Gelfand pairs associated with finite Heisenberg groups

Chal Benson and Gail Ratcliff

Dept of Mathematics, East Carolina University, Greenville, NC 27858 bensonf@ecu.edu, ratcliffg@ecu.edu

A topological group G together with a compact subgroup K are said to form a *Gelfand pair* if the set $L^1(K \setminus G/K)$ of K-bi-invariant integrable functions on G is a commutative algebra under convolution. The situation where G and K are Lie groups has been the focus of extensive and ongoing investigation. Riemannian symmetric spaces G/K furnish the most widely studied and best understood examples. ([Hel84] is a standard reference.) Apart from these, key examples arise as semi-direct products $G = K \ltimes N$, of compact Lie groups K with two-step nilpotent Lie groups N. Such pairs are the focus of [BJR90], [Vin03] and [Yak06], among other works. There are many examples where $N = H_n(\mathbb{R})$, a (real) Heisenberg group, and K is a subgroup of the unitary group U(n).

Gelfand pairs also arise in connection with analysis on *finite* groups, but, to our knowledge, have been studied less extensively. Known examples include the symmetric group modulo the hyperoctahedral group [Mac] and finite analogues of the hyperbolic plane [SA87, Ter99]. In this paper we introduce a family of Gelfand pairs associated with finite Heisenberg groups. They provide finite analogues for the Gelfand pairs associated with $H_n(\mathbb{R})$. Our examples appear elsewhere, in the literature on the *oscillator representation*, but their relevance to the study of Gelfand pairs has not, however, been previously emphasized.

1 Preliminaries

To begin we must establish notation and recall some ideas concerning the representation theory for Heisenberg groups over finite fields. For a finite set S, the symbol $\mathbb{C}[S]$ will denote the set of all \mathbb{C} -valued functions on S. This is a complex vector space of dimension |S| which carries a positive-definite hermitian inner product

$$\langle f,g\rangle_S = \frac{1}{|S|} \sum_{x \in S} f(x)\overline{g(x)}.$$

1.1 Heisenberg groups

Let \mathbb{F} be a field of odd characteristic. The polarized *Heisenberg group* $H_n(\mathbb{F})$ is the set

$$H_n(\mathbb{F}) = \mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}$$

with product

$$(\mathbf{x}, \mathbf{y}, t)(\mathbf{x}', \mathbf{y}', t') = \left(\mathbf{x} + \mathbf{x}', \mathbf{y} + \mathbf{y}', t + t' + \frac{1}{2}(\mathbf{x} \cdot \mathbf{y}' - \mathbf{y} \cdot \mathbf{x}')\right).$$
(1)

Inclusion of the factor 1/2 is motivated by the use of exponential coordinates in connection with the real Heisenberg group $H_n(\mathbb{R})$. (See [Fol89].) Some authors omit this factor but the resulting group is isomorphic with that defined here via the mapping $(\mathbf{x}, \mathbf{y}, t) \mapsto (\mathbf{x}, \mathbf{y}, 2t)$.

An alternate notation is useful in connection with certain examples and constructions. We write

$$\mathcal{W} = \mathcal{W}_n = \mathbb{F}^n \times \mathbb{F}^n,$$

so that $H_n(\mathbb{F}) = \mathcal{W} \times \mathbb{F}$ and Equation (1) becomes

$$(\mathbf{z}, t)(\mathbf{z}', t') = (\mathbf{z} + \mathbf{z}', t + t' + 2^{-1}[\mathbf{z}, \mathbf{z}'])$$
(2)

where $[\mathbf{z}, \mathbf{z}']$ denotes the usual symplectic form on \mathcal{W} , namely

$$[\mathbf{z}, \mathbf{z}'] = [(\mathbf{x}, \mathbf{y}), (\mathbf{x}', \mathbf{y}')] = \mathbf{x} \cdot \mathbf{y}' - \mathbf{y} \cdot \mathbf{x}'.$$
(3)

More generally, for any finite dimensional symplectic vector space $(\mathcal{W}, [\cdot, \cdot])$ over \mathbb{F} we let

$$H_{\mathcal{W}} = \mathcal{W} \times \mathbb{F}$$
 with product given by (2). (4)

1.2 Unitary dual of $H_n(\mathbb{F}_q)$

Throughout this paper we take

$$\mathbb{F} = \mathbb{F}_q,$$

the finite field with q elements where $q = p^m$ for some odd prime p. The field \mathbb{F} is an extension of its prime field $\mathbb{Z}_p = \mathbb{Z}/(p\mathbb{Z})$. The characters on \mathbb{F} are

$$\widehat{\mathbb{F}} = \{\psi_a : a \in \mathbb{F}\}\$$

where

$$\psi_a(t) = \exp\left(\frac{2\pi i}{p} \operatorname{Tr}_{\mathbb{F}/\mathbb{Z}_p}(at)\right)$$
(5)

and

$$\operatorname{Tr}_{\mathbb{F}/\mathbb{Z}_p}:\mathbb{F}\to\mathbb{Z}_p$$

is the trace map for the field extension \mathbb{F}/\mathbb{Z}_p . Explicitly one can write

$$\operatorname{Tr}_{\mathbb{F}/\mathbb{Z}_n}(t) = t + t^p + t^{p^2} + \dots + t^{p^{m-1}}.$$

(See Chapter 2 in [LN].) The basic identity

$$\sum_{t \in \mathbb{F}} \psi_a(t) = \left\{ \begin{array}{l} q \text{ if } a = 0\\ 0 \text{ if } a \neq 0 \end{array} \right\} = q \delta_{a,0}.$$
(6)

shows that the characters are pair-wise orthogonal unit vectors in $\mathbb{C}[\mathbb{F}]$. The mappings

$$\Psi_{\mathbf{a},\mathbf{b}}: H_n(\mathbb{F}) \to \mathbb{T}, \qquad \Psi_{\mathbf{a},\mathbf{b}}(\mathbf{x},\mathbf{y},t) = \prod_{i=1}^n \psi_{a_i}(x_i) \prod_{j=1}^n \psi_{b_j}(y_j) \tag{7}$$

for $\mathbf{a}, \mathbf{b} \in \mathbb{F}^n$ give q^{2n} distinct 1-dimensional representations of $H_n(\mathbb{F})$. One can verify, moreover, that for $\lambda \in \mathbb{F}^{\times}$, the formula

$$\pi_{\lambda}(\mathbf{x}, \mathbf{y}, t) f(\mathbf{u}) = \psi_{\lambda} \left(t + \mathbf{y} \cdot \mathbf{u} + 2^{-1} \mathbf{x} \cdot \mathbf{y} \right) f(\mathbf{u} + \mathbf{x})$$
(8)

defines a unitary representation (analogous to the Schrödinger model in the real case) of $H_n(\mathbb{F})$ in the the inner product space $\mathbb{C}[\mathbb{F}^n]$. The trace character $\chi_{\lambda}(\mathbf{x}, \mathbf{y}, t) = tr(\pi_{\lambda}(\mathbf{x}, \mathbf{y}, t))$ for π_{λ} is

$$\chi_{\lambda}(\mathbf{x}, \mathbf{y}, t) = q^n \delta_{\mathbf{x}, 0} \delta_{\mathbf{y}, 0} \psi_{\lambda}(t),$$

which yields

$$\langle \chi_{\lambda}, \chi_{\lambda'} \rangle_{H_n(\mathbb{F})} = \langle \psi_{\lambda}, \psi_{\lambda'} \rangle_{\mathbb{F}} = \delta_{\lambda,\lambda'}$$

in view of orthogonality for the characters of \mathbb{F} . It follows that the representations $\{\pi_{\lambda} : \lambda \in \mathbb{F}^{\times}\}$ are inequivalent and irreducible.

Summing the squares of the dimensions for the representations (7) and (8) gives

$$q^{2n} \times 1^2 + (q-1) \times (q^n)^2 = q^{2n+1} = |H_n(\mathbb{F})|.$$

Thus (7) and (8) exhaust the unitary dual of $H_n(\mathbb{F})$:

$$\widehat{H_n(\mathbb{F})} = \{ \Psi_{\mathbf{a},\mathbf{b}} : \mathbf{a}, \mathbf{b} \in \mathbb{F}^n \} \uplus \{ \pi_\lambda : \lambda \in \mathbb{F}^\times \}.$$
(9)

On the center of $H_n(\mathbb{F})$ we have $\pi_{\lambda}(0,0,t) = \psi_{\lambda}(t)I_{\mathbb{C}[\mathbb{F}^n]}$. So the q^n -dimensional irreducible representations are determined by their central characters. This proves:

Theorem 1.1 (Stone-von Neumann Theorem) Let $\lambda \in \mathbb{F}^{\times}$ and β : $H_n(F) \to U(V)$ be an irreducible unitary representation with central character ψ_{λ} . (That is, $\beta(0, 0, t) = \psi_{\lambda}(t)I_V$.) Then β is unitarily equivalent to the Schrödinger representation π_{λ} defined by Equation 8.

3

1.3 Oscillator representation

The symplectic group for $(\mathcal{W} = \mathbb{F}^n \times \mathbb{F}^n, [\cdot, \cdot]),$

$$Sp(n, \mathbb{F}) = \{g \in GL(2n, \mathbb{F}) : [g\mathbf{z}, g\mathbf{z}'] = [\mathbf{z}, \mathbf{z}']\},\$$

acts by automorphisms on $H_n(\mathbb{F})$ via

$$g \cdot (\mathbf{z}, t) = (g\mathbf{z}, t).$$

Fix $\lambda \in \mathbb{F}^{\times}$. For given $g \in Sp(n, \mathbb{F})$,

$$(\mathbf{z}, t) \mapsto \pi_{\lambda} \circ g(\mathbf{z}, t) = \pi_{\lambda}(g\mathbf{z}, t)$$

is an irreducible representation with central character ψ_{λ} . The Stone-von Neumann Theorem ensures that $\pi_{\lambda} \circ g$ is unitarily equivalent to π_{λ} . Thus there is a unitary operator $\omega_{\lambda}(g)$ on $\mathbb{C}[\mathbb{F}^n]$ satisfying

$$\pi_{\lambda}(g\mathbf{z},t) = \omega_{\lambda}(g)\pi_{\lambda}(\mathbf{z},t)\omega_{\lambda}(g)^{-1}.$$
(10)

Schur's Lemma shows that (10) defines $\omega_{\lambda}(g)$ up to a multiplicative scalar of modulus one. In the context of finite fields, there is a systematic choice of scalars for which

$$\omega_{\lambda}: Sp(n, \mathbb{F}) \to U(\mathbb{C}[\mathbb{F}^n])$$

is a representation of the group $Sp(n, \mathbb{F})$. In the literature, ω_{λ} is variously called the *oscillator*, *metaplectic*, or *Weil-Segal-Shale representation*. It is known that $Sp(n, \mathbb{F})$ coincides with its commutator subgroup provided n > 1or q > 3. Thus (10) completely determines the representation ω_{λ} , except when n = 1 and q = 3. (See [How].)

The contragredient representation π_{λ}^{*} for π_{λ} has central character $\psi_{-\lambda}$. Thus π_{λ}^{*} is unitarily equivalent to $\pi_{-\lambda}$, by the Stone-von Neumann Theorem. Moreover the contragredient ω_{λ}^{*} of the oscillator representation satisfies $\pi_{\lambda}^{*}(g\mathbf{z},t) = \omega_{\lambda}^{*}(g)\pi_{\lambda}^{*}(\mathbf{z},t)\omega_{\lambda}^{*}(g)^{-1}$. It follows that

$$\omega_{\lambda}^{*}$$
 is unitarily equivalent to $\omega_{-\lambda}$. (11)

There are, in fact, just two distinct oscillator representations ω_{λ} , up to unitary equivalence. Indeed

Proposition 1.2 (See [How], [Neu02]) For $\lambda, \lambda' \in \mathbb{F}^{\times}$ one has $\omega'_{\lambda} \simeq \omega_{\lambda}$ if and only if λ'/λ is a square in \mathbb{F}^{\times} .

The oscillator representation can be rendered explicitly, at least on a set of generators for $Sp(n, \mathbb{F})$. The formulas are given below in Theorem 1.3. Writing $(2n) \times (2n)$ -matrices in block form,

$$g = \left[\frac{A|B}{C|D}\right] \qquad (A, B, C, D \text{ of size } n \times n),$$

one has

$$g \in Sp(n, \mathbb{F}) \iff \left\{ A^t C = C^t A, \quad B^t D = D^t B, \quad A^t D - C^t B = I \right\}.$$

The group $Sp(n, \mathbb{F})$ is generated by the subset

$$\left\{A_{diag} : A \in GL(n, \mathbb{F})\right\} \cup \left\{C_{lower} : C^t = C\right\} \cup \left\{J\right\}$$

where

$$A_{diag} = \begin{bmatrix} A & 0 \\ 0 & (A^t)^{-1} \end{bmatrix}, \quad C_{lower} = \begin{bmatrix} I & 0 \\ C & I \end{bmatrix}, \quad J = \begin{bmatrix} 0 & |I| \\ -I & |0| \end{bmatrix}.$$
(12)

Theorem 1.3 (See [Neu02]) For $\lambda \in \mathbb{F}_q^{\times}$ $(q = p^m)$ the oscillator representation tation

$$\omega_{\lambda}: Sp(n, \mathbb{F}) \to U(\mathbb{C}[\mathbb{F}^n])$$

is given on the generators (12) for $Sp(n, \mathbb{F})$ as follows.

• $\omega_{\lambda}(A_{diag})f(\mathbf{u}) = sgn(\det A)f(A^{-1}\mathbf{u})$ where

$$sgn(t) = \begin{cases} +1 \text{ if } t \text{ is a square in } \mathbb{F} \\ -1 \text{ otherwise} \end{cases}$$

- $\omega_{\lambda}(C_{lower})f(\mathbf{u}) = \psi_{\lambda}\left(-\frac{1}{2}\mathbf{u}^{t}C\mathbf{u}\right)f(\mathbf{u}).$ $\omega_{\lambda}(J)f(\mathbf{u}) = (-1)^{n(m+1)}(-i)^{nm(p-1)/2}sgn(\lambda)\overline{\mathcal{F}}_{\lambda}f(\mathbf{u})$ where

$$\overline{\mathcal{F}}_{\lambda}f(\mathbf{u}) = \frac{1}{\sqrt{q^n}} \sum_{\mathbf{x} \in \mathbb{F}^n} f(\mathbf{x}) \psi_{\lambda}(\mathbf{x} \cdot \mathbf{u})$$

Note that $\overline{\mathcal{F}}_{\lambda} f$ is a λ -weighted variant of the (*n*-dimensional) inverse discrete Fourier transform (DFT).

2 The group algebra $\mathbb{C}[H_n(\mathbb{F}_q)]$ and Gelfand pairs

Let H denote the Heisenberg group $H = H_n(\mathbb{F}) = \mathcal{W} \times \mathbb{F}$ where, as before,

$$\mathcal{W} = \mathbb{F}^n \times \mathbb{F}^n, \quad \mathbb{F} = \mathbb{F}_q, \quad q = p^m, \quad p \text{ an odd prime.}$$

The convolution product on $\mathbb{C}[H]$ is

$$\begin{split} (f \star g)(\mathbf{z}, t) &= \sum_{(\mathbf{z}', t') \in H} f\big((\mathbf{z}, t)(\mathbf{z}', t')^{-1}\big)g(\mathbf{z}', t') \\ &= \sum_{(\mathbf{z}', t') \in H} f\big(\mathbf{z} - \mathbf{z}', t - t' - 2^{-1}[\mathbf{z}, \mathbf{z}']\big)g(\mathbf{z}', t'). \end{split}$$

2.1 Twisted convolution on $\mathbb{C}[\mathcal{W}]$

Twisted convolution is well-known in connection with analysis on the real Heisenberg group $H_n(\mathbb{R})$. (See [Fol89].) Here we require its discrete analog.

Definition 2.1 For $f \in \mathbb{C}[H]$ and $a \in \mathbb{F}$ define $f_a \in \mathbb{C}[W]$ via

$$f_a(\mathbf{z}) = \frac{1}{\sqrt{q}} \sum_{t \in \mathbb{F}} f(\mathbf{z}, t) \psi_a(t).$$

For fixed $\mathbf{z} \in \mathcal{W}$, $f_a(\mathbf{z})$ is the (one-dimensional) inverse discrete Fourier transform of $t \mapsto f(\mathbf{z}, t)$ evaluated at a. The Fourier inversion formula yields

$$f(\mathbf{z},t) = \frac{1}{\sqrt{q}} \sum_{a \in \mathbb{F}} f_a(\mathbf{z}) \psi_a(-t).$$
(13)

In particular, a function $f \in \mathbb{C}[H]$ is completely determined by $\{f_a : a \in \mathbb{F}\}$. So for given $f, f' \in \mathbb{C}[H]$,

$$f = f' \iff f_a = f'_a \text{ for all } a \in \mathbb{F}.$$
 (14)

Definition 2.2 For functions $f, g \in \mathbb{C}[W]$ and given $a \in \mathbb{F}$ we define the *twisted convolution* $f \natural_a g \in \mathbb{C}[W]$ via

$$(f \natural_a g)(\mathbf{z}) = \sum_{\mathbf{w} \in \mathcal{W}} f(\mathbf{z} - \mathbf{w}) g(\mathbf{w}) \psi_a\left(\frac{1}{2}[\mathbf{z}, \mathbf{w}]\right).$$

A straightforward calculation using (13) and (6) yields the following.

Lemma 2.3 For $f, g \in \mathbb{C}[H]$ and $a \in \mathbb{F}$ one has

$$(f \star g)_a = \sqrt{q} f_a \natural_a g_a.$$

2.2 K-invariant functions on H and W

The symplectic group $Sp(n, \mathbb{F})$ acts on $\mathbb{C}[\mathcal{W}]$ and $\mathbb{C}[H]$ via

$$k \cdot f(\mathbf{z}) = f(k^{-1}\mathbf{z})$$
 and $k \cdot f(\mathbf{z}, t) = f(k^{-1} \cdot (\mathbf{z}, t)) = f(k^{-1}z, t).$

For subgroups K of $Sp(n, \mathbb{F})$ we let $\mathbb{C}[\mathcal{W}]^K$ and $\mathbb{C}[H]^K$ denote the sets of K-fixed elements in $\mathbb{C}[\mathcal{W}]$ and $\mathbb{C}[H]$ respectively. These are easily seen to be subalgebras of $\mathbb{C}[\mathcal{W}]$ and $\mathbb{C}[H]$ with respect to the convolutions \natural_a and \star .

Definition 2.4 Given a subgroup K of $Sp(n, \mathbb{F})$, we say that (K, H) is a *Gelfand pair* when $\mathbb{C}[H]^K$ is a *commutative* algebra under convolution.

Remark 2.5 One can identify $\mathbb{C}[H]^K$ with the algebra $\mathbb{C}[K \setminus G/K]$ of K-biinvariant functions on the semidirect product $G = K \ltimes H$. So (G, K) is a Gelfand pair in the traditional sense when Definition 2.4 applies. **Proposition 2.6** Let K be a subgroup of $Sp(n, \mathbb{F})$. Then (K, H) is a Gelfand pair if and only if $hh' \in (Kh')(Kh)$ for all $h, h' \in H$.

Proof. This result is the discrete analog of Theorem 1.12 in [BJR90]. \Box

Proposition 2.7 Let K be a subgroup of $Sp(n, \mathbb{F})$. Then (K, H) is a Gelfand pair if and only if $(\mathbb{C}[\mathcal{W}]^K, \natural_{\lambda})$ is commutative for all $\lambda \in \mathbb{F}^{\times}$.

Proof. First note that $(\mathbb{C}[\mathcal{W}]^K, \natural_0)$ is, in any case, commutative since \natural_0 is the standard (untwisted) convolution on $\mathbb{C}[\mathcal{W}]$. To complete the proof use (14) together with Lemma 2.3 and the the obvious identity

$$(k \cdot f)_a = k \cdot f_a$$

 $(k \in Sp(n, \mathbb{F}), f \in \mathbb{C}[H], a \in \mathbb{F}).$

Two immediate but useful properties of Gelfand pairs are noted in the following lemma.

Lemma 2.8 Let K_1 and K_2 be a pair of subgroups of $Sp(n, \mathbb{F})$ and suppose that (K_1, H) a Gelfand pair.

(a) If $K_1 \subset K_2$ then (K_2, H) is a Gelfand pair. (b) If K_1, K_2 are conjugate in $Sp(n, \mathbb{F})$ then (K_2, H) is a Gelfand pair.

3 Gelfand pairs and the oscillator representation

3.1 Operator valued Fourier transform on $\mathbb{C}[\mathcal{W}]$

For $f \in \mathbb{C}[\mathcal{W}]$ and $\lambda \in \mathbb{F}^{\times}$ let $\pi_{\lambda}(f)$ denote the operator

$$\pi_{\lambda}(f) = \sum_{\mathbf{z} \in \mathcal{W}} f(\mathbf{z}) \pi_{\lambda}(\mathbf{z})$$
(15)

on $\mathbb{C}[\mathcal{W}]$. Here $\pi_{\lambda}(\mathbf{z}) = \pi_{\lambda}(\mathbf{z}, 0)$ and π_{λ} is the Schrödinger representation (8). The following standard result is easily verified.

Lemma 3.1 $\pi_{\lambda}(f \natural_{\lambda} g) = \pi_{\lambda}(f) \pi_{\lambda}(g)$ for $f, g \in \mathbb{C}[\mathcal{W}]$ and $\lambda \in \mathbb{F}^{\times}$.

Lemma 3.2 The map $\pi_{\lambda} : \mathbb{C}[\mathcal{W}] \to End(\mathbb{C}[\mathbb{F}^n])$ is a vector space isomorphism for each $\lambda \in \mathbb{F}^{\times}$. In fact $q^{-3n/2}\pi_{\lambda}$ is a unitary isomorphism of $\mathbb{C}[\mathcal{W}]$ onto $End(\mathbb{C}[\mathbb{F}^n])$ equipped with the Hilbert-Schmidt inner product

$$\langle T, S \rangle_{HS} = tr(TS^*).$$

Proof. The set $\{q^{n/2}\delta_{\mathbf{u}} : \mathbf{u} \in \mathbb{F}^n\}$ is an orthonormal basis for $\mathbb{C}[\mathbb{F}^n]$ with

$$\pi_{\lambda}(\mathbf{x}, \mathbf{y})\delta_{\mathbf{u}} = \psi_{\lambda}(\mathbf{u} \cdot \mathbf{y} - 2^{-1}\mathbf{x} \cdot \mathbf{y})\delta_{\mathbf{u}-\mathbf{x}}.$$

So for $f, f' \in \mathbb{C}[\mathcal{W}]$ we compute

$$\langle \pi_{\lambda}(f), \pi_{\lambda}(f') \rangle_{HS} = \sum_{\mathbf{u} \in \mathbb{F}^{n}} q^{n} \langle \pi_{\lambda}(f) \delta_{\mathbf{u}}, \pi_{\lambda}(f') \delta_{\mathbf{u}} \rangle_{\mathbb{F}^{n}}$$
$$= \sum_{\mathbf{u} \in \mathbb{F}^{n}; \mathbf{z}, \mathbf{z}' \in \mathcal{W}} f(\mathbf{z}), \overline{f'(\mathbf{z}')} q^{n} \langle \pi_{\lambda}(\mathbf{z}) \delta_{\mathbf{u}}, \pi_{\lambda}(\mathbf{z}') \delta_{\mathbf{u}} \rangle_{\mathbb{F}^{n}}.$$

A calculation using (8) shows

$$\sum_{\mathbf{u}\in\mathbb{F}^n} \langle \pi_\lambda(\mathbf{z})\delta_{\mathbf{u}}, \pi_\lambda(\mathbf{z}')\delta_{\mathbf{u}} \rangle_{\mathbb{F}^n} = \delta_{\mathbf{z},\mathbf{z}'}.$$

Thus

$$\langle \pi_{\lambda}(f), \pi_{\lambda}(f') \rangle_{HS} = q^n \sum_{\mathbf{z} \in \mathcal{W}} f(\mathbf{z}) \overline{f'(\mathbf{z})} = q^{3n} \langle f, f' \rangle_{\mathcal{W}}$$

This shows $q^{-3n/2}\pi_{\lambda} : \mathbb{C}[\mathcal{W}] \to End(\mathbb{C}[\mathbb{F}^n])$ is unitary, hence injective. As the spaces $\mathbb{C}[\mathcal{W}]$ and $End(\mathbb{C}[\mathbb{F}^n])$ have equal dimension it follows that π_{λ} is an isomorphism of $\mathbb{C}[\mathcal{W}]$ onto $End(\mathbb{C}[\mathbb{F}^n])$.

3.2 Oscillator representation

Recall that $\omega_{\lambda} : Sp(n, \mathbb{F}) \to U(\mathbb{C}[\mathbb{F}^n])$ denotes the oscillator representation, characterized by Equation 10. Now for $k \in Sp(n, \mathbb{F})$ let $\widetilde{\omega}_{\lambda}(k)$ be the operator on $End(\mathbb{C}[\mathbb{F}^n])$ defined as

$$\widetilde{\omega}_{\lambda}(k)T = \omega_{\lambda}(k)T\omega_{\lambda}(k)^{-1} \tag{16}$$

One checks that $\widetilde{\omega}_{\lambda}$ defines a unitary representation of $Sp(n, \mathbb{F})$ on the Hermitian vector space $(End(\mathbb{C}[\mathbb{F}^n], \langle \cdot, \cdot \rangle_{HS}))$. Moreover for $k \in Sp(n, \mathbb{F})$ and $f \in \mathbb{C}[\mathcal{W}]$ one has

$$\pi_{\lambda}(k \cdot f) = \sum_{\mathbf{z} \in \mathcal{W}} f(k^{-1}\mathbf{z})\pi_{\lambda}(\mathbf{z}) = \sum_{\mathbf{w} \in \mathcal{W}} f(\mathbf{w})\pi_{\lambda}(k\mathbf{w}) = \widetilde{\omega}_{\lambda}(k)\pi_{\lambda}(f), \quad (17)$$

since $\pi_{\lambda}(k\mathbf{w}) = \omega_{\lambda}(k)\pi_{\lambda}(\mathbf{w})\omega_{\lambda}(k)^{-1}$. So the isomorphism $\pi_{\lambda} : \mathbb{C}[\mathcal{W}] \to End(\mathbb{C}[\mathbb{F}^n])$ intertwines the natural representation of $Sp(n,\mathbb{F})$ on $\mathbb{C}[\mathcal{W}]$ with $\widetilde{\omega}_{\lambda}$.

Definition 3.3 Let K be a subgroup of $Sp(n, \mathbb{F})$. For $\lambda \in \mathbb{F}^{\times}$ we define the *commutant* $\mathcal{C}_{\lambda,K}$ of $\widetilde{\omega}_{\lambda}(K)$ in $End(\mathbb{C}[\mathbb{F}^n])$ as

$$\mathcal{C}_{\lambda,K} = End(\mathbb{C}[\mathbb{F}^n])^{\widetilde{\omega}_{\lambda}(K)} = \{T \in End(\mathbb{C}[\mathbb{F}^n]) : \omega_{\lambda}(k)T = T\omega_{\lambda}(k) \; \forall k \in K\}$$

Note that $\mathcal{C}_{\lambda,K}$ is a subalgebra of $End(\mathbb{C}[\mathbb{F}^n])$.

9

Proposition 3.4 π_{λ} yields an algebra isomorphism of $(\mathbb{C}[\mathcal{W}]^{K}, \natural_{\lambda})$ onto $\mathcal{C}_{\lambda,K}$.

Proof. Taken together, Lemmas 3.1 and 3.2 show that $\pi_{\lambda} : \mathbb{C}[\mathcal{W}] \to End(\mathbb{C}[\mathbb{F}^n])$ is an algebra isomorphism of $(\mathbb{C}[\mathcal{W}], \natural_{\lambda})$ onto $End(\mathbb{C}[\mathbb{F}^n])$. Equation 17 shows that π_{λ} maps $\mathbb{C}[\mathcal{W}]^K$ onto $\mathcal{C}_{\lambda,K}$.

Proposition 3.5 Let K be a subgroup of $Sp(n, \mathbb{F})$ and $\lambda \in \mathbb{F}^{\times}$. Then $\omega_{\lambda}|_{K}$ is multiplicity free if and only if $\mathcal{C}_{\lambda,K}$ is commutative.

Proof. Suppose that $\omega_{\lambda}|_{K}$ is multiplicity free. So $\mathbb{C}[\mathbb{F}^{n}]$ has a canonical decomposition into pair-wise inequivalent $\omega_{\lambda}(K)$ -irreducible subspaces:

$$\mathbb{C}[\mathbb{F}^n] = P_1 \oplus \cdots \oplus P_m$$

say. Schur's Lemma shows that each operator $T \in \mathcal{C}_{\lambda,K}$ must preserve the P_j 's and act by a scalar on each. Any two such operators commute with one another.

Next suppose that $\omega_{\lambda}|_{K}$ is *not* multiplicity free. Hence $\mathbb{C}[\mathbb{F}^{n}]$ has a decomposition of the sort

$$\mathbb{C}[\mathbb{F}^n] = W_1 \oplus W_2 \oplus V,$$

where W_1 , W_2 , V are $\omega_{\lambda}(K)$ -invariant and W_1 , W_2 are $\omega_{\lambda}(K)$ -irreducible and equivalent. Thus $\mathcal{C}_{\lambda,K}$ contains a copy of $GL(2,\mathbb{F})$, and it fails to be commutative.

Definition 3.6 We say that a subgroup K of $Sp(n, \mathbb{F})$ is ω -multiplicity free if the restriction $\omega_{\lambda}|_{K}$ of the oscillator representation to K is multiplicity free for all $\lambda \in \mathbb{F}^{\times}$.

Together Propositions 2.7, 3.4 and 3.5 imply the following.

Theorem 3.7 Let K be a subgroup of $Sp(n, \mathbb{F})$. Then (K, H) is a Gelfand pair if and only if K is ω -multiplicity free.

When applying Definition 3.6 it suffices to check that $\omega_{\lambda}|_{K}$ is multiplicity free for at most two values of λ .

Proposition 3.8 A subgroup K of $Sp(n, \mathbb{F})$ is ω -multiplicity free if and only if $\omega_1|_K$ and $\omega_{\varepsilon}|_K$ are multiplicity free for any fixed choice of $\varepsilon \in \mathbb{F}^{\times}$ which is not a square. Moreover when $q \equiv 3 \mod 4$ it suffices that $\omega_1|_K$ be multiplicity free.

Proof. Proposition 1.2 implies that each oscillator representation ω_{λ} is unitarily equivalent to one of ω_1 or ω_{ε} . If -1 is not a square in \mathbb{F} , equivalently when $q \equiv 3 \mod 4$, we can take $\varepsilon = -1$. But ω_{-1} is contragredient to ω_1 by (11). So when $\omega_1|_K$ is multiplicity free so is $\omega_{-1}|_K$.

Remark 3.9 We do not know of an example where $\omega_1|_K$ is multiplicity free but K fails to be ω -multiplicity free.

4 Counting and convolving K-orbits in \mathcal{W}

Let ρ denote the natural (unitary) representation of $Sp(n, \mathbb{F})$ on $\mathbb{C}[\mathcal{W}]$:

$$\rho(k)f(\mathbf{z}) = k \cdot f(\mathbf{z}) = f(k^{-1}\mathbf{z}),$$

and $\widetilde{\omega}_{\lambda} : Sp(n, \mathbb{F}) \to U(End(\mathbb{C}[\mathbb{F}^n])$ be as in (16). We have seen that ρ and $\widetilde{\omega}_{\lambda}$ are unitarily equivalent via $q^{-3n/2}\pi_{\lambda}$, a multiple of the operator valued Fourier transform. There is another viewpoint on this equivalence. Consider the standard isomorphism

$$\varPhi: \mathbb{C}[\mathbb{F}^n] \otimes \mathbb{C}[\mathbb{F}^n]^* \to End(\mathbb{C}[F^n]), \qquad \varPhi(f \otimes \varphi)(g) = \varphi(g)f.$$

One checks easily that

- Φ is unitary. (As before $End(\mathbb{C}[F^n])$ carries the Hilbert-Schmidt inner product and we give $\mathbb{C}[\mathbb{F}^n] \otimes \mathbb{C}[\mathbb{F}^n]^*$ the tensor product of $\langle \cdot, \cdot \rangle_{\mathbb{F}^n}$ with its dual inner product.)
- $\Phi(\omega_{\lambda}(k)f\otimes\omega_{\lambda}^{*}(k)\varphi)=\widetilde{\omega}_{\lambda}(k)\Phi(f\otimes\varphi).$

So \varPhi establishes a unitary equivalence

$$\omega_{\lambda} \otimes \omega_{\lambda}^* \simeq \widetilde{\omega}_{\lambda},$$

and the composite $q^{3n/2}\pi_{\lambda}^{-1} \circ \Phi$ yields

$$\omega_{\lambda} \otimes \omega_{\lambda}^* \simeq \rho. \tag{18}$$

This basic fact plays a central role in [How].

4.1 Counting orbits

Now let K be a subgroup of $Sp(n, \mathbb{F})$ and for $\lambda \in \mathbb{F}^{\times}$ decompose $\omega_{\lambda}|_{K}$:

$$\omega_{\lambda}|_{K} \simeq \sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda}\sigma, \qquad m_{\sigma,\lambda} = mult(\sigma, \omega_{\lambda}|_{K}).$$

Writing $d_{\sigma} = \dim(\sigma)$ one has

$$\sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda} d_{\sigma} = \dim(\mathbb{C}[\mathbb{F}^n]) = q^n.$$
(19)

Also, applying (18):

$$\rho|_K \simeq (\omega_\lambda \otimes \omega_\lambda^*)|_K \simeq \sum_{\sigma, \sigma' \in \widehat{K}} m_{\sigma,\lambda} m_{\sigma',\lambda} \sigma \otimes (\sigma')^*.$$

We know that $\sigma \otimes (\sigma)^*$ has a one-dimensional space of K-fixed vectors and that $(\sigma \otimes (\sigma')^*)^K = 0$ when $\sigma' \not\simeq \sigma$. So

Gelfand pairs associated with finite Heisenberg groups 11

$$\dim(\mathbb{C}[\mathcal{W}]^K) = \sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda}^2.$$

But dim $(\mathbb{C}[\mathcal{W}]^K) = |\mathcal{W}/K|$, the number of *K*-orbits in \mathcal{W} . (Indeed, if $K\mathbf{z}_1, \ldots, K\mathbf{z}_r$ are the distinct *K*-orbits in \mathcal{W} then the characteristic functions $\{\delta_{K\mathbf{z}_1}, \ldots, \delta_{K\mathbf{z}_r}\}$ form a basis for $\mathbb{C}[\mathcal{W}]^K$.) So now

$$\sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda}^2 = |\mathcal{W}/K|.$$
⁽²⁰⁾

Proposition 4.1 If K is ω -multiplicity free (equivalently (K, H) is a Gelfand pair) then we must have

- $|\mathcal{W}/K| \leq q^n$ and
- $|K| \ge q^n + 1.$

Proof. Suppose that $|\mathcal{W}/K| > q^n$. Using Equations 19 and 20 one obtains

$$\sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda}^2 > \sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda} d_{\sigma} \ge \sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda}.$$

So we must have $m_{\sigma,\lambda} \geq 2$ for some $\sigma \in \widehat{K}$. Hence K fails to be ω -multiplicity free unless $|\mathcal{W}/K| \leq q^n$.

Next observe that

$$|\mathcal{W}/K| \ge 1 + \frac{q^{2n} - 1}{|K|},$$

since $\{0\}$ is a K-orbit in \mathcal{W} and $\mathcal{W}\setminus\{0\}$ contains at least $\frac{q^{2n}-1}{|K|}$ K-orbits. So in view of the inequality $|\mathcal{W}/K| \leq q^n$ we must have

$$1 + \frac{q^{2n} - 1}{|K|} \le q^n \implies \frac{q^{2n} - 1}{q^n - 1} \le |K| \implies q^n + 1 \le |K|,$$

as claimed.

Proposition 4.2 Let K be an abelian subgroup of $Sp(n, \mathbb{F})$. Then $|\mathcal{W}/K| \ge q^n$ and K is ω -multiplicity free if and only if $|\mathcal{W}/K| = q^n$. Moreover, this is possible only when $|K| \ge q^n + 1$.

Proof. When K is abelian we have $d_{\sigma} = 1$ for all $\sigma \in \widehat{K}$. So Equations 19 and 20 become

$$\sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda} = q^n, \qquad \sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda}^2 = |\mathcal{W}/K|.$$

As $\sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda}^2 \geq \sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda}$ we conclude that $|\mathcal{W}/K| \geq q^n$ must hold. Also K is ω -multiplicity free if and only if $\sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda}^2 = \sum_{\sigma \in \widehat{K}} m_{\sigma,\lambda}$. Equivalently, $|\mathcal{W}/K| = q^n$ must hold. Proposition 4.1 shows, moreover, that this implies $|K| \geq q^n + 1$.

4.2 Convolving orbits

The characteristic functions

$$\{\delta_{K\mathbf{z}} : K\mathbf{z} \in \mathcal{W}/K\}$$

for the K-orbits in \mathcal{W} yield an (orthogonal) basis for $\mathbb{C}[\mathcal{W}]^K$. We compute

$$\delta_{K\mathbf{z}} \natural_{\lambda} \delta_{K\mathbf{z}'}(\mathbf{w}) = \sum_{\mathbf{v} \in \mathcal{W}} \delta_{K\mathbf{z}}(\mathbf{w} - \mathbf{v}) \delta_{K\mathbf{z}'}(\mathbf{v}) \psi_{\lambda}(2^{-1}[\mathbf{w}, \mathbf{v}])$$
$$= \sum_{\mathbf{v} \in (\mathbf{w} - K\mathbf{z}) \cap K\mathbf{z}'} \psi_{\lambda}(2^{-1}[\mathbf{w}, \mathbf{v}]).$$
(21)

In view of Proposition 2.7, (K, H) will be a Gelfand pair if and only if $\delta_{K\mathbf{z}} \natural_{\lambda} \delta_{K\mathbf{z}'}(\mathbf{w}) = \delta_{K\mathbf{z}'} \natural_{\lambda} \delta_{K\mathbf{z}}(\mathbf{w})$ for all $\mathbf{z}, \mathbf{z}', \mathbf{w} \in \mathcal{W}$ and all $\lambda \in \mathbb{F}^{\times}$. It is enough to consider $\mathbf{z} \neq 0 \neq \mathbf{z}'$ since $\delta_{K0} = \delta_0$ is a two-sided identity in $(\mathbb{C}[\mathcal{W}], \natural_{\lambda})$. Moreover we can take $\mathbf{w} \neq 0$ because, in any case, $f \natural_{\lambda} g(0) = f \natural_{\lambda} g(0)$ for functions $f, g \in \mathbb{C}[\mathcal{W}]$. This discussion yields the following.

Lemma 4.3 (K, H) is a Gelfand pair if and only if

$$\sum_{\mathbf{v}\in(\mathbf{w}-K\mathbf{z})\cap K\mathbf{z}'}\psi_{\lambda}([\mathbf{w},\mathbf{v}]) = \sum_{\mathbf{v}\in(\mathbf{w}-K\mathbf{z}')\cap K\mathbf{z}}\psi_{\lambda}([\mathbf{w},\mathbf{v}])$$

for all $\mathbf{z}, \mathbf{z}', \mathbf{w} \in \mathcal{W} \setminus \{0\}$ and $\lambda \in \mathbb{F}^{\times}$.

Remark 4.4 By Proposition 3.8 it suffices to check the condition in Lemma 4.3 for at most two values of the parameter λ .

Lemma 4.5 Suppose that there are K-invariant subspaces \mathcal{X} and \mathcal{Y} in \mathcal{W} with

$$\mathcal{X} \cap \mathcal{Y} = 0, \qquad [\mathcal{X}, \mathcal{Y}] \neq 0.$$

Then (K, H) is not a Gelfand pair.

Proof. Choose points $\mathbf{z} \in \mathcal{X}$ and $\mathbf{z}' \in \mathcal{Y}$ with $[\mathbf{z}, \mathbf{z}'] = 1$ and let $\mathbf{w} = \mathbf{z} + \mathbf{z}'$. We have

$$(\mathbf{w} - K\mathbf{z}) \cap K\mathbf{z}' = \{\mathbf{z}'\}$$

Indeed, suppose that $\mathbf{v} \in (\mathbf{w} - K\mathbf{z}) \cap K\mathbf{z}'$. Thus for some $k, k' \in K$,

 $\mathbf{w} - k\mathbf{z} = \mathbf{v} = k'\mathbf{z}'$ and hence $\mathbf{z} - k\mathbf{z} = k'\mathbf{z}' - \mathbf{z}'$.

But $\mathbf{z} - k\mathbf{z} \in \mathcal{X}$ and $k'\mathbf{z}' - \mathbf{z}' \in \mathcal{Y}$. So $\mathbf{v} = k'\mathbf{z}' = \mathbf{z}'$ since $\mathcal{X} \cap \mathcal{Y} = 0$. Thus for these choices of \mathbf{z}, \mathbf{z}' and \mathbf{w} we have

$$\sum_{\mathbf{v}\in(\mathbf{w}-K\mathbf{z})\cap K\mathbf{z}'}\psi_1([\mathbf{w},\mathbf{v}])=\psi_1([\mathbf{z}+\mathbf{z}',\mathbf{z}'])=\psi_1(1)=e^{2\pi i/p}$$

Likewise

$$\sum_{\mathbf{v}\in(\mathbf{w}-K\mathbf{z}')\cap K\mathbf{z}}\psi_1([\mathbf{w},\mathbf{v}])=\psi_1([\mathbf{z}+\mathbf{z}',\mathbf{z}])=\psi_1(-1)=e^{-2\pi i/p}$$

As p is odd, these values are necessarily different. So (K, H) fails to be a Gelfand pair in view of Lemma 4.3.

Corollary 4.6 Let (K, H_W) be a Gelfand pair where K acts reductively but non-irreducibly on W. So W decomposes as a direct sum of K-invariant subspaces,

$$\mathcal{W} = \mathcal{W}_1 \oplus \cdots \oplus \mathcal{W}_\ell$$

say. Let $K_j \subset GL(\mathcal{W}_j)$ denote the restriction of K to \mathcal{W}_j . Then:

(a) $[W_i, W_j] = 0$ for all $i \neq j$. (b) Each W_j is a symplectic subspace of W and $K_j \subset Sp(W_j)$. (c) Each (K_j, H_{W_j}) is a Gelfand pair.

Corollary 4.7 Suppose we are given symplectic vector spaces $(W_j, [\cdot, \cdot]_j)$ and subgroups $K_j \subset Sp(W_j)$ for $j = 1, ... \ell$. We form the symplectic direct sum

$$W = \mathcal{W}_1 \oplus \cdots \oplus \mathcal{W}_{\ell}, \qquad [(\mathbf{w}_1, \dots, \mathbf{w}_{\ell}), (\mathbf{w}'_1, \dots, \mathbf{w}'_{\ell})] = \sum_{j=1}^{\ell} [\mathbf{w}_j, \mathbf{w}'_j]_j$$

and let $K \subset Sp(\mathcal{W})$ denote the product

$$K = K_1 \times \cdots \times K_\ell.$$

Then $(K, H_{\mathcal{W}})$ is a Gelfand pair if and only if $(K_j, H_{\mathcal{W}_j})$ is a Gelfand pair for $j = 1, \ldots, \ell$.

Recall that a subspace \mathcal{X} of the symplectic vector space \mathcal{W} is said to be *isotropic* if $[\mathcal{X}, \mathcal{X}] = 0$.

Corollary 4.8 Suppose that K acts reductively on W and that the action preserves a non-zero isotropic subspace X. Then (K, H) is not a Gelfand pair.

Proof. As K acts reductively on \mathcal{W} we have $\mathcal{W} = \mathcal{X} \oplus \mathcal{Y}$ for some K-invariant subspace \mathcal{Y} . As \mathcal{X} is isotropic we necessarily have $[\mathcal{X}, \mathcal{Y}] \neq 0$.

5 Examples

5.1 Symplectic groups

A trivial application of Lemma 4.3 shows that $(Sp(n, \mathbb{F}), H_n(\mathbb{F}))$ is a Gelfand pair. Indeed, for $K = Sp(n, \mathbb{F})$ we have only one non-zero K-orbit. That is

 $K\mathbf{z} = \mathcal{W} \setminus \{0\}$ for all $\mathbf{z} \neq 0$ in \mathcal{W} . Equation 20 now shows that the oscillator representation ω_{λ} must decompose into exactly two inequivalent irreducible constituents. This fact is well known. (See [How], [Neu02].) The $\omega_{\lambda}(Sp(n, \mathbb{F}))$ -irreducible subspaces of $\mathbb{C}[\mathbb{F}^n]$ can be identified as follows.

The matrix -I belongs to the center of $Sp(n, \mathbb{F})$ and the first formula from Theorem 1.3 shows that $\omega_{\lambda}(-I) = sgn((-1)^n)T$ where

$$Tf(\mathbf{u}) = f(-\mathbf{u}).$$

So the eigenspaces for T must be $\omega_{\lambda}(Sp(n,\mathbb{F}))$ -invariant. These are the spaces of even and odd functions. As ω_{λ} has exactly two irreducible components these spaces are necessarily irreducible.

To obtain more interesting examples we must consider smaller subgroups of $Sp(n, \mathbb{F})$.

5.2 General linear groups

The group $GL(n, \mathbb{F})$ embeds diagonally in $Sp(n, \mathbb{F})$ via $\{A_{diag} : A \in GL(n, \mathbb{F})\}$. (See (12).) The action of $GL(n, \mathbb{F})$ on $\mathcal{W} = \mathbb{F}^n \times \mathbb{F}^n$ preserves the isotropic subspaces

$$\mathcal{X} = \mathbb{F}^n \times \{0\}, \quad \mathcal{Y} = \{0\} \times \mathbb{F}^n.$$

So $(GL(n, \mathbb{F}), H_n(\mathbb{F}))$ is not a Gelfand pair, in view of Corollary 4.8. More generally, if $K \subset Sp(n, \mathbb{F})$ is conjugate in $Sp(n, \mathbb{F})$ to a subgroup of $GL(n, \mathbb{F})$ then (K, H) is not a Gelfand pair.

For $n \geq 2$ there are q+3 distinct $GL(n, \mathbb{F})$ -orbits in \mathcal{W} , namely

 $\{(0,0)\}, \qquad (\mathbb{F}^n \setminus \{0\}) \times \{0\}, \qquad \{0\} \times (\mathbb{F}^n \setminus \{0\}),$

 $\{(\mathbf{x}, \mathbf{y}) : \mathbf{x} \neq 0 \neq \mathbf{y}, \ \mathbf{x} \cdot \mathbf{y} = 0\} \text{ and } \{(\mathbf{x}, \mathbf{y}) : \mathbf{x} \cdot \mathbf{y} = a\}$

for each $a \in \mathbb{F}^{\times}$. So here $|\mathcal{W}/GL(n,\mathbb{F})| < q^n$, but $(GL(n,\mathbb{F}), H_n(\mathbb{F}))$ is not a Gelfand pair. This shows that, for K non-abelian, there can be no converse for Proposition 4.1.

5.3 Borel subgroups

A subgroup of $Sp(n, \mathbb{F})$ conjugate to

$$B = \left\{ \left[\frac{A \mid 0}{C \mid (A^t)^{-1}} \right] : A \in GL(n, \mathbb{F}) \text{ lower triangular, } A^t C \text{ symmetric} \right\}$$

is called a Borel subgroup.

Proposition 5.1 If K is a subgroup of $Sp(n, \mathbb{F})$ that contains a Borel subgroup then (K, H) is a Gelfand pair.

15

Proof. It suffices to show that (B, H) is a Gelfand pair. This can be done using Proposition 2.6. There are exactly 2n non-zero *B*-orbits in $\mathcal{W} = \mathbb{F}^n \times \mathbb{F}^n$:

$$\mathcal{W}\setminus\{0\} = \biguplus_{j=1}^{n} B\mathbf{u}_{j} \ \uplus \ \biguplus_{j=1}^{n} B\mathbf{v}_{j} \ \text{where} \ \mathbf{u}_{j} = (\mathbf{e}_{j}, 0), \ \mathbf{v}_{j} = (0, \mathbf{e}_{j})$$

and $\{\mathbf{e}_i\}$ is the standard basis for \mathbb{F}^n .

Suppose that $\mathbf{z} \in B\mathbf{u}_i$ and $\mathbf{w} \in B\mathbf{u}_j$. One has $\mathbf{z} \pm \mathbf{w} \in B\mathbf{u}_{\min(i,j)}$, and hence $\mathbf{z} + \mathbf{w} = k(\mathbf{z} - \mathbf{w})$ for some $k \in B$. Let k' = -k and note that $k' \in B$, since $-I \in B$. Now

$$\begin{aligned} (\mathbf{z}, s)(\mathbf{w}, t) &= (\mathbf{z} + \mathbf{w}, \ s + t + 2^{-1} [\mathbf{z}, \mathbf{w}]) \\ &= (k \mathbf{z} - k \mathbf{w}, \ s + t + 2^{-1} [k \mathbf{z}, k \mathbf{w}]) \\ &= (k' \mathbf{w} + k \mathbf{z}, \ t + s + 2^{-1} [k' \mathbf{w}, k \mathbf{z}]) \\ &= (k' \mathbf{w}, t) (k \mathbf{z}, s). \end{aligned}$$

So $(\mathbf{z}, s)(\mathbf{w}, t) \in (B(\mathbf{w}, t))(B(\mathbf{z}, s))$. Similar calculations apply for other combinations of orbits.

One can also give an explicit description of the algebra $(\mathbb{C}[\mathcal{W}]^B, \natural_{\lambda})$ by determining the twisted convolution of pairs of characteristic functions for *B*-orbits in \mathcal{W} . We adopt the notation

$$E_{\lambda}(\mathbf{z}) = \sum_{\mathbf{w} \in B\mathbf{z}} \psi_{\lambda}(2^{-1}[\mathbf{z}, \mathbf{w}]) \qquad (\mathbf{z} \in \mathcal{W}, \ \lambda \in \mathbb{F}^{\times}).$$

Brute force calculation yields the following.

$$\delta_{B\mathbf{u}_{i}} \natural_{\lambda} \delta_{B\mathbf{u}_{j}} = \begin{cases} E_{\lambda}(\mathbf{u}_{\max(i,j)}) \delta_{B\mathbf{u}_{\min(i,j)}} & \text{for } i \neq j \\ E_{\lambda}(\mathbf{u}_{i}) \sum_{\ell \geq i} \delta_{B\mathbf{u}_{\ell}} - \delta_{B\mathbf{u}_{i}} & \text{for } i = j \end{cases}$$
$$\delta_{B\mathbf{v}_{i}} \natural_{\lambda} \delta_{B\mathbf{v}_{j}} = \begin{cases} E_{\lambda}(\mathbf{v}_{\min(i,j)}) \delta_{B\mathbf{v}_{\max(i,j)}} & \text{for } i \neq j \\ E_{\lambda}(\mathbf{v}_{i}) \sum_{\ell \leq i} \delta_{B\mathbf{v}_{\ell}} - \delta_{B\mathbf{v}_{i}} & \text{for } i = j \end{cases}$$
$$\delta_{B\mathbf{u}_{j}} \natural_{\lambda} \delta_{B\mathbf{v}_{i}} = \delta_{B\mathbf{v}_{i}} \natural_{\lambda} \delta_{B\mathbf{u}_{j}} = E_{\lambda}(\mathbf{v}_{i}) \delta_{B\mathbf{u}_{j}}$$

These formulas show, in particular, that $(\mathbb{C}[\mathcal{W}]^B, \natural_{\lambda})$ is commutative, as guaranteed by Proposition 5.1.

5.4 Unitary groups

Let $\widetilde{\mathbb{F}}$ denote a quadratic extension of the field $\mathbb{F} = \mathbb{F}_q$. Up to isomorphism $\widetilde{\mathbb{F}}$ is a copy of \mathbb{F}_{q^2} . More concretely we choose any non-square

$$\varepsilon \in \mathbb{F}^{\times} \backslash (\mathbb{F}^{\times})^2$$

in $\mathbb F$ and take

$$\widetilde{\mathbb{F}} = \mathbb{F}(\sqrt{\varepsilon})$$

The Galois involution $\widetilde{\mathbb{F}} \to \widetilde{\mathbb{F}}$ will be written as $z \mapsto \overline{z}$. One has $\overline{z} = z^q$ and

$$a + b\sqrt{\varepsilon} = a - b\sqrt{\varepsilon} \quad (a, b \in \mathbb{F})$$

Let $(\widetilde{\mathcal{W}}, \langle \cdot, \cdot \rangle)$ be a (finite dimensional) Hermitian vector space over $\widetilde{\mathbb{F}}$. That is $\langle \cdot, \cdot \rangle : \widetilde{\mathcal{W}} \times \widetilde{\mathcal{W}} \to \widetilde{\mathbb{F}}$ is

- **F**-bilinear and non-degenerate with
- $\langle \lambda \mathbf{z}, \mathbf{z}' \rangle = \lambda \langle \mathbf{z}, \mathbf{z}' \rangle$ and $\overline{\langle \mathbf{z}, \mathbf{z}' \rangle} = \langle \mathbf{z}', \mathbf{z} \rangle$ $(\mathbf{z}, \mathbf{z}' \in \widetilde{\mathcal{W}}, \lambda \in \widetilde{\mathbb{F}}).$

The unitary group $U(\widetilde{\mathcal{W}})$ is the set of $\widetilde{\mathbb{F}}$ -linear operators preserving $\langle \cdot, \cdot \rangle$.

Let \mathcal{W} denote the underlying \mathbb{F} -vector space for \mathcal{W} . One obtains a symplectic form on \mathcal{W} via

$$[\mathbf{z},\mathbf{z}'] = \frac{1}{2\sqrt{\varepsilon}} \Big(\overline{\langle \mathbf{z},\mathbf{z}' \rangle} - \langle \mathbf{z},\mathbf{z}' \rangle \Big) = \frac{1}{2\sqrt{\varepsilon}} \Big(\langle \mathbf{z}',\mathbf{z} \rangle - \langle \mathbf{z},\mathbf{z}' \rangle \Big).$$

(Writing $\langle \mathbf{z}, \mathbf{z}' \rangle \in \mathbb{F}(\sqrt{\varepsilon})$ as $\langle \mathbf{z}, \mathbf{z}' \rangle = \langle \mathbf{z}, \mathbf{z}' \rangle_r + \langle \mathbf{z}, \mathbf{z}' \rangle_i \sqrt{\varepsilon}$, one has $[\mathbf{z}, \mathbf{z}'] =$ $-\langle \mathbf{z}, \mathbf{z}' \rangle_i$.) Clearly $U(\widetilde{\mathcal{W}})$ is a subgroup of $Sp(\mathcal{W})$, the symplectic group for $(\mathcal{W}, [\cdot, \cdot])$. We will prove that:

Proposition 5.2 $(U(\widetilde{W}), H_{W})$ is a Gelfand pair.

It is well known that a given finite dimensional F-vector space admits exactly one hermitian inner product, up to equivalence.¹ In fact one can find an orthonormal basis

$$\mathcal{B} = \{e_1, \dots, e_n\}$$

for $(\widetilde{\mathcal{W}}, \langle \cdot, \cdot \rangle)$ with $\langle e_i, e_j \rangle = \delta_{i,j}$. Using \mathcal{B} to identify $\widetilde{\mathcal{W}}$ with $\widetilde{\mathbb{F}}^n$ we have the usual formula

$$\langle \mathbf{z}, \mathbf{z}' \rangle = z_1 \overline{z_1'} + \dots + z_n \overline{z_n'}$$

Let

$$\widetilde{\mathcal{W}}_j = \widetilde{\mathbb{F}}e_j, \quad \mathcal{W}_j \text{ denote } \widetilde{\mathcal{W}}_j \text{ viewed as an } \mathbb{F}\text{-vector space}, \quad f_j = \sqrt{\varepsilon}e_j.$$

Now

- $\{e_j, f_j\}$ is a basis for \mathcal{W}_j ,
- $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ is a symplectic basis for \mathcal{W} (i.e. $[e_i, e_j] = 0 =$ $[f_i, f_j], [e_i, f_j] = \delta_{i,j}), \text{ and}$ • $\mathcal{W} = \mathcal{W}_1 \oplus \cdots \oplus \mathcal{W}_n$ is a symplectic direct sum.

¹ In contrast, the complex vector space \mathbb{C}^n admits |(n+2)/2| inequivalent Hermitian inner products. These yield distinct unitary groups U(r, s) with r + s = n. The analogs for these Hermitian inner products in the finite fields context are, however, mutually equivalent.

17

The restriction of $\langle \cdot, \cdot \rangle$ to \widetilde{W}_j is a hermitian inner product on \widetilde{W}_j . We consider the subgroups $U(\widetilde{W}_i) \subset Sp(\mathcal{W}_i)$ and their direct product

$$U(\widetilde{\mathcal{W}}_1) \times \cdots \times U(\widetilde{\mathcal{W}}_n) \subset U(\widetilde{\mathcal{W}}) \subset Sp(\mathcal{W}),$$

the subgroup of $U(\widetilde{W})$ preserving the decomposition $\mathcal{W} = \mathcal{W}_1 \oplus \cdots \oplus \mathcal{W}_n$. The following result evidentally implies Proposition 5.2.

Proposition 5.3 $(U(\widetilde{W}_1) \times \cdots \times U(\widetilde{W}_n), H_{\mathcal{W}})$ is a Gelfand pair.

Proof. In view of Corollary 4.7 it suffices to show that each $(U(\widetilde{W}_j), H_{W_j})$ is a Gelfand pair. This amounts to showing that $(U(\widetilde{\mathbb{F}}), H_1(\mathbb{F}))$ is a Gelfand pair, where $\widetilde{\mathbb{F}}$ carries the Hermitian inner product

$$\langle z, z' \rangle = z \overline{z'}$$

Now

$$U(\widetilde{\mathbb{F}}) = \{ \lambda \in \widetilde{\mathbb{F}}^{\times} : \lambda \overline{\lambda} = 1 \},\$$

is the kernel of the norm mapping

$$N: \widetilde{\mathbb{F}} \to \mathbb{F}, \qquad N(\lambda) = \lambda \overline{\lambda}$$

restricted to the multiplicative group $\widetilde{\mathbb{F}}^{\times}$ for the field $\widetilde{\mathbb{F}}$. So $U(\widetilde{\mathbb{F}})$ is, in particular, abelian. Moreover a pair of points $z, z' \in \widetilde{\mathbb{F}}$ belong to a common $U(\widetilde{\mathbb{F}})$ -orbit in $\widetilde{\mathbb{F}}$ if and only if N(z) = N(z'). So

$$|\mathbb{F}/U(\mathbb{F})| = |N(\mathbb{F})| = |\mathbb{F}| = q,$$

as it is well known that N is surjective. Proposition 4.2 now implies that $(U(\widetilde{\mathbb{F}}), H_1(\mathbb{F}))$ is a Gelfand pair as desired.

Remark 5.4 As $U(\widetilde{\mathbb{F}})$ is the kernel of the epimorphism $N : \widetilde{\mathbb{F}}^{\times} \to \mathbb{F}^{\times}$, it is cyclic of order q + 1.

Our final result asserts that the Gelfand pair in Proposition 5.3 is minimal. The analogous theorem for real Heisenberg groups $H_n(\mathbb{R})$ is due to Leptin [Lep85].

Proposition 5.5 $(K, H_{\mathcal{W}})$ fails to be a Gelfand pair for all proper subgroups K of the torus $U(\widetilde{\mathcal{W}}_1) \times \cdots \times U(\widetilde{\mathcal{W}}_n)$.

Proof. We can take $\widetilde{\mathcal{W}}_j = \widetilde{\mathbb{F}}$ and $\widetilde{\mathcal{W}} = \widetilde{\mathbb{F}}^n$ with the usual hermitian inner product. Now the torus

$$T = U(\widetilde{\mathbb{F}}) \times \dots \times U(\widetilde{\mathbb{F}})$$

coincides with a T-orbit in $\widetilde{\mathcal{W}}$. Namely one has

$$T \cdot \mathbf{z}_{\circ} = T$$
 for $\mathbf{z}_{\circ} = (1, 1, \dots, 1)$.

Let K denote a proper subgroup of T. The T-orbit $T \cdot \mathbf{z}_{\circ}$ is a disjoint union of |T/K| orbits for the subgroup K. These correspond to the cosets of K in T. As (T, H_W) is a Gelfand pair we have $|W/T| = q^n$ and

$$|\mathcal{W}/K| \ge q^n - 1 + |T/K| > q^n$$

So $(K, H_{\mathcal{W}})$ fails to be a Gelfand pair by Proposition 4.2.

References

- [BJR90] Chal Benson, Joe Jenkins, and Gail Ratcliff. On Gel'fand pairs associated with solvable Lie groups. Trans. Amer. Math. Soc., 321(1):85–116, 1990.
- [Fol89] Gerald B. Folland. Harmonic analysis in phase space, volume 122 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1989.
- [Gér77] Paul Gérardin. Weil representations associated to finite fields. J. Algebra, 46(1):54–101, 1977.
- [Hel84] Sigurdur Helgason. Groups and geometric analysis, volume 113 of Pure and Applied Mathematics. Academic Press Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions.
- [How] Roger E. Howe. Invariant theory and duality for classical groups over finite fields, with applications to their singular representation theory. Unpublished manuscript.
- [How73] Roger E. Howe. On the character of Weil's representation. Trans. Amer. Math. Soc., 177:287–298, 1973.
- [Lep85] Horst Leptin. A new kind of eigenfunction expansions on groups. Pacific J. Math., 116(1):45–67, 1985.
- [LN] Rudolf Lidl and Harald Niederreiter. *Finite fields*, volume 20 of *Encyclopedia of Mathematics and its Applications*. Second edition.
- [Mac] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. Second edition.
- [Neu02] Markus Neuhauser. An explicit construction of the metaplectic representation over a finite field. J. Lie Theory, 12(1):15–30, 2002.
- [SA87] Jorge Soto-Andrade. Geometrical Gel'fand models, tensor quotients, and Weil representations. In *The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986)*, volume 47 of *Proc. Sympos. Pure Math.*, pages 305–316. Amer. Math. Soc., Providence, RI, 1987.
- [Shi80] Ken-ichi Shinoda. The characters of Weil representations associated to finite fields. J. Algebra, 66(1):251–280, 1980.
- [Ter99] Audrey Terras. Fourier analysis on finite groups and applications, volume 43 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1999.
- [Vin03] É. B. Vinberg. Commutative homogeneous spaces of Heisenberg type. Tr. Mosk. Mat. Obs., 64:54–89, 2003.
- [Yak06] Oksana Yakimova. Principal Gelfand pairs. Transform. Groups, 11(2):305– 335, 2006.