-
logues of the hyperbolic plane [SA87, Ter99]. In this paper we introduce a
family of Gelfand pairs associated with finite Heisenberg groups. They provide
finite analogues for the Gelfand pairs associated with Hn(R). Our examples
appear elsewhere, in the literature on the oscillator representation, but their
relevance to the study of Gelfand pairs has not, however, been previously
emphasized.

1 Preliminaries

To begin we must establish notation and recall some ideas concerning the
representation theory for Heisenberg groups over finite fields. For a finite set
S, the symbol C[S] will denote the set of all C-valued functions on S. This
is a complex vector space of dimension |S| which carries a positive-definite
hermitian inner product

〈f, g〉S =
1
|S|

∑

x∈S

f(x)g(x).
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1.1 Heisenberg groups

Let F be a field of odd characteristic. The polarized Heisenberg group Hn(F)
is the set

Hn(F) = Fn × Fn × F
with product

(x,y, t)(x′,y′, t′) =
(
x + x′,y + y′, t + t′ +

1
2
(x · y′ − y · x′)

)
. (1)

Inclusion of the factor 1/2 is motivated by the use of exponential coordinates in
connection with the real Heisenberg group Hn(R). (See [Fol89].) Some authors
omit this factor but the resulting group is isomorphic with that defined here
via the mapping (x,y, t) 7→ (x,y, 2t).

An alternate notation is useful in connection with certain examples and
constructions. We write

W = Wn = Fn × Fn,

so that Hn(F) = W × F and Equation (1) becomes

(z, t)(z′, t′) = (z + z′, t + t′ + 2−1[z, z′]) (2)

where [z, z′] denotes the usual symplectic form on W, namely

[z, z′] = [(x,y), (x′,y′)] = x · y′ − y · x′. (3)

More generally, for any finite dimensional symplectic vector space (W, [·, ·])
over F we let

HW = W × F with product given by (2). (4)

1.2 Unitary dual of Hn(Fq)

Throughout this paper we take

F = Fq,

the finite field with q elements where q = pm for some odd prime p. The field
F is an extension of its prime field Zp = Z/(pZ). The characters on F are

F̂ = {ψa : a ∈ F}

where

ψa(t) = exp
(

2πi

p
TrF/Zp

(at)
)

(5)

and
TrF/Zp

: F→ Zp
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is the trace map for the field extension F/Zp. Explicitly one can write

TrF/Zp
(t) = t + tp + tp

2
+ · · ·+ tp

m−1
.

(See Chapter 2 in [LN].) The basic identity

∑

t∈F
ψa(t) =

{
q if a = 0
0 if a 6= 0

}
= qδa,0. (6)

shows that the characters are pair-wise orthogonal unit vectors in C[F].
The mappings

Ψa,b : Hn(F) → T, Ψa,b(x,y, t) =
n∏

i=1

ψai
(xi)

n∏

j=1

ψbj
(yj) (7)

for a,b ∈ Fn give q2n distinct 1-dimensional representations of Hn(F). One
can verify, moreover, that for λ ∈ F×, the formula

πλ(x,y, t)f(u) = ψλ

(
t + y · u + 2−1x · y)

f(u + x) (8)

defines a unitary representation (analogous to the Schrödinger model in the
real case) of Hn(F) in the the inner product space C[Fn]. The trace character
χλ(x,y, t) = tr(πλ(x,y, t)) for πλ is

χλ(x,y, t) = qnδx,0δy,0ψλ(t),

which yields
〈χλ, χλ′〉Hn(F) = 〈ψλ, ψλ′〉F = δλ,λ′

in view of orthogonality for the characters of F. It follows that the represen-
tations {πλ : λ ∈ F×} are inequivalent and irreducible.

Summing the squares of the dimensions for the representations (7) and (8)
gives

q2n × 12 + (q − 1)× (qn)2 = q2n+1 = |Hn(F)|.
Thus (7) and (8) exhaust the unitary dual of Hn(F):

Ĥn(F) = {Ψa,b : a,b ∈ Fn} ] {πλ : λ ∈ F×}. (9)

On the center of Hn(F) we have πλ(0, 0, t) = ψλ(t)IC[Fn]. So the qn-dimensional
irreducible representations are determined by their central characters. This
proves:

Theorem 1.1 (Stone-von Neumann Theorem) Let λ ∈ F× and β :
Hn(F ) → U(V ) be an irreducible unitary representation with central char-
acter ψλ. (That is, β(0, 0, t) = ψλ(t)IV .) Then β is unitarily equivalent to the
Schrödinger representation πλ defined by Equation 8.
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1.3 Oscillator representation

The symplectic group for
(W = Fn × Fn, [·, ·]),

Sp(n,F) = {g ∈ GL(2n,F) : [gz, gz′] = [z, z′]},

acts by automorphisms on Hn(F) via

g · (z, t) = (gz, t).

Fix λ ∈ F×. For given g ∈ Sp(n,F),

(z, t) 7→ πλ ◦ g(z, t) = πλ(gz, t)

is an irreducible representation with central character ψλ. The Stone-von Neu-
mann Theorem ensures that πλ ◦ g is unitarily equivalent to πλ. Thus there
is a unitary operator ωλ(g) on C[Fn] satisfying

πλ(gz, t) = ωλ(g)πλ(z, t)ωλ(g)−1. (10)

Schur’s Lemma shows that (10) defines ωλ(g) up to a multiplicative scalar
of modulus one. In the context of finite fields, there is a systematic choice of
scalars for which

ωλ : Sp(n,F) → U(C[Fn])

is a representation of the group Sp(n,F). In the literature, ωλ is variously
called the oscillator, metaplectic, or Weil-Segal-Shale representation. It is
known that Sp(n,F) coincides with its commutator subgroup provided n > 1
or q > 3. Thus (10) completely determines the representation ωλ, except when
n = 1 and q = 3. (See [How].)

The contragredient representation π∗λ for πλ has central character ψ−λ.
Thus π∗λ is unitarily equivalent to π−λ, by the Stone-von Neumann Theo-
rem. Moreover the contragredient ω∗λ of the oscillator representation satisfies
π∗λ(gz, t) = ω∗λ(g)π∗λ(z, t)ω∗λ(g)−1. It follows that

ω∗λ is unitarily equivalent to ω−λ. (11)

There are, in fact, just two distinct oscillator representations ωλ, up to
unitary equivalence. Indeed

Proposition 1.2 (See [How], [Neu02]) For λ, λ′ ∈ F× one has ω′λ ' ωλ

if and only if λ′/λ is a square in F×.

The oscillator representation can be rendered explicitly, at least on a set of
generators for Sp(n,F). The formulas are given below in Theorem 1.3. Writing
(2n)× (2n)-matrices in block form,

g =
[

A B
C D

]
(A,B,C, D of size n× n),
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one has

g ∈ Sp(n,F) ⇐⇒ {
AtC = CtA, BtD = DtB, AtD − CtB = I

}
.

The group Sp(n,F) is generated by the subset
{
Adiag : A ∈ GL(n,F)

} ∪ {
Clower : Ct = C

} ∪ {
J
}

where

Adiag =
[

A 0
0 (At)−1

]
, Clower =

[
I 0
C I

]
, J =

[
0 I
−I 0

]
. (12)

Theorem 1.3 (See [Neu02]) For λ ∈ F×q (q = pm) the oscillator represen-
tation

ωλ : Sp(n,F) → U(C[Fn])

is given on the generators (12) for Sp(n,F) as follows.

• ωλ(Adiag)f(u) = sgn(detA)f(A−1u) where

sgn(t) =
{

+1 if t is a square in F
−1 otherwise .

• ωλ(Clower)f(u) = ψλ

(− 1
2u

tCu
)
f(u).

• ωλ(J)f(u) = (−1)n(m+1)(−i)nm(p−1)/2sgn(λ)Fλf(u) where

Fλf(u) =
1√
qn

∑

x∈Fn

f(x)ψλ(x · u).

Note that Fλf is a λ-weighted variant of the (n-dimensional) inverse discrete
Fourier transform (DFT).

2 The group algebra C[Hn(Fq)] and Gelfand pairs

Let H denote the Heisenberg group H = Hn(F) = W × F where, as before,

W = Fn × Fn, F = Fq, q = pm, p an odd prime.

The convolution product on C[H] is

(f ? g)(z, t) =
∑

(z′,t′)∈H

f
(
(z, t)(z′, t′)−1

)
g(z′, t′)

=
∑

(z′,t′)∈H

f
(
z− z′, t− t′ − 2−1[z, z′]

)
g(z′, t′).
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2.1 Twisted convolution on C[W]

Twisted convolution is well-known in connection with analysis on the real
Heisenberg group Hn(R). (See [Fol89].) Here we require its discrete analog.

Definition 2.1 For f ∈ C[H] and a ∈ F define fa ∈ C[W] via

fa(z) =
1√
q

∑

t∈F
f(z, t)ψa(t).

For fixed z ∈ W, fa(z) is the (one-dimensional) inverse discrete Fourier trans-
form of t 7→ f(z, t) evaluated at a. The Fourier inversion formula yields

f(z, t) =
1√
q

∑

a∈F
fa(z)ψa(−t). (13)

In particular, a function f ∈ C[H] is completely determined by {fa : a ∈ F}.
So for given f, f ′ ∈ C[H],

f = f ′ ⇐⇒ fa = f ′a for all a ∈ F. (14)

Definition 2.2 For functions f, g ∈ C[W] and given a ∈ F we define the
twisted convolution f\ag ∈ C[W] via

(f\ag)(z) =
∑

w∈W
f(z−w)g(w)ψa

(
1
2
[z,w]

)
.

A straightforward calculation using (13) and (6) yields the following.

Lemma 2.3 For f, g ∈ C[H] and a ∈ F one has

(f ? g)a =
√

qfa\aga.

2.2 K-invariant functions on H and W
The symplectic group Sp(n,F) acts on C[W] and C[H] via

k · f(z) = f(k−1z) and k · f(z, t) = f(k−1 · (z, t)) = f(k−1z, t).

For subgroups K of Sp(n,F) we let C[W]K and C[H]K denote the sets of
K-fixed elements in C[W] and C[H] respectively. These are easily seen to be
subalgebras of C[W] and C[H] with respect to the convolutions \a and ?.

Definition 2.4 Given a subgroup K of Sp(n,F), we say that (K,H) is a
Gelfand pair when C[H]K is a commutative algebra under convolution.

Remark 2.5 One can identify C[H]K with the algebra C[K\G/K] of K-bi-
invariant functions on the semidirect product G = K n H. So (G,K) is a
Gelfand pair in the traditional sense when Definition 2.4 applies.
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Proposition 2.6 Let K be a subgroup of Sp(n,F). Then (K, H) is a Gelfand
pair if and only if hh′ ∈ (Kh′)(Kh) for all h, h′ ∈ H.

Proof. This result is the discrete analog of Theorem 1.12 in [BJR90]. ut
Proposition 2.7 Let K be a subgroup of Sp(n,F). Then (K, H) is a Gelfand
pair if and only if (C[W]K , \λ) is commutative for all λ ∈ F×.

Proof. First note that (C[W]K , \0) is, in any case, commutative since \0 is the
standard (untwisted) convolution on C[W]. To complete the proof use (14)
together with Lemma 2.3 and the the obvious identity

(k · f)a = k · fa,

(k ∈ Sp(n,F), f ∈ C[H], a ∈ F). ut
Two immediate but useful properties of Gelfand pairs are noted in the

following lemma.

Lemma 2.8 Let K1 and K2 be a pair of subgroups of Sp(n,F) and suppose
that (K1,H) a Gelfand pair.

(a) If K1 ⊂ K2 then (K2,H) is a Gelfand pair.
(b) If K1, K2 are conjugate in Sp(n,F) then (K2,H) is a Gelfand pair.

3 Gelfand pairs and the oscillator representation

3.1 Operator valued Fourier transform on C[W]

For f ∈ C[W] and λ ∈ F× let πλ(f) denote the operator

πλ(f) =
∑

z∈W
f(z)πλ(z) (15)

on C[W]. Here πλ(z) = πλ(z, 0) and πλ is the Schrödinger representation (8).
The following standard result is easily verified.

Lemma 3.1 πλ(f\λg) = πλ(f)πλ(g) for f, g ∈ C[W] and λ ∈ F×.

Lemma 3.2 The map πλ : C[W] → End(C[Fn]) is a vector space isomor-
phism for each λ ∈ F×. In fact q−3n/2πλ is a unitary isomorphism of C[W]
onto End(C[Fn]) equipped with the Hilbert-Schmidt inner product

〈T, S〉HS = tr(TS∗).
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Proof. The set {qn/2δu : u ∈ Fn} is an orthonormal basis for C[Fn] with

πλ(x,y)δu = ψλ(u · y − 2−1x · y)δu−x.

So for f, f ′ ∈ C[W] we compute

〈πλ(f), πλ(f ′)〉HS =
∑

u∈Fn

qn〈πλ(f)δu, πλ(f ′)δu〉Fn

=
∑

u∈Fn;z,z′∈W
f(z), f ′(z′)qn〈πλ(z)δu, πλ(z′)δu〉Fn .

A calculation using (8) shows
∑

u∈Fn

〈πλ(z)δu, πλ(z′)δu〉Fn = δz,z′ .

Thus
〈πλ(f), πλ(f ′)〉HS = qn

∑

z∈W
f(z)f ′(z) = q3n〈f, f ′〉W .

This shows q−3n/2πλ : C[W] → End(C[Fn]) is unitary, hence injective. As the
spaces C[W] and End(C[Fn]) have equal dimension it follows that πλ is an
isomorphism of C[W] onto End(C[Fn]). ut

3.2 Oscillator representation

Recall that ωλ : Sp(n,F) → U(C[Fn]) denotes the oscillator representation,
characterized by Equation 10. Now for k ∈ Sp(n,F) let ω̃λ(k) be the operator
on End(C[Fn]) defined as

ω̃λ(k)T = ωλ(k)Tωλ(k)−1 (16)

One checks that ω̃λ defines a unitary representation of Sp(n,F) on the Her-
mitian vector space (End(C[Fn], 〈·, ·〉HS). Moreover for k ∈ Sp(n,F) and
f ∈ C[W] one has

πλ(k · f) =
∑

z∈W
f(k−1z)πλ(z) =

∑

w∈W
f(w)πλ(kw) = ω̃λ(k)πλ(f), (17)

since πλ(kw) = ωλ(k)πλ(w)ωλ(k)−1. So the isomorphism πλ : C[W] →
End(C[Fn]) intertwines the natural representation of Sp(n,F) on C[W] with
ω̃λ.

Definition 3.3 Let K be a subgroup of Sp(n,F). For λ ∈ F× we define the
commutant Cλ,K of ω̃λ(K) in End(C[Fn]) as

Cλ,K = End(C[Fn])eωλ(K) = {T ∈ End(C[Fn]) : ωλ(k)T = Tωλ(k) ∀k ∈ K}.
Note that Cλ,K is a subalgebra of End(C[Fn]).
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Proposition 3.4 πλ yields an algebra isomorphism of (C[W]K , \λ) onto
Cλ,K .

Proof. Taken together, Lemmas 3.1 and 3.2 show that πλ : C[W] → End(C[Fn])
is an algebra isomorphism of (C[W], \λ) onto End(C[Fn]). Equation 17 shows
that πλ maps C[W]K onto Cλ,K . ut
Proposition 3.5 Let K be a subgroup of Sp(n,F) and λ ∈ F×. Then ωλ|K
is multiplicity free if and only if Cλ,K is commutative.

Proof. Suppose that ωλ|K is multiplicity free. So C[Fn] has a canonical de-
composition into pair-wise inequivalent ωλ(K)-irreducible subspaces:

C[Fn] = P1 ⊕ · · · ⊕ Pm

say. Schur’s Lemma shows that each operator T ∈ Cλ,K must preserve the
Pj ’s and act by a scalar on each. Any two such operators commute with one
another.

Next suppose that ωλ|K is not multiplicity free. Hence C[Fn] has a decom-
position of the sort

C[Fn] = W1 ⊕W2 ⊕ V,

where W1, W2, V are ωλ(K)-invariant and W1, W2 are ωλ(K)-irreducible
and equivalent. Thus Cλ,K contains a copy of GL(2,F), and it fails to be
commutative. ut
Definition 3.6 We say that a subgroup K of Sp(n,F) is ω-multiplicity free
if the restriction ωλ|K of the oscillator representation to K is multiplicity free
for all λ ∈ F×.

Together Propositions 2.7, 3.4 and 3.5 imply the following.

Theorem 3.7 Let K be a subgroup of Sp(n,F). Then (K, H) is a Gelfand
pair if and only if K is ω-multiplicity free.

When applying Definition 3.6 it suffices to check that ωλ|K is multiplicity
free for at most two values of λ.

Proposition 3.8 A subgroup K of Sp(n,F) is ω-multiplicity free if and only
if ω1|K and ωε|K are multiplicity free for any fixed choice of ε ∈ F× which is
not a square. Moreover when q ≡ 3 mod 4 it suffices that ω1|K be multiplicity
free.

Proof. Proposition 1.2 implies that each oscillator representation ωλ is uni-
tarily equivalent to one of ω1 or ωε. If -1 is not a square in F, equivalently
when q ≡ 3 mod 4, we can take ε = −1. But ω−1 is contragredient to ω1 by
(11). So when ω1|K is multiplicity free so is ω−1|K . ut
Remark 3.9 We do not know of an example where ω1|K is multiplicity free
but K fails to be ω-multiplicity free.
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4 Counting and convolving K-orbits in W
Let ρ denote the natural (unitary) representation of Sp(n,F) on C[W]:

ρ(k)f(z) = k · f(z) = f(k−1z),

and ω̃λ : Sp(n,F) → U(End(C[Fn]) be as in (16). We have seen that ρ and
ω̃λ are unitarily equivalent via q−3n/2πλ, a multiple of the operator valued
Fourier transform. There is another viewpoint on this equivalence. Consider
the standard isomorphism

Φ : C[Fn]⊗ C[Fn]∗ → End(C[Fn]), Φ(f ⊗ ϕ)(g) = ϕ(g)f.

One checks easily that

• Φ is unitary. (As before End(C[Fn]) carries the Hilbert-Schmidt inner
product and we give C[Fn]⊗C[Fn]∗ the tensor product of 〈·, ·〉Fn with its
dual inner product.)

• Φ
(
ωλ(k)f ⊗ ω∗λ(k)ϕ

)
= ω̃λ(k)Φ(f ⊗ ϕ).

So Φ establishes a unitary equivalence

ωλ ⊗ ω∗λ ' ω̃λ,

and the composite q3n/2π−1
λ ◦ Φ yields

ωλ ⊗ ω∗λ ' ρ. (18)

This basic fact plays a central role in [How].

4.1 Counting orbits

Now let K be a subgroup of Sp(n,F) and for λ ∈ F× decompose ωλ|K :

ωλ|K '
∑

σ∈ bK
mσ,λσ, mσ,λ = mult(σ, ωλ|K).

Writing dσ = dim(σ) one has
∑

σ∈ bK
mσ,λdσ = dim(C[Fn]) = qn. (19)

Also, applying (18):

ρ|K ' (ωλ ⊗ ω∗λ)|K '
∑

σ,σ′∈ bK
mσ,λmσ′,λσ ⊗ (σ′)∗.

We know that σ ⊗ (σ)∗ has a one-dimensional space of K-fixed vectors and
that (σ ⊗ (σ′)∗)K = 0 when σ′ 6' σ. So
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dim(C[W]K) =
∑

σ∈ bK
m2

σ,λ.

But dim(C[W]K) = |W/K|, the number of K-orbits in W. (Indeed, if
Kz1, . . . , Kzr are the distinct K-orbits in W then the characteristic functions
{δKz1 , . . . , δKzr} form a basis for C[W]K .) So now

∑

σ∈ bK
m2

σ,λ = |W/K|. (20)

Proposition 4.1 If K is ω-multiplicity free (equivalently (K, H) is a Gelfand
pair) then we must have

• |W/K| ≤ qn and
• |K| ≥ qn + 1.

Proof. Suppose that |W/K| > qn. Using Equations 19 and 20 one obtains
∑

σ∈ bK
m2

σ,λ >
∑

σ∈ bK
mσ,λdσ ≥

∑

σ∈ bK
mσ,λ.

So we must have mσ,λ ≥ 2 for some σ ∈ K̂. Hence K fails to be ω-multiplicity
free unless |W/K| ≤ qn.

Next observe that

|W/K| ≥ 1 +
q2n − 1
|K| ,

since {0} is a K-orbit in W and W\{0} contains at least q2n−1
|K| K-orbits. So

in view of the inequality |W/K| ≤ qn we must have

1 +
q2n − 1
|K| ≤ qn =⇒ q2n − 1

qn − 1
≤ |K| =⇒ qn + 1 ≤ |K|,

as claimed. ut
Proposition 4.2 Let K be an abelian subgroup of Sp(n,F). Then |W/K| ≥
qn and K is ω-multiplicity free if and only if |W/K| = qn. Moreover, this is
possible only when |K| ≥ qn + 1.

Proof. When K is abelian we have dσ = 1 for all σ ∈ K̂. So Equations 19 and
20 become ∑

σ∈ bK
mσ,λ = qn,

∑

σ∈ bK
m2

σ,λ = |W/K|.

As
∑

σ∈ bK m2
σ,λ ≥

∑
σ∈ bK mσ,λ we conclude that |W/K| ≥ qn must hold. Also

K is ω-multiplicity free if and only if
∑

σ∈ bK m2
σ,λ =

∑
σ∈ bK mσ,λ. Equivalently,

|W/K| = qn must hold. Proposition 4.1 shows, moreover, that this implies
|K| ≥ qn + 1. ut
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4.2 Convolving orbits

The characteristic functions

{δKz : Kz ∈ W/K}

for the K-orbits in W yield an (orthogonal) basis for C[W]K . We compute

δKz\λδKz′(w) =
∑

v∈W
δKz(w − v)δKz′(v)ψλ(2−1[w,v])

=
∑

v∈(w−Kz)∩Kz′
ψλ(2−1[w,v]). (21)

In view of Proposition 2.7, (K, H) will be a Gelfand pair if and only if
δKz\λδKz′(w) = δKz′\λδKz(w) for all z, z′,w ∈ W and all λ ∈ F×. It is enough
to consider z 6= 0 6= z′ since δK0 = δ0 is a two-sided identity in (C[W], \λ).
Moreover we can take w 6= 0 because, in any case, f\λg(0) = f\λg(0) for
functions f, g ∈ C[W]. This discussion yields the following.

Lemma 4.3 (K, H) is a Gelfand pair if and only if
∑

v∈(w−Kz)∩Kz′
ψλ([w,v]) =

∑

v∈(w−Kz′)∩Kz

ψλ([w,v])

for all z, z′,w ∈ W\{0} and λ ∈ F×.

Remark 4.4 By Proposition 3.8 it suffices to check the condition in Lemma
4.3 for at most two values of the parameter λ.

Lemma 4.5 Suppose that there are K-invariant subspaces X and Y in W
with

X ∩ Y = 0, [X ,Y] 6= 0.

Then (K,H) is not a Gelfand pair.

Proof. Choose points z ∈ X and z′ ∈ Y with [z, z′] = 1 and let w = z + z′.
We have

(w −Kz) ∩Kz′ = {z′} .

Indeed, suppose that v ∈ (w −Kz) ∩Kz′. Thus for some k, k′ ∈ K,

w − kz = v = k′z′ and hence z− kz = k′z′ − z′.

But z− kz ∈ X and k′z′ − z′ ∈ Y. So v = k′z′ = z′ since X ∩ Y = 0.
Thus for these choices of z, z′ and w we have

∑

v∈(w−Kz)∩Kz′
ψ1([w,v]) = ψ1([z + z′, z′]) = ψ1(1) = e2πi/p.
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Likewise
∑

v∈(w−Kz′)∩Kz

ψ1([w,v]) = ψ1([z + z′, z]) = ψ1(−1) = e−2πi/p.

As p is odd, these values are necessarily different. So (K, H) fails to be a
Gelfand pair in view of Lemma 4.3. ut
Corollary 4.6 Let (K,HW) be a Gelfand pair where K acts reductively but
non-irreducibly on W. So W decomposes as a direct sum of K-invariant sub-
spaces,

W = W1 ⊕ · · · ⊕W`

say. Let Kj ⊂ GL(Wj) denote the restriction of K to Wj. Then:

(a) [Wi,Wj ] = 0 for all i 6= j.
(b) Each Wj is a symplectic subspace of W and Kj ⊂ Sp(Wj).
(c) Each (Kj ,HWj

) is a Gelfand pair.

Corollary 4.7 Suppose we are given symplectic vector spaces (Wj , [·, ·]j) and
subgroups Kj ⊂ Sp(Wj) for j = 1, . . . `. We form the symplectic direct sum

W = W1 ⊕ · · · ⊕W`, [(w1, . . . ,w`), (w′
1, . . . ,w

′
`)] =

∑̀

j=1

[wj ,w′
j ]j

and let K ⊂ Sp(W) denote the product

K = K1 × · · · ×K`.

Then (K, HW) is a Gelfand pair if and only if (Kj ,HWj ) is a Gelfand pair
for j = 1, . . . , `.

Recall that a subspace X of the symplectic vector space W is said to be
isotropic if [X ,X ] = 0.

Corollary 4.8 Suppose that K acts reductively on W and that the action
preserves a non-zero isotropic subspace X . Then (K, H) is not a Gelfand
pair.

Proof. As K acts reductively on W we have W = X ⊕Y for some K-invariant
subspace Y. As X is isotropic we necessarily have [X ,Y] 6= 0. ut

5 Examples

5.1 Symplectic groups

A trivial application of Lemma 4.3 shows that (Sp(n,F),Hn(F)) is a Gelfand
pair. Indeed, for K = Sp(n,F) we have only one non-zero K-orbit. That is
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Kz = W\{0} for all z 6= 0 in W. Equation 20 now shows that the oscillator
representation ωλ must decompose into exactly two inequivalent irreducible
constituents. This fact is well known. (See [How], [Neu02].) The ωλ(Sp(n,F))-
irreducible subspaces of C[Fn] can be identified as follows.

The matrix −I belongs to the center of Sp(n,F) and the first formula from
Theorem 1.3 shows that ωλ(−I) = sgn((−1)n)T where

Tf(u) = f(−u).

So the eigenspaces for T must be ωλ(Sp(n,F))-invariant. These are the spaces
of even and odd functions. As ωλ has exactly two irreducible components
these spaces are necessarily irreducible.

To obtain more interesting examples we must consider smaller subgroups
of Sp(n,F).

5.2 General linear groups

The group GL(n,F) embeds diagonally in Sp(n,F) via {Adiag : A ∈
GL(n,F)}. (See (12).) The action of GL(n,F) on W = Fn × Fn preserves
the isotropic subspaces

X = Fn × {0}, Y = {0} × Fn.

So (GL(n,F),Hn(F)) is not a Gelfand pair, in view of Corollary 4.8. More
generally, if K ⊂ Sp(n,F) is conjugate in Sp(n,F) to a subgroup of GL(n,F)
then (K, H) is not a Gelfand pair.

For n ≥ 2 there are q + 3 distinct GL(n,F)-orbits in W, namely

{(0, 0)}, (Fn\{0})× {0}, {0} × (Fn\{0}),

{(x,y) : x 6= 0 6= y, x · y = 0} and {(x,y) : x · y = a}
for each a ∈ F×. So here |W/GL(n,F)| < qn, but (GL(n,F), Hn(F)) is not a
Gelfand pair. This shows that, for K non-abelian, there can be no converse
for Proposition 4.1.

5.3 Borel subgroups

A subgroup of Sp(n,F) conjugate to

B =
{[

A 0
C (At)−1

]
: A ∈ GL(n,F) lower triangular, AtC symmetric

}

is called a Borel subgroup.

Proposition 5.1 If K is a subgroup of Sp(n,F) that contains a Borel sub-
group then (K, H) is a Gelfand pair.
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Proof. It suffices to show that (B, H) is a Gelfand pair. This can be done using
Proposition 2.6. There are exactly 2n non-zero B-orbits in W = Fn × Fn:

W\{0} =
n⊎

j=1

Buj ]
n⊎

j=1

Bvj where uj = (ej , 0), vj = (0, ej)

and {ej} is the standard basis for Fn.
Suppose that z ∈ Bui and w ∈ Buj . One has z ± w ∈ Bumin(i,j), and

hence z + w = k(z−w) for some k ∈ B. Let k′ = −k and note that k′ ∈ B,
since −I ∈ B. Now

(z, s)(w, t) = (z + w, s + t + 2−1[z,w])

= (kz− kw, s + t + 2−1[kz, kw])

= (k′w + kz, t + s + 2−1[k′w, kz])
= (k′w, t)(kz, s).

So (z, s)(w, t) ∈ (B(w, t))(B(z, s)). Similar calculations apply for other com-
binations of orbits. ut

One can also give an explicit description of the algebra (C[W]B , \λ) by
determining the twisted convolution of pairs of characteristic functions for
B-orbits in W. We adopt the notation

Eλ(z) =
∑

w∈Bz

ψλ(2−1[z,w]) (z ∈ W, λ ∈ F×).

Brute force calculation yields the following.

δBui\λδBuj =
{

Eλ(umax(i,j))δBumin(i,j) for i 6= j
Eλ(ui)

∑
`≥i δBu`

− δBui for i = j

δBvi\λδBvj =
{

Eλ(vmin(i,j))δBvmax(i,j) for i 6= j
Eλ(vi)

∑
`≤i δBv`

− δBvi for i = j

δBuj \λδBvi = δBvi\λδBuj = Eλ(vi)δBuj

These formulas show, in particular, that (C[W]B , \λ) is commutative, as guar-
anteed by Proposition 5.1.

5.4 Unitary groups

Let F̃ denote a quadratic extension of the field F = Fq. Up to isomorphism F̃
is a copy of Fq2 . More concretely we choose any non-square

ε ∈ F×\(F×)2

in F and take
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F̃ = F(
√

ε).

The Galois involution F̃→ F̃ will be written as z 7→ z. One has z = zq and

a + b
√

ε = a− b
√

ε (a, b ∈ F).

Let (W̃, 〈·, ·〉) be a (finite dimensional) Hermitian vector space over F̃.
That is 〈·, ·〉 : W̃ × W̃ → F̃ is

• F-bilinear and non-degenerate with
• 〈λz, z′〉 = λ〈z, z′〉 and 〈z, z′〉 = 〈z′, z〉 (z, z′ ∈ W̃, λ ∈ F̃).

The unitary group U(W̃) is the set of F̃-linear operators preserving 〈·, ·〉.
Let W denote the underlying F-vector space for W̃. One obtains a sym-

plectic form on W via

[z, z′] =
1

2
√

ε

(
〈z, z′〉 − 〈z, z′〉

)
=

1
2
√

ε

(
〈z′, z〉 − 〈z, z′〉

)
.

(Writing 〈z, z′〉 ∈ F(√ε) as 〈z, z′〉 = 〈z, z′〉r + 〈z, z′〉i
√

ε, one has [z, z′] =
−〈z, z′〉i.) Clearly U(W̃) is a subgroup of Sp(W), the symplectic group for
(W, [·, ·]). We will prove that:

Proposition 5.2 (U(W̃),HW) is a Gelfand pair.

It is well known that a given finite dimensional F̃-vector space admits
exactly one hermitian inner product, up to equivalence.1 In fact one can find
an orthonormal basis

B = {e1, . . . , en}
for (W̃, 〈·, ·〉) with 〈ei, ej〉 = δi,j . Using B to identify W̃ with F̃n we have the
usual formula

〈z, z′〉 = z1z′1 + · · ·+ znz′n.

Let

W̃j = F̃ej , Wj denote W̃j viewed as an F-vector space, fj =
√

εej .

Now

• {ej , fj} is a basis for Wj ,
• {e1, . . . , en, f1, . . . , fn} is a symplectic basis for W (i.e. [ei, ej ] = 0 =

[fi, fj ], [ei, fj ] = δi,j), and
• W = W1 ⊕ · · · ⊕Wn is a symplectic direct sum.
1 In contrast, the complex vector space Cn admits b(n + 2)/2c inequivalent Her-

mitian inner products. These yield distinct unitary groups U(r, s) with r + s = n.
The analogs for these Hermitian inner products in the finite fields context are,
however, mutually equivalent.



Gelfand pairs associated with finite Heisenberg groups 17

The restriction of 〈·, ·〉 to W̃j is a hermitian inner product on W̃j . We consider
the subgroups U(W̃i) ⊂ Sp(Wj) and their direct product

U(W̃1)× · · · × U(W̃n) ⊂ U(W̃) ⊂ Sp(W),

the subgroup of U(W̃) preserving the decomposition W = W1 ⊕ · · · ⊕Wn.
The following result evidentally implies Proposition 5.2.

Proposition 5.3
(
U(W̃1)× · · · × U(W̃n),HW

)
is a Gelfand pair.

Proof. In view of Corollary 4.7 it suffices to show that each
(
U(W̃j),HWj

)

is a Gelfand pair. This amounts to showing that (U(F̃),H1(F)) is a Gelfand
pair, where F̃ carries the Hermitian inner product

〈z, z′〉 = zz′.

Now
U(F̃) = {λ ∈ F̃× : λλ = 1},

is the kernel of the norm mapping

N : F̃→ F, N(λ) = λλ

restricted to the multiplicative group F̃× for the field F̃. So U(F̃) is, in particu-
lar, abelian. Moreover a pair of points z, z′ ∈ F̃ belong to a common U(F̃)-orbit
in F̃ if and only if N(z) = N(z′). So

|F̃/U(F̃)| = |N(F̃)| = |F| = q,

as it is well known that N is surjective. Proposition 4.2 now implies that
(U(F̃),H1(F)) is a Gelfand pair as desired. ut

Remark 5.4 As U(F̃) is the kernel of the epimorphism N : F̃× → F×, it is
cyclic of order q + 1.

Our final result asserts that the Gelfand pair in Proposition 5.3 is minimal.
The analogous theorem for real Heisenberg groups Hn(R) is due to Leptin
[Lep85].

Proposition 5.5 (K,HW) fails to be a Gelfand pair for all proper subgroups
K of the torus U(W̃1)× · · · × U(W̃n).

Proof. We can take W̃j = F̃ and W̃ = F̃n with the usual hermitian inner
product. Now the torus

T = U(F̃)× · · · × U(F̃)

coincides with a T -orbit in W̃. Namely one has
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T · z◦ = T for z◦ = (1, 1, . . . , 1).

Let K denote a proper subgroup of T . The T -orbit T ·z◦ is a disjoint union
of |T/K| orbits for the subgroup K. These correspond to the cosets of K in
T . As (T,HW) is a Gelfand pair we have |W/T | = qn and

|W/K| ≥ qn − 1 + |T/K| > qn.

So (K, HW) fails to be a Gelfand pair by Proposition 4.2. ut
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