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Abstract. Suppose that K ⊂ U(n) is a compact Lie group acting on the (2n+1)-
dimensional Heisenberg group Hn. We say that (K,Hn) is a Gelfand pair if the
convolution algebra L1

K(Hn) of integrable K-invariant functions on Hn is commu-
tative. In this case, the Gelfand space ∆(K,Hn) is equipped with the Godement-
Plancherel measure, and the spherical transform ∧ : L2

K(Hn)→ L2(∆(K,Hn)) is an
isometry. The main result in this paper provides a complete characterization of the
set SK(Hn)∧ = {f̂ | f ∈ SK(Hn)} of spherical transforms of K-invariant Schwartz
functions on Hn. We show that a function F on ∆(K,Hn) belongs to SK(Hn)∧

if and only if the functions obtained from F via application of certain derivatives
and difference operators satisfy decay conditions. We also consider spherical series
expansions for K-invariant Schwartz functions on Hn modulo its center.
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1. Introduction

Given a complex vector space V of dimension n with Hermitian inner product 〈·, ·〉,
one forms the Heisenberg group Hn = V × R with group law

(z, t)(z′, t′) =

(
z + z′, t+ t′ − 1

2
Im〈z, z′〉

)
.
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In order to present explicit formulae, one can use an orthonormal basis to identify V
with Cn so that 〈z, z′〉 = z·z′ for z, z′ ∈ Cn. The group U(n) of unitary transformation
of (V, 〈·, ·〉) acts by automorphisms on Hn via

k · (z, t) := (kz, t) for k ∈ U(n) and (z, t) ∈ Hn

and on the space of polynomials C[V ] via

k · p(z) := p(k−1z) for k ∈ U(n), p ∈ C[V ] and z ∈ V .
If K is a compact Lie subgroup of U(n) then we say that (K,Hn) is a Gelfand pair
when the algebra L1

K(Hn) of K-invariant L1-functions on Hn is commutative under
convolution. One has the following result:

Theorem 1.1 (cf. [Car87], [BJR90]). (K,Hn) is a Gelfand pair if and only if the
representation of K on C[V ] is multiplicity free.

Using Theorem 1.1, one sees that the group U(n) and many of its proper sub-
groups K yield Gelfand pairs. Working from Theorem 1.1, one obtains a complete
classification of all such subgroups [Kac80, BR96]. This classification shows that the
theory of Gelfand pairs associated with Heisenberg groups is quite rich. There are,
for example, twenty distinct families of Gelfand pairs (K,Hn) where K is connected
and acts irreducibly on V . The current paper concerns analysis in this setting.

There is a well developed theory of spherical functions associated with Gelfand
pairs of the form (K,Hn). We denote the space of bounded K-spherical functions,
equipped with the compact-open topology, by ∆(K,Hn). There are two types of
bounded K-spherical functions:

• Type 1: ∆1(K,Hn) = {φα,λ | α ∈ Λ, λ ∈ R×}. Here Λ is a countable index set
that parameterizes the decomposition

C[V ] =
∑
α∈Λ

Pα

of C[V ] into K-irreducible subspaces. ∆1(K,Hn) is dense and of full Godement-
Plancherel measure in ∆(K,Hn).
• Type 2: ∆2(K,Hn) = {ηKw | w ∈ V }, where Kw is a K-orbit in V .

The reader will find the relevant definitions below in Section 2 along with a summary

of some results from earlier work. The K-spherical transform f̂ : ∆(K,Hn)→ C for
a function f ∈ L1

K(Hn) is defined by

f̂(ψ) :=

∫
Hn

f(z, t)ψ(z, t) dzdt,

were “dzdt” denotes Haar measure for the groupHn. f̂ belongs to the space C◦(∆(K,Hn))
of continuous functions on ∆(K,Hn) that vanish at infinity.

The spherical functions for the Gelfand pairs (U(n), Hn) and (Tn, Hn) have been
obtained from a variety of viewpoints in works including [BJR92, Far87, HR80, Kor80,
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Ste88, Str91]. The systematic study of other Gelfand pairs (K,Hn) and their spher-
ical functions is less standard but no less natural. In any case, as explained below
in Section 2.3, the K-spherical functions are joint eigenfunctions for ∂/∂t and the
Heisenberg sub-Laplacian. As shown in [Str89, Str91], the joint spectral theory for
these operators is central to harmonic analysis on the Heisenberg group and the
spherical transform is its main tool. In [HR80] the spherical functions and spherical
transform for (Tn, Hn) are used to establish a tangential convergence theorem for
bounded harmonic functions on the hyperbolic space SU(1, N + 1)/U(n + 1). The
reader will find further applications of radial functions and the spherical transform
in J. Faraut’s book [Far87].

What can one say about the spherical transform of a K-invariant Schwartz function
on Hn? More precisely, letting SK(Hn) denote the space of K-invariant Schwartz
functions on Hn, we seek to characterize the subspace

SK(Hn)∧ =
{
f̂ | f ∈ SK(Hn)

}
of C◦(∆(K,Hn)). The main result in this paper is Theorem 6.1 below, which provides
a complete solution to this problem. Before describing the contents of this theorem
we wish to provide some background and motivation for the study of SK(Hn) via the
spherical transform.

Schwartz functions have played an important role in harmonic analysis with nilpo-
tent groups since the work of Kirilov [Kir62]. Let N be a connected and simply
connected nilpotent Lie group with Lie algebra n. The exponential map exp : n→ N
is a polynomial diffeomorphism and one defines the (Fréchet) space S(N) of Schwartz
functions on N via identification with the usual space S(n) of Schwartz functions on
the vector space n:

S(N) := {f : N → C | f ◦ exp ∈ S(n)}.
S(N) is dense in Lp(N) for each p and carries an algebra structure given by the
convolution product. Moreover, it is known that the primitive ideal space for S(N)
is isomorphic to that of both L1(N) and C∗(N) [Lud88]. The Heisenberg groups
Hn are the simplest groups for which S(N) is non-abelian.. Recall that the group

Fourier transform for a function f ∈ L1(N) associates to π ∈ N̂ , an irreducible
unitary representation of N , the bounded operator

π(f) =

∫
N

f(x)π(x)∗dx

in the representation space of π. This generalizes the usual Euclidean Fourier trans-
form for the case N = R

n. The importance of Schwartz functions in Euclidean
harmonic analysis arises from the fact that S(Rn) is preserved by the Fourier trans-
form. It is thus very natural to seek a characterization of S(N) via the group Fourier
transform; a problem solved by R. Howe in [How77]. A related result for the case
N = Hn can be found in D. Geller’s paper [Gel77].
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One can sometimes obtain abelian subalgebras of S(N) by considering “radial”
functions. This is of interest even when N = R

n. Indeed, the algebra SO(n)(R
n)

of radial Schwartz functions on Rn can be identified with S(R+) and the Fourier
transform becomes a Hankel transform on S(R+). This is the spherical transform
for the Gelfand pair obtained from the action of the orthogonal group O(n) on Rn

[Hel84].
In the case N = Hn, we are led to consider the abelian subalgebras SK(Hn) arising

from Gelfand pairs (K,Hn). The group Fourier transform on SK(Hn) then reduces
to the K-spherical transform as follows. The unitary dual of Hn can be written as

Ĥn = {πλ | λ ∈ R×} ∪ {χw | w ∈ V }

where each πλ is an infinite dimensional representation and each χw is one dimen-
sional. One can realize πλ in a Fock space that contains C[V ] as a dense subspace.
For f ∈ SK(Hn), πλ(f) is diagonalized by the decomposition C[V ] =

∑
α∈Λ Pα and

one has that

πλ(f)|Pα = f̂(φλ,α) and χw(f) = f̂(ηKw).

Thus, characterizing SK(Hn)∧ enables one to construct smooth functions onHn which
decay rapidly at infinity whose group Fourier transforms are prescribed in advance
subject to some conditions. This provides an alternative to the application of the
results from [How77] and to Dixmier’s functional calculus [Dix60] in the Heisen-
berg group setting. J. Ludwig has recently applied the group Fourier transform and
Dixmier’s functional calculus to the study of hull minimal ideals in the algebra S(Hn)
[Lud]. The authors believe that Theorem 6.1 (and Corollary 6.3) will provide a new
technique to approach problems of this nature. We hope to pursue this idea elsewhere.

Theorem 6.1 provides conditions that are both necessary and sufficient for a func-
tion F on ∆(K,Hn) to belong to the space SK(Hn)∧:

1. F is continuous on ∆(K,Hn).
2. w 7→ F (ηKw) is a Schwartz function on V .
3. λ 7→ F (φα,λ) is smooth on R× and the functions ∂mλ F (φα,λ) satisfy certain decay

conditions. In particular, ∂mλ F (φα,λ) is a rapidly decreasing sequence in α for
each fixed λ ∈ R×.

4. Certain “derivatives” of F also satisfy the three conditions above. These are
defined on ∆1(K,Hn) as specific combinations of ∂λ and “difference operators”
which play the role of differentiation in the discrete parameter α ∈ Λ.

The precise formulation of these conditions can be found in Section 6. The “deriva-
tives” of functions in SK(Hn)∧ referred to above are operators corresponding to mul-
tiplication of functions in SK(Hn) by certain polynomials. The difference operators
in the discrete parameter α ∈ Λ are linear operators whose coefficients are “general-
ized binomial coefficients”. These coefficients were introduced by Z. Yan in [Yan] and
appear in many formulas concerning the type 1 spherical functions. A summary of
their properties is given below in Section 4. A more complete discussion of generalized
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binomial coefficients will appear in [BR]. We remark that for the case K = Tn, differ-
ence operators similar to the ones used here appear in the papers [Gel77], [dMM79]
and [MS94].

One consequence of the estimates involved in our characterization of SK(Hn)∧

is that f ∈ SK(Hn) can be recovered from F = f̂ via inversion of the spherical
transform. One has

f(z, t) =

(
1

2π

)n+1 ∫
R
×

∑
α∈Λ

dim(Pα)F (φα,λ)φα,λ(z, t)|λ|ndλ.(1.1)

The first two conditions in our characterization of SK(Hn)∧ play a rather subtle
role in the sufficiency proof. Indeed, the bounded K-spherical functions ηKw of type
2 do not appear in Formula 1.1. In order to control the growth of f(z, t) in the central
direction, we introduce a λ-derivative into the right hand side of Formula 1.1. An
application of integration by parts produces two boundary terms at λ = 0 and we
need to show that these cancel. This is done in Section 7 where we prove that

lim
λ→0±

∑
α∈Λ

dim(Pα)|λ|nF (φα,λ)φα,λ(z, 0) =

(
1

2π

)n ∫
V

F (ηKw) ηKw(z)dw.

(See Proposition 7.1.) It is here that the continuity and behavior of F on ∆2(K,Hn)
comes into play.

We also consider the related problem of characterizing the the space SK(V ) of
K-invariant Schwartz functions on V via the spherical transform. The functions φ◦α
on V defined by φ◦α(z) = φα(z, 0) form a complete orthogonal system in the space
L2
K(V ) of square integrable K-invariant functions on V (see Proposition 3.1). The

φ◦α’s are eigenfunctions for differential operators that arise from K-invariant and left-
invariant differential operators on the Heisenberg group and (modulo dilations) for
the Fourier transform. The coefficients in the L2-expansion of f ∈ L2

K(V ) as a series

in {φ◦α | α ∈ Λ} are (up to normalization) f̂(α) := 〈f, φ◦α〉2 . Theorem 5.1 asserts that
F belongs to

SK(V )∧ = {f̂ | f ∈ SK(V )}
if and only if {F (α) | α ∈ Λ} is a rapidly decreasing sequence.

The remainder of this paper is structured as follows. Section 2 contains preliminary
material and summarizes results from previous work concerning spherical functions.
Section 3 concerns the spherical series expansions that arise by suppressing the central
direction in the Heisenberg group. The material in this section appeared in [Yan] but
we have provided new and complete proofs here. Section 4 concerns combinatorial
properties of the generalized binomial coefficients. Our characterizations of SK(V )∧

and SK(Hn)∧ appear in Section 5 and Section 6 respectively. As a corollary to
Theorem 6.1, we show that for K = U(n) or Tn, one can construct a function

f ∈ SK(Hn) whose spherical transform f̂ has a pre-determined compact support in
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∆(K,Hn). The sufficiency proof for Theorem 6.1 is completed in Section 7, which
concerns the analysis of boundary terms.

The first and third authors wish to thank the Université de Metz for their support
during the completion of this research.

2. Notation and Preliminaries

We need to establish notation and recall some results concerning spherical functions
associated with Gelfand pairs (K,Hn). We refer the reader to [BJR90], [BJR92] and
[BJRW] for complete details on this material.

Throughout this paper, K will always denote a closed
Lie subgroup of U(n) for which (K,Hn) is a Gelfand pair.

2.1. Decomposition of C[V ]. We decompose C[V ] into K-irreducible subspaces
Pα,

C[V ] =
∑
α∈Λ

Pα(2.1)

where Λ is some countably infinite index set. Theorem 1.1 ensures that this decom-
position is canonical. Since the representation of K on C[V ] preserves the space
Pm(V ) of homogeneous polynomials of degree m, each Pα is a subspace of some
Pm(V ). We write |α| for the degree of homogeneity of the polynomials in Pα, so that
Pα ⊂ P|α|(V ). We will write dα for the dimension of Pα and denote by 0 ∈ Λ the
index for the scalar polynomials P0 = P0(V ) = C.

2.2. Invariant polynomials. Since the representation of K on C[V ] is multiplicity
free, there can be no non-constant K-invariant holomorphic polynomials. One does,
however, have invariant polynomials on the underlying real vector space VR for V .
We denote the set of these by C[VR]K . One obtains a canonical basis for C[VR]K as
follows. Given α ∈ Λ and any orthonormal basis {v1, . . . , vdα} for Pα, we let

pα(z) :=
1

dα

dα∑
j=1

vj(z)vj(z).(2.2)

The polynomial pα on VR is R+-valued, K-invariant, and homogeneous of degree 2|α|.
The definition of pα does not depend on the choice of basis for Pα and {pα | α ∈ Λ}
is a vector space basis for C[VR]K . One computes that∑

|α|=m

dαpα(z) =
1

m!
γ(z)m(2.3)

where γ(z) is defined by

γ(z) := |z|2/2.
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A result in [HU91] ensures that the algebra C[VR]K is freely generated by a canon-
ical finite subset {γ1, γ2, . . . , γd} ⊂ {pα | α ∈ Λ},

C[VR]K = C[γ1, γ2, . . . , γd].(2.4)

We call the generators {γ1, . . . , γd} the fundamental invariants for the action of K
on V . When K acts irreducibly on V , the polynomial γ is one of the fundamental
invariants and we can suppose that γ1 = γ.

2.3. Invariant differential operators. One basis for the Lie algebra of left invari-
ant vector fields on Hn is written as {Z1, Z2, . . . , Zn, Z1, Z2, . . . , Zn, T} where

Zj = 2
∂

∂zj
+ i

zj
2

∂

∂t
, Zj = 2

∂

∂zj
− izj

2

∂

∂t
,(2.5)

and

T :=
∂

∂t
.

With these conventions one has [Zj, Zj] = −2iT . The first order operators Z1, . . . ,
Zn, Z1, . . . , Zn, T generate the algebra D(Hn) of left-invariant differential operators
on Hn. We denote the subalgebra of K-invariant differential operators by

DK(Hn) := {D ∈ D(Hn) | D(f ◦ k) = D(f) ◦ k for k ∈ K, f ∈ C∞(Hn)}.
Since (K,Hn) is a Gelfand pair, DK(Hn) is an abelian algebra. A result due to
Thomas [Tho82] shows that the converse is also true, at least when K is connected.

One differential operator will play a key role in this paper. This is the Heisenberg
sub-Laplacian defined by

L :=
1

2

n∑
j=1

(
ZjZj + ZjZj

)
.(2.6)

L is U(n)-invariant and hence belongs to DK(Hn) for all Gelfand pairs (K,Hn). Since

the formal adjoints of Zj and Zj as operators on L2(Hn) are Z∗j = −Zj and Z
∗
j = −Zj,

we see that L is essentially self-adjoint on L2(Hn).
The algebra DK(Hn) is generated by {Lγ1 , . . . , Lγd , T}, where Lγj is the operator

obtained from γj(Z,Z) by symmetrization.

2.4. Spherical functions. A smooth function ψ : Hn → C is called K-spherical if

1. ψ is K-invariant,
2. ψ is an eigenfunction for every D ∈ DK(Hn), and
3. ψ(0, 0) = 1.

We write D̂(ψ) for the eigenvalue of D ∈ DK(Hn) on a K-spherical function ψ, that

is D(ψ) = D̂(ψ)ψ.
We denote the set of positive definite K-spherical functions on Hn by ∆(K,Hn).

In [BJR90], it is shown that every bounded K-spherical function is positive definite,
so ∆(K,Hn) is also the set of bounded K-spherical functions. We remark that this
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result contrasts with the situation for symmetric spaces. (See eg. [GV88].) As shown
in [BJR92], the bounded K-spherical functions can be derived from the representation
theory for Hn together with the action of K on V .

The infinite dimensional irreducible unitary representations of Hn can be realized
in Fock space. This is the space F consisting of entire functions f : V → C which
are square integrable with respect to e−|z|

2/2dz with Hilbert space structure

〈f, g〉F =

(
1

2π

)n ∫
V

f(z)g(z)e−|z|
2/2dz.

Here “dz” denotes Lebesgue measure on VR ∼= R
2n. The holomorphic polynomials

C[V ] form a dense subspace in F . One has an irreducible unitary representation π
of Hn on F defined as

(π(z, t)f)(w) = eit−
1
2
<w,z>− 1

4
|z|2f(w + z).

For α ∈ Λ let

φα(z, t) :=
1

dα

dα∑
j=1

〈π(z, t)vj, vj〉F ,(2.7)

where {v1, . . . , vdα} is an orthonormal basis for Pα. This description of φα does not
depend on our choice of basis {vj}. Define φα,λ for λ ∈ R× and α ∈ Λ by

φα,λ(z, t) := φα

(√
|λ|z, λt

)
,(2.8)

so that φα = φα,1. The φα,λ’s are distinct bounded K-spherical functions. We refer
to these elements of ∆(K,Hn) as the spherical functions of type 1. From Equation
2.7 one can show that φα has the general form

φα(z, t) = eitqα(z)e−
1
4
|z|2 = eitqα(z)e−γ(z)/2

where qα is a K-invariant polynomial on VR with homogeneous component of highest
degree given by (−1)|α|pα. As for the pα’s, the set {qα | α ∈ Λ} is a basis for the
vector space C[VR]K .

The eigenvalues of the Heisenberg sub-Laplacian L on the type 1 K-spherical func-
tions are given by

L̂ (φα,λ) = −|λ|(2|α|+ n).(2.9)

This follows from Proposition 3.20 in [BJR92] together with Lemma 3.4 in [BJRW].
The key point here is that the quantum harmonic oscillator π(L) on Fock space F
acts via the scalar −(2m+ n) on Pm(V ).

In addition to the K-spherical functions of type 1, there are K-spherical functions
which arise from the one dimensional representations of Hn. For w ∈ V , let

ηw(z, t) :=

∫
K

eiRe〈w,kz〉dk =

∫
K

eiRe〈z,kw〉dk(2.10)
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where “dk” denotes normalized Haar measure on K. These are the bounded K-
spherical functions of type 2. Note that η0 is the constant function 1 and ηw = ηw′ if
and only if Kw = Kw′. Thus we have one K-spherical function for each K-orbit in
V and sometimes write “ηKw” in place of “ηw”.

It is shown in [BJR92] that every bounded K-spherical function is of type 1 or
type 2. Thus we have:

Theorem 2.1. The bounded K-spherical functions on Hn are parameterized by the
set
(
Λ× R×

)
∪ (V/K) via ∆(K,Hn) = ∆1(K,Hn) ∪∆2(K,Hn) where

∆1(K,Hn) =
{
φα,λ | α ∈ Λ, λ ∈ R×

}
and ∆2(K,Hn) =

{
ηKw | w ∈ V

}
.

2.5. Topology on ∆(K,Hn). We give ∆(K,Hn) the (compact-open) topology of
uniform convergence on compact sets. A detailed discussion of this topology can be
found in [BJRW]. A key fact is that ∆1(K,Hn) is dense in ∆(K,Hn). Moreover, the
space ∆(K,Hn) can be embedded in (R+)d×R. Indeed, let Lγ1 , . . . , Lγd ∈ DK(Hn) be
differential operators obtained from the fundamental invariants via symmetrization
and let T = ∂

∂t
.

Theorem 2.2 (cf. [BJRW]). The map E : ∆(K,Hn)→ (R+)d × R defined by

E(ψ) =
(∣∣L̂γ1(ψ)

∣∣, . . . , ∣∣L̂γd(ψ)
∣∣,−iT̂ (ψ)

)
is a homeomorphism onto its image.

The eigenvalues L̂γj(ψ) for the Lγj ’s on ∆(K,Hn) are real numbers with constant

sign and one can describe the map E more explicitly as follows. Let ej(α) =
∣∣L̂γj(φα)

∣∣
and 2mj be the degree of γj. Then

E(φα,λ) =
(
e1(α)|λ|m1 , . . . , ed(α)|λ|md , λ

)
and E(ηw) =

(
γ1(w), . . . , γd(w), 0

)
.

We can use the map E and a metric on (R+)d×R to produce a metric on ∆(K,Hn)
which induces the compact-open topology. For example,

d(ψ1, ψ2) =
d∑
j=1

(∣∣L̂γ1(ψj)− L̂γ1(ψj)
∣∣+
∣∣T̂ (ψ1)− T̂ (ψ2)

∣∣(2.11)

is one such metric on ∆(K,Hn).

2.6. The K-spherical transform. The K-spherical transform for f ∈ L1
K(Hn) is

the function f̂ on ∆(K,Hn) defined by

f̂(ψ) :=

∫
Hn

f(z, t)ψ(z, t) dzdt.

Here “dzdt” denotes Haar measure for the group Hn, which is simply Euclidean

measure on VR × R. f̂ is a bounded function with

||f̂ ||∞ ≤ ||f ||1
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for f ∈ L1
K(Hn). This follows immediately from the fact that for ψ ∈ ∆(K,Hn) one

has |ψ(z, t)| ≤ ψ(0, 0) = 1, since ψ is positive definite.
The compact-open topology on ∆(K,Hn) is the smallest topology which makes all

of the maps {f̂ | f ∈ L1
K(Hn)} continuous. Since L1

K(Hn) is a Banach ?-algebra (with

involution defined via f ∗(z, t) := f(−z,−t)), f̂ belongs to the space C◦(∆(K,Hn))
of continuous functions on ∆(K,Hn) that vanish at infinity.

2.7. Godement-Plancherel measure. Godement’s Plancherel Theory for Gelfand
pairs (G,K) (cf. [God62], or section 1.6 in [GV88]) ensures that there exists a unique
positive Borel measure dµ on the space ∆(K,Hn) for which∫

Hn

|f(z, t)|2dzdt =

∫
∆(K,Hn)

|f̂(ψ)|2dµ(ψ)(2.12)

for all continuous functions f ∈ L1
K(Hn) ∩ L2

K(Hn). If f ∈ L1
K(Hn) ∩ L2

K(Hn) is

continuous and f̂ is integrable with respect to dµ then one has the Inversion Formula:

f(z, t) =

∫
∆(K,Hn)

f̂(ψ)ψ(z, t) dµ(ψ).(2.13)

The spherical transform f 7→ f̂ extends uniquely to an isomorphism between L2
K(Hn)

and L2(∆(K,Hn), dµ).
The following result makes the Godement-Plancherel measure on ∆(K,Hn) ex-

plicit. Given F : ∆(K,Hn) → C, we write F (α, λ) in place of F (φα,λ). The reader
can find proofs of Theorem 2.3 in [BJRW] and [Yan]. The result for K = U(n) is
also discussed in [Far87] and [Str91].

Theorem 2.3. The Godement-Plancherel measure dµ on ∆(K,Hn) is given by∫
∆(K,Hn)

F (ψ) dµ(ψ) =

(
1

2π

)n+1 ∫
R×

∑
α∈Λ

dαF (α, λ) |λ|ndλ.

Note that ∆2(K,Hn) is a set of measure zero in ∆(K,Hn).

2.8. Fourier transforms. We define the Fourier transform F
V

(f) : V → C of
f ∈ L1(V ) by

F
V

(f)(w) :=

∫
V

f(z)e−iRe〈z,w〉dz

where “dz” denotes Euclidean measure on VR. With this normalization one has

||F
V

(f)||2 = (2π)n||f ||2
and the inversion formula reads∫

V

F
V

(f)(w)eiRe〈z,w〉dw = (2π)2nf(z)
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for suitable f : V → C. Similarly, the Euclidean Fourier transform F
H

(f) of f ∈
L1(Hn) is defined by

F
H

(f)(w, s) =

∫
Hn

f(z, t)e−iRe〈z,w〉e−itsdzdt.(2.14)

If f ∈ L1
K(Hn) then the Fourier and spherical transforms are related via

f̂(ηw) = F
H

(f)(w, 0).(2.15)

Indeed, for w ∈ V , one has

f̂(ηw) =

∫
Hn

∫
K

f(z, t)e−iRe〈kz,w〉dkdzdt

=

∫
Hn

∫
K

f(kz, t)e−iRe〈z,w〉dkdzdt

=

∫
Hn

f(z, t)e−iRe〈z,w〉dzdt

= F
H

(f)(w, 0).

3. K-spherical series expansions on V

The dependence of a K-spherical function ψ(z, t) on the central variable t is rather
trivial. Thus, it is natural to suppress this direction and consider functions on V .
The Godement-Plancherel Theory in section 2.6 leads to orthogonal eigenfunction
expansions for K-invariant functions on V . The ideas here are quite standard and
well known. For f : Hn → C, we define f ◦ : V → C by

f ◦(z) := f(z, 0).

Given g : V → C we define g1 : Hn → C by

g1(z, t) := g(z)eit.

If f is a K-invariant function on Hn then f ◦ is K-invariant on V . If g is K-invariant
on V then g1 is K-invariant on Hn and (g1)◦ = g. For D ∈ D(Hn) define a differential
operator on D′ on VR by

D′(g) := (D (g1))◦ for g ∈ C∞(VR).

It is easy to verify that if D ∈ DK(Hn) then D′ is a K-invariant differential operator
on VR. Moreover

D′ (φ◦α) = (D ((φ◦α)1))◦ = (D (φα))◦ = D̂ (φα)φ◦α.

Thus φ◦α(z) = qα(z)e−γ(z)/2 is an eigenfunction for D′ whenever D ∈ DK(Hn).
As an example, consider the Heisenberg sub-Laplacian L given by Equation 2.6.

Using Equations 2.5 one computes that

L′ = 4∆− γ/2 + E(3.1)
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where ∆ :=
∑n

j=1
∂
∂zj

∂
∂zj

(so that 4∆ is the usual Laplace operator on VR) and E :=∑n
j=1

(
zj

∂
∂zj
− zj ∂

∂zj

)
. A homogeneity argument shows that E(φ◦α) = 0 for α ∈ Λ.

Equation 2.9 thus yields

(4∆− γ/2) (φ◦α) = L′(φ◦α) = −(2|α|+ n)φ◦α.(3.2)

Proposition 3.1 (cf. [Yan]). {φ◦α | α ∈ Λ} is a complete orthogonal system in
L2
K(V ) with ||φ◦α||22 = (2π)n/dα.

Proof. The functional form for φα,λ shows that φ◦α = qα(z)e−
1
4
|z|2 for some qα ∈

C[VR]K . Thus φ◦α is a K-invariant Schwartz function and hence belongs to L2
K(VR).

For v ∈ F , define Mv(z) := 〈π(z, 0)v, v〉F . Since π is a square-integrable representa-

tion, Mv is square-integrable. Let {v1, . . . , vdα}, {u1, . . . , udβ} be orthonormal bases

for Pα, Pβ. One has φ◦α = 1
dα

∑
iMvi , φ

◦
β = 1

dβ

∑
jMuj so that

〈φ◦α, φ◦β〉2 =
1

dαdβ

∑
i,j

〈Mvi ,Muj〉2 .

Standard facts concerning square-integrable representations ensure that

〈Mvi ,Muj〉2 = c
∣∣∣〈vi, uj〉F ∣∣∣2

for some constant c. Thus we have

〈φ◦α, φ◦β〉2 =
cδα,β
dα

,

and hence the φ◦α’s are pair-wise orthogonal.
To compute the L2-norm of φ◦α, one must determine c. As 1 is a unit vector in F ,

one has

c = 〈M1,M1〉2 = ||e−
1
4
|z|2||22

=

∫
V

e−
1
2
|z|2dz

=
2πn

(n− 1)!

∫ ∞
0

e−r
2/2r2n−1dr

= (2π)n.

It remains to show that {φ◦α | α ∈ Λ} is complete in L2
K(V ). Suppose that f ∈

L2
K(V ) and that 〈f, φ◦α〉2 = 0 for all α ∈ Λ. Since φ◦α(z) = qα(z)e−|z|

2/4 where
{qα | α ∈ Λ} is a basis for C[VR]K , we see that∫

V

f(z)p(z)e−|z|
2/4dz = 0

for all polynomials p ∈ C[VR]. It follows that f = 0 almost everywhere and hence
that {φ◦α | α ∈ Λ} is complete.
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Note that |φ◦α(z)| is bounded by φ◦α(0) = 1. For f ∈ LpK(V ) and α ∈ Λ let f̂(α) be
defined by

f̂(α) = 〈f, φ◦α〉2 =

∫
V

f(z)φ◦α(z)dz.

Corollary 3.2. If f ∈ L2
K(V ) then

f =
∑
α∈Λ

f̂(α)
φ◦α
||φ◦α||22

=

(
1

2π

)n∑
α∈Λ

dαf̂(α)φ◦α in L2(V ) and

||f ||22 =
∑
α∈Λ

|f̂(α)|2

||φ◦α||22
=

(
1

2π

)n∑
α∈Λ

dα|f̂(α)|2.

It is shown in [Yan] that the φ◦α’s are essentially eigenfunctions for F
V

. More
precisely,

Proposition 3.3 (cf. [Yan]). The function φ̃α(z) := φ◦α(
√

2z) satisfies

F
V

(
φ̃α

)
= (2π)n(−1)|α|φ̃α.

The factor of
√

2 appears above but not in [Yan] because different coordinates on
Hn are used there. The key fact used in Yan’s proof of Proposition 3.3 is that φ◦α
can be expressed in terms of the Hermite-Weber transform of pα. One can also prove
Proposition 3.3 by using the fact that a suitable multiple of the Hermite operator
−4∆ + 2γ is an infinitesimal generator for the Fourier transform. (See for example,
pg 122 in [HT92].) With the notational conventions here, this fact can be written as

F
V

= (2πi)n exp(iπ(∆− γ/2)).

In view of Equation 3.2, we have

(∆− γ/2)φ̃α = −2|α|+ n

2
φ̃α

and hence

F
V

(
φ̃α

)
= (2πi)ne−iπ(2|α|+n)/2φ̃α = (2π)n(−1)|α|φ̃α

as stated.
For r > 0, we let δr : V → V be the dilation

δr(z) := rz.

Since one has F
V

(f ◦ δr) =
(

1
r

)2nF
V

(f) ◦ δ1/r, we obtain the formulas

F
V

(φ◦α) = (4π)n(−1)|α|φ◦α ◦ δ2 and more generally(3.3)

F
V

(φ◦α ◦ δr) =

(
4π

r2

)n
(−1)|α|φ◦α ◦ δ2/r.(3.4)
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In summary, the set {φ◦α | α ∈ Λ} forms a complete orthogonal system in L2
K(V ).

Each φ◦α is a simultaneous eigenfunction for the differential operators {D′ | D ∈
DK(Hn)} and (modulo dilation) for the Fourier transform F

V
.

4. Generalized binomial coefficients

For α ∈ Λ, the functions {pβ | |β| ≤ |α|} form a basis for the space of K-invariant
polynomials on VR of degree at most 2|α|. Since qα belongs to this space, we can
write:

qα =
∑
|β|≤|α|

(−1)|β|
[
α
β

]
pβ(4.1)

for some well defined numbers

[
α
β

]
. We call these values generalized binomial

coefficients for the action of K on V . They will play a crucial role in the formulation
and proof of our characterization of K-invariant Schwartz functions via the spherical
transform. The results that we will need concerning generalized binomial coefficients
are contained in this section.

Since the functions qα and pβ are all real valued, the generalized binomial co-

efficients are real numbers. It is shown in [BR], moreover, that the

[
α
β

]
’s are

non-negative. Since (−1)|α|pα is the homogeneous component of highest degree in qα,

we see that

[
α
α

]
= 1 and that

[
α
β

]
= 0 for β 6= α with |β| = |α|. We extend the

definition of generalized binomial coefficients by setting

[
α
β

]
= 0 when |β| > |α|.

Since qα(0) = 1 = p0 and pβ(0) = 0 for |β| > 0, we see that

[
α
0

]
= 1. Here recall

that 0 ∈ Λ denotes the index with P0 = C.
The generalized binomial coefficients were introduced by Z. Yan in [Yan], where

one finds the important identity

γk

k!
pβ =

∑
|α|=|β|+k

dα
dβ

[
α
β

]
pα.(4.2)

For the case where K = U(n), decomposition 2.1 reads C[V ] =
∑∞

m=0 Pm(V ) and

the U(n)-invariant polynomial pm associated with Pm(V ) is pm = (n−1)!
(m+n−1)!

γm (see

Proposition 6.2 in [BJR92]). Equation 4.2 shows that in this case we have[
m+ k
m

]
=

(
m+ k

k

)
.(4.3)
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The generalized binomial coefficients are studied further in [BR], where the reader
will find proofs of the following identities:

γqα = −
∑

|β|=|α|+1

dβ
dα

[
β
α

]
qβ + (2|α|+ n)qα −

∑
|β|=|α|−1

[
α
β

]
qβ,(4.4)

∑
|β|=`

[
α
β

][
β
δ

]
=

(|α| − |δ|)!
(|α| − `)!(`− |δ|)!

[
α
δ

]
.(4.5)

Letting δ = 0 in Equation 4.5, we see that∑
|β|=`

[
α
β

]
=

(
|α|
`

)
,(4.6)

since

[
β
0

]
=

[
α
0

]
= 1. It follows that for fixed β,

[
α
β

]
has polynomial growth

in |α|. Equation 4.6 gives, in particular,∑
|β|=|α|−1

[
α
β

]
= |α|.(4.7)

Evaluating Equation 4.4 at z = 0 and using Equation 4.7 yields also∑
|β|=|α|+1

dβ
dα

[
β
α

]
= |α|+ n.(4.8)

Our characterization of SK(Hn)∧, presented below in Section 6, involves the appli-
cation of difference operators D+, D− defined as follows.

Definition 4.1. Given a function g on Λ, D+g and D−g are the functions on Λ
defined by

D+g(α) =
∑

|β|=|α|+1

dβ
dα

[
β
α

]
g(β)− (|α|+ n)g(α) =

∑
|β|=|α|+1

dβ
dα

[
β
α

]
(g(β)− g(α))

D−g(α) = |α|g(α)−
∑

|β|=|α|−1

[
α
β

]
g(β) =

∑
|β|=|α|−1

[
α
β

]
(g(α)− g(β))

for |α| > 0 and D−g(0) = 0.

The two formulae presented for D±g agree in view of Equations 4.8 and 4.7.
Using this notation, Equation 4.4 can be rewritten as

γqα = −(D+ −D−)qα.(4.9)

Since φ◦α(z) = qα(z)e−γ(z)/2 and φα,λ(z, t) = φ◦α(
√
|λ|z)eiλt, we obtain also

γφ◦α = −(D+ −D−)φ◦α, γφα,λ = − 1

|λ|
(D+ −D−)φα,λ.(4.10)
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The right sides in these equations denote the functions on V and Hn obtained by
applying the difference operators to the α-index. Thus, for example, D−φα,λ denotes

the function on Hn defined by D−φα,λ(z, t) = |α|φα,λ(z, t)−
∑
|β|=|α|−1

[
α
β

]
φβ,λ(z, t).

Lemma 4.1. ∂λqα

(√
|λ|z

)
= 1

λ
D−qα

(√
|λ|z

)
for λ 6= 0.

Proof. Equation 4.1 shows that

qα

(√
|λ|z

)
=
∑
|β|≤|α|

[
α
β

]
(−1)|β|pβ

(√
|λ|z

)
=
∑
|β|≤|α|

[
α
β

]
(−|λ|)|β|pβ(z).

Suppose here that λ > 0. We compute that

∂λqα

(√
|λ|z

)
=
∑
|β|≤|α|

[
α
β

]
(−1)|β||β|λ|β|−1pβ(z)

=
1

λ

∑
|β|≤|α|

[
α
β

]
(−1)|β||β|λ|β|pβ(z)

=
|α|
λ

∑
|β|≤|α|

[
α
β

]
(−λ)|β|pβ(z)− 1

λ

∑
|β|≤|α|

[
α
β

]
(|α| − |β|)(−λ)|β|pβ(z)

=
|α|
λ
qα

(√
|λ|z

)
− 1

λ

∑
|β|≤|α|

[
α
β

]
(|α| − |β|)(−1)|β|pβ

(√
|λ|z

)
Equation 4.5 shows that

[
α
β

]
(|α| − |β|) =

∑
|δ|=|α|−1

[
α
δ

][
δ
β

]
. Hence

∂λqα

(√
|λ|z

)
=
|α|
λ
qα

(√
|λ|z

)
− 1

λ

∑
|β|≤|α|

∑
|δ|=|α|−1

[
α
δ

][
δ
β

]
(−1)|β|pβ

(√
|λ|z

)

=
|α|
λ
qα

(√
|λ|z

)
− 1

λ

∑
|δ|=|α|−1

[
α
δ

] ∑
|β|≤|α|

[
δ
β

]
(−1)|β|pβ

(√
|λ|z

)
=
|α|
λ
qα

(√
|λ|z

)
− 1

λ

∑
|δ|=|α|−1

[
α
δ

]
qδ

(√
|λ|z

)
=

1

λ
D−qα

(√
|λ|z

)
.

A similar analysis applies when λ < 0.

Using Lemma 4.1 we obtain that for λ > 0,

∂λφα,λ(z, t) = ∂λ

[
qα

(√
|λ|z

)
e−λγ(z)/2eiλt

]
=

1

λ
D−φα,λ(z, t)−

γ(z)

2
φα,λ(z, t)+itφα,λ(z, t).
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In view of Equation 4.10 we can also write

∂λφα,λ(z, t) =
1

λ
D+φα,λ(z, t) +

γ(z)

2
φα,λ(z, t) + itφα,λ(z, t).

Thus we have

∂λφα,λ =

{
1
λ
D−φα,λ − γ

2
φα,λ + itφα,λ

1
λ
D+φα,λ + γ

2
φα,λ + itφα,λ

}
for λ > 0,(4.11)

and similarly

∂λφα,λ =

{
1
λ
D−φα,λ + γ

2
φα,λ + itφα,λ

1
λ
D+φα,λ − γ

2
φα,λ + itφα,λ

}
for λ < 0.(4.12)

Equivalently (γ
2

+ it
)
φα,λ =

{ (
∂λ − 1

λ
D+
)
φα,λ for λ > 0(

∂λ − 1
λ
D−
)
φα,λ for λ < 0

}
and(4.13)

(γ
2
− it

)
φα,λ =

{
−
(
∂λ − 1

λ
D−
)
φα,λ for λ > 0

−
(
∂λ − 1

λ
D+
)
φα,λ for λ < 0

}
.(4.14)

5. K-Invariant Schwartz functions on V

We let S(V ) denote the space of Schwartz functions on V and S(Hn) the Schwartz
functions on Hn = V ×R. As usual, SK(V ) and SK(Hn) will denote the K-invariant
elements in S(V ) and S(Hn) respectively. Note that the φ◦α’s belong to SK(V ). We
would like to characterize the spaces SK(V ) and SK(Hn) in terms of the spherical
transform. The problem for SK(V ) is related to that for SK(Hn) as follows. Since
U(n) acts trivially on the center of Hn, we have that SK(Hn) ∼= SK(V ) ⊗ S(R).
Moreover, for g ∈ SK(V ), h ∈ S(R) and (α, λ) ∈ Λ× R× one computes easily that

(g ⊗ h)∧(α, λ) =

(
1

|λ|

)n(
g ◦ δ 1√

|λ|

)∧
(α)F(h)(λ)(5.1)

where F(h)(λ) =
∫∞
−∞ h(t)e−iλtdt is the one dimensional Fourier transform in the cen-

tral direction. Thus the problem of characterizing SK(Hn) via the spherical transform

leads us to seek conditions on maps f̂ : Λ → C that are necessary and sufficient to
ensure that f ∈ L1

K(V ) is in fact a Schwartz function. This problem, which is of
interest in its own right, is answered cleanly by Theorem 5.1 below. In Section 6 we
will return to the problem of characterizing SK(Hn) via the spherical transform.

Definition 5.1. We say that a function F : Λ→ C is rapidly decreasing if for every
sequence (αm)∞m=1 in Λ with limm→∞ |αm| =∞ and every N ∈ Z+ one has

lim
m→∞

F (αm)|αm|N = 0.
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Equivalently, for each N ∈ Z+, there is a constant CN for which

|F (α)| ≤ CN
(2|α|+ n)N

.

Theorem 5.1. If f ∈ SK(V ) then f̂ is rapidly decreasing on Λ. Conversely, if F is

rapidly decreasing on Λ then F = f̂ for some f ∈ SK(V ). Moreover, the map

∧ : SK(V )→ {F | F is rapidly decreasing on Λ}

is a bijection.

Lemma 5.2. If F is rapidly decreasing on Λ then so are D+F and D−F .

Proof. Let cm := max|α|=m |F (α)|. The function m 7→ cm is rapidly decreasing on
Z

+. Using Equation 4.8 and the fact that the generalized binomial coefficients are
non-negative (proved in [BR]) we obtain

|D+F (α)| ≤
∑

|β|=|α|+1

dβ
dα

[
β
α

]
|F (β)|+ (|α|+ n)|F (α)|

≤ c|α|+1

∑
|β|=|α|+1

dβ
dα

[
β
α

]
+ c|α|(|α|+ n)

= (|α|+ n)
(
c|α| + c|α|+1

)
,

which shows that D+F is rapidly decreasing. Using Equation 4.7 in a similar fashion
yields

|D−F (α)| ≤ |α|
(
c|α|−1 + c|α|

)
,

showing that D−F is rapidly decreasing.

Lemma 5.3. Let F be a rapidly decreasing function on Λ and G be a bounded func-
tion on Λ. Then∑

α∈Λ

dαF (α)D+G(α) = −
∑
α∈Λ

dα
(
D− + n

)
F (α)G(α),∑

α∈Λ

dαF (α)D−G(α) = −
∑
α∈Λ

dα
(
D+ + n

)
F (α)G(α).

Here all four series converge absolutely.



SCHWARTZ FUNCTIONS ON THE HEISENBERG GROUP 19

Proof. We compute formally that∑
α∈Λ

dαF (α)D+G(α) =
∑
α∈Λ

dαF (α)

 ∑
|β|=|α|+1

dβ
dα

[
β
α

]
G(β)− (|α|+ n)G(α)


=
∑
α∈Λ

∑
|β|=|α|+1

dβ

[
β
α

]
F (α)G(β)−

∑
α∈Λ

dα(|α|+ n)F (α)G(α)

=
∑
β∈Λ

dβ

 ∑
|α|=|β|−1

[
β
α

]
F (α)

G(β)−
∑
α∈Λ

dα(|α|+ n)F (α)G(α)

=
∑
α∈Λ

dα
(
−D− − n

)
F (α)G(α).

The hypotheses on F and G ensure that the terms in each series above are products
of rapidly decreasing functions with functions of polynomial growth in |α|. Thus all of
these series converge absolutely and the above rearrangements are justified. Indeed,
suppose that |G(α)| ≤M for all α ∈ Λ. Equations 4.7 and 4.8 show that∑

|β|=|α|+1

dβ
dα

[
β
α

]
G(β)− (|α|+ n)G(α) ≤ 2M(|α|+ n).

Moreover, since Pα ⊂ P|α|(V ), we have that

dα ≤ dim
(
P|α|(V )

)
=

(
|α|+ n− 1

|α|

)
≤ (|α|+ n− 1)n−1

(n− 1)!
,(5.2)

a polynomial bound on dα. Hence α 7→ dα(|α|+ n)G(α) is bounded by M(|α|+ n)n

and β 7→ dβG(β) by M(|β|+ n− 1)n−1. Finally note that β 7→
∑
|α|=|β|−1

[
β
α

]
F (α)

is bounded by

dim
(
P|β|−1(V )

)
|β|H(β) ≤ (|β|+ n− 2)n−1|β|H(β)

where H(β) = max{|F (α)| : |α| = |β| − 1} is rapidly decreasing in β.
The second identity follows from the first by interchanging the roles of F and

G.

Proof of Theorem 5.1. First suppose that f ∈ SK(V ) and let L denote the Heisenberg
sub-Laplacian given by Equation 2.6. The associated differential operator L′ on V ,
given in Equation 3.1, is self-adjoint and preserves SK(V ). In view of Equation 3.2,
we have that for N ∈ Z+,

(2|α|+ n)N
∣∣∣f̂(α)

∣∣∣ =
∣∣(−(2|α|+ n))N〈f, φ◦α〉2

∣∣
=
∣∣〈f, (L′)Nφ◦α〉2∣∣ =

∣∣〈(L′)Nf, φ◦α〉2∣∣
≤ ||(L′)Nf ||1
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since |φ◦α(z)| ≤ 1 for all z ∈ V . Hence we obtain a bound of the form

|f̂(α)| ≤ CN
(2|α|+ n)N

for each N ∈ Z+ where CN = ||(L′)Nf ||1. It follows immediately that f̂ is a rapidly
decreasing function on Λ.

Conversely, suppose that F is a rapidly decreasing function on Λ. The estimate
given above in Equation 5.2 shows that dα is bounded by a polynomial function of
|α|. It follows that the series

∑
α∈Λ dα(F (α))p converges absolutely for all p ∈ Z+.

As |φ◦α(z)| ≤ 1, we conclude that the series
∑

α∈Λ dαF (α)φ◦α(z) converges absolutely
and uniformly in z. Define a function f on V via

f(z) =

(
1

2π

)n∑
α∈Λ

dαF (α)φ◦α(z).(5.3)

Since
∑

α∈Λ dα|F (α)|2 converges, Corollary 3.2 shows that f ∈ L2
K(V ) with f̂ = F .

Moreover, as

•
∑

α∈Λ dα|F (α)| converges, and
• each φ◦α is a Schwartz function, and
• the φ◦α’s are uniformly bounded by 1,

it follows easily that lim|z|→∞ f(z) = 0. To prove that f is a Schwartz function, it
suffices to show that f is smooth and that lim|z|→∞ γ(z)a(∆bf)(z) = 0 for all non-
negative integers a, b. In view of the preceding analysis, this follows by induction
from Lemma 5.4 below.

To complete the proof, note that if f ∈ SK(V ) and F (α) = f̂(α) = 0 for all α ∈ Λ
then Equation 5.3 implies that f = 0 in L2

K(V ). As f is continuous, it follows that

f(z) = 0 for all z ∈ V . This shows that f 7→ f̂ is injective on SK(V ).

Lemma 5.4. Let f =
(

1
2π

)n∑
α∈Λ dαF (α)φ◦α where F is rapidly decreasing. Then

1. γf can be written in the form
(

1
2π

)n∑
α∈Λ dαG(α)φ◦α where G is rapidly decreas-

ing, and
2. f is twice differentiable and ∆f can be written in the form

(
1

2π

)n∑
α∈Λ dαH(α)φ◦α

where H is rapidly decreasing.

Proof. We use Equation 4.10 together with Lemma 5.3 to write

γ(z)f(z) =

(
1

2π

)n∑
α∈Λ

dαF (α)γ(z)φ◦α(z)

= −
(

1

2π

)n∑
α∈Λ

dαF (α)
(
D+ −D−

)
φ◦α(z)

=

(
1

2π

)n∑
α∈Λ

dα
(
D− −D+

)
F (α)φ◦α(z).
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In view of Lemma 5.2, G = (D− −D+)F is rapidly decreasing. This establishes (1)
in the statement of Lemma 5.4.

Equation 3.2 shows that (4∆− γ/2)φ◦α = −(2|α|+ n)φ◦α and hence

∆φ◦α =
γ

8
φ◦α −

2|α|+ n

4
φ◦α.

Thus formal application of ∆ term-wise to the series
(

1
2π

)n∑
α∈Λ dαF (α)φ◦α for f

yields the series
(

1
2π

)n∑
α∈Λ dαH(α)φ◦α where

H(α) =
G(α)

8
− 2|α|+ n

4
F (α)

and γf =
(

1
2π

)n∑
α∈Λ dαG(α)φ◦α as above. As both F and G are rapidly decreasing,

so is H. As both
∑

α∈Λ dαF (α)φ◦α(z) and
∑

α∈Λ dαH(α)φ◦α(z) converge uniformly in

z, we conclude that f is twice differentiable with ∆f =
(

1
2π

)n∑
α∈Λ dαH(α)φ◦α. This

establishes (2) in the statement of Lemma 5.4.

6. K-Invariant Schwartz functions on Hn

In this section we return to the problem of characterizing the space SK(Hn) via the
spherical transform. Theorem 6.1 solves this problem and is our main result. Several
definitions are required in the formulation of this theorem.

Definition 6.1. Let F be a function on ∆(K,Hn). We say that F is rapidly de-
creasing on ∆(K,Hn) if

• F is continuous on ∆(K,Hn),
• the function F◦ on V defined by F◦(w) = F (ηw) belongs to SK(V ),
• the map λ 7→ F (α, λ) is smooth on R× = (−∞, 0)∪ (0,∞) for each fixed α ∈ Λ,
• for each m,N ≥ 0 there exists a constant Cm,N for which

|∂mλ F (α, λ)| ≤ Cm,N
|λ|m+N(2|α|+ n)N

for all (α, λ) ∈ Λ× R×.

We say that a continuous function on ∆1(K,Hn) is rapidly decreasing if it extends to a
rapidly decreasing function on ∆(K,Hn) = ∆1(K,Hn)∪∆2(K,Hn). Since ∆1(K,Hn)
is dense in ∆(K,Hn), such an extension is necessarily unique.

Note that if F is rapidly decreasing on ∆(K,Hn) then α 7→ F (α, λ) is rapidly
decreasing on Λ, in the sense of Definition 5.1, for each λ 6= 0. We see that F is
bounded by letting m = N = 0 and one can show, moreover, that F vanishes at
infinity by letting m = 0 and N = 1. We remark that the functions ∂mλ F (α, λ)
defined on ∆1(K,Hn) need not extend continuously across ∆2(K,Hn). Example 6.1
below illustrates this behavior.
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Definition 6.2. Let F be a function on ∆1(K,Hn) which is smooth in λ. M+F and
M−F are the functions on ∆1(K,Hn) defined by

M+F (α, λ) =

{ (
∂λ − 1

λ
D+
)
F (α, λ) for λ > 0(

∂λ − 1
λ
D−
)
F (α, λ) for λ < 0

}
and

M−F (α, λ) =

{ (
∂λ − 1

λ
D−
)
F (α, λ) for λ > 0(

∂λ − 1
λ
D+
)
F (α, λ) for λ < 0

}
.

We remind the reader that the difference operators D± are defined by

D+F (α, λ) =
∑

|β|=|α|+1

dβ
dα

[
β
α

]
F (β, λ)− (|α|+ n)F (α, λ),

D−F (α, λ) = |α|F (α, λ)−
∑

|β|=|α|−1

[
α
β

]
F (β, λ).

Definition 6.3. Ŝ(K,Hn) is the set of all functions F : ∆(K,Hn) → C for which
(M+)`(M−)mF is rapidly decreasing for all `,m ≥ 0.

If F is rapidly decreasing on ∆(K,Hn) then λ 7→ F (α, λ) is smooth on R× and we

have well defined functions (M+)`(M−)mF on ∆1(K,Hn). F belongs to Ŝ(K,Hn)
if and only if these functions extend continuously to rapidly decreasing functions on
∆(K,Hn).

Theorem 6.1. If f ∈ SK(Hn) then f̂ ∈ Ŝ(K,Hn). Conversely, if F ∈ Ŝ(K,Hn)

then F = f̂ for some f ∈ SK(Hn). Moreover, the map ∧ : SK(Hn)→ Ŝ(K,Hn) is a
bijection.

If f ∈ SK(Hn) and f̂ = 0 then the inversion formula for the spherical transform
(Equation 2.13) yields that f = 0. Thus the spherical transform is injective on

SK(Hn). To prove Theorem 6.1, it remains to show that SK(Hn)∧ ⊂ Ŝ(K,Hn) and

that Ŝ(K,Hn) ⊂ SK(Hn)∧. This will require most of the remainder of this section.
First, however, we will present an example.

Example 6.1. Consider the case where K = U(n). Decomposition 2.1 reads C[V ] =∑∞
m=0Pm(V ) and one has ∆(U(n), Hn) ∼=

(
R
× × Z+

)
∪R+. Using Equation 4.3, one

computes that the difference operators D± appearing in the definition of the set

Ŝ(U(n), Hn) are given by

D+g(m) = (m+ n)(g(m+ 1)− g(m)), D−g(m) = m(g(m)− g(m− 1))

for functions g : Z+ → C.
Let f ∈ SK(Hn) be defined by f(z, t) = g(z)h(t) where g(z) = e−|z|

2
and h ∈ S(R).

We will compute the spherical transform f̂ : ∆(U(n), Hn)→ C.
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The polynomial qm associated with Pm(V ) is a suitably normalized generalized
Laguerre polynomial which can be written explicitly as (see eg. [BJR92])

qm(z) = (n− 1)!
m∑
j=0

(
m

j

)
1

(n+ j − 1)!

(
−|z|

2

2
)j

.

Thus, for λ 6= 0 we have(
g ◦ δ

1/
√
|λ|

)∧
(m) =

∫
V

e−|z|
2/|λ|qm(z)e−|z|

2/4dz

= (n− 1)!
m∑
j=0

(
m

j

)
(−1)j

2j(n+ j − 1)!

∫
V

|z|2je−K|z|2dz

where K = 1
|λ| + 1

4
= 4+|λ|

4|λ| . One has∫
V

|z|2je−K|z|2dz =
2πn

(n− 1)!

∫ ∞
0

e−Kr
2

r2(n+j)−1dr =
πn(n+ j − 1)!

(n− 1)!Kn+j

and hence(
g ◦ δ

1/
√
|λ|

)∧
(m) =

( π
K

)n m∑
j=0

(
m

j

)(
− 1

2K

)j
=
( π
K

)n(
1− 1

2K

)m
=

(
4π|λ|

4 + |λ|

)n(
4− |λ|
4 + |λ|

)m
.

Thus we have (see Equation 5.1)

f̂(m,λ) =

(
1

|λ|

)n(
g ◦ δ 1√

|λ|

)∧
(m)F(h)(λ)

=

(
4π

4 + |λ|

)n(
4− |λ|
4 + |λ|

)m
F(h)(λ).

For w ∈ V one has (see Equation 2.15)

f̂(w) = F
H

(f)(w, 0) = F
V

(g)(w)F(h)(0)

=

(
πn
∫ ∞
−∞

h(t)dt

)
e−|w|

2/4.

One can verify directly that f̂ ∈ Ŝ(U(n), Hn), but we will not do this here. In

particular, the functions λ 7→ f̂(λ,m) are differentiable on R× for each m ∈ Z+, and

the derivatives ∂λf̂(λ,m) satisfy estimates as in Definition 6.1. Note, however, that

these derivatives do not agree as λ→ 0. Specifically, limλ→0 ∂λf̂(λ,m) depends on m.
Hence there is no function g ∈ L1

U(n)(Hn) whose U(n)-spherical transform satisfies

ĝ(λ,m) = ∂λf̂(λ,m) on R× × Z+.
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This example illustrates why the characterization of SK(Hn)∧ is somewhat com-

plicated. Although the behavior of the derivatives of the functions λ 7→ f̂(λ,m) does
come into play, as expected, the space SK(Hn)∧ is not “closed under λ-derivatives”.
Indeed, one must “replace” ∂λ by the operators M± which involve both ∂λ and the
difference operators D±.

Proof that SK(Hn)∧ ⊂ Ŝ(K,Hn). Suppose that f ∈ SK(Hn) and let F := f̂ . We
begin by showing that F is rapidly decreasing. F is continuous on ∆(K,Hn), as is
the spherical transform of any integrable K-invariant function. Moreover, Equation
2.15 shows that F◦(w) = F

H
(f)(w, 0). Since f is a Schwartz function, so is F◦(w).

Thus F satisfies the first two conditions in Definition 6.1.
Next we will show that F satisfies the estimates in Definition 6.1 for m = 0. The

argument is similar to that in the first part of the proof for Theorem 5.1. Recall that
the Heisenberg sub-Laplacian L is a self-adjoint operator on L2(Hn) with L(φα,λ) =
−|λ|(2|α|+ n)φα,λ. Thus we have

|λ|N(2|α|+ n)N |F (α, λ)| =
∣∣(−|λ|(2|α|+ n))N〈f, φα,λ〉2

∣∣
=
∣∣〈f,LNφα,λ〉2∣∣ =

∣∣〈LNf, φα,λ〉2∣∣
≤ ||LNf ||1

since |φα,λ(z, t)| ≤ 1 for all (z, t) ∈ Hn. Letting C0,N := ||LNf ||1, we see that the
inequalities in Definition 6.1 hold for m = 0.

Since φα,λ(z, t) is smooth in λ ∈ R× for fixed (z, t) and fφα,λ is a Schwartz function,

F (α, λ) = f̂(α, λ) is smooth in λ ∈ R× with

∂λF (α, λ) =

∫
f(z, t)∂λφα,λ(z, t)dzdt.(6.1)

Equations 4.11 and 4.12 provide formulae for ∂λφα,λ = ∂λφα,−λ but we require a
different approach here. We write φα(z, t) = φ◦α(z)eit as φ◦α(z, z)eit so that

φα,λ(z, t) = φ◦α(|λ|z, z)e−iλt.

We see that

∂λφα,λ(z, t) =
1

λ

[(
n∑
j=1

zj
∂

∂zj

)
φ◦α

]
(|λ|z, z)− itφα,λ(z, t).

Substituting this expression into Equation 6.1 and integrating by parts gives

∂λF (α, λ) =
1

λ
(Df)∧(α, λ)− i(tf)∧(α, λ)

where Df := −
∑n

j=1
∂
∂zj

(zjf). Since tf and Df are both Schwartz functions on Hn,

they satisfy estimates as above. Thus, given N ≥ 0, one can find constants A and B
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with

|∂λF (α, λ)| ≤ A

|λ|N+1(2|α|+ n)N
+

B

|λ|N+1(2|α|+ n)N+1
≤ C1,N

|λ|N+1(2|α|+ n)N

where C1,N = A+B. By induction on m we see that |∂mλ F (α, λ)| satisfies an estimate
as in Definition 6.1. This completes the proof that F is rapidly decreasing.

Equations 4.13 and 4.13 show that

M+F =
((γ

2
+ it

)
f
)∧∣∣∣∣

∆1(K,Hn)

and M−F = −
((γ

2
− it

)
f
)∧∣∣∣∣

∆1(K,Hn)

Thus (M+)`(M−)mF is the restriction of ĝ to ∆1(K,Hn) where

g = (−1)m(γ/2 + it)`(γ/2− it)mf.
Since g ∈ SK(Hn), it now follows that (M+)`(M−)mF is rapidly decreasing. Thus

F ∈ Ŝ(K,Hn) as desired.

The following proposition is required to complete the proof of Theorem 6.1.

Proposition 6.2. Let F be a bounded measurable function on ∆(K,Hn) with

|F (α, λ)| ≤ C

|λ|N(2|α|+ n)N

for some N ≥ n+ 2 and some constant C. Then

1. F ∈ Lp(∆(K,Hn)) for all p ≥ 1, and

2. F = f̂ for some bounded continuous function f ∈ L2
K(Hn).

Suppose, for example, that f is a continuous function in L1
K(Hn) with F = f̂

rapidly decreasing. Proposition 6.2 shows that f is square integrable and that F is
integrable. Thus, the inversion formula 2.13 applies and we can recover f from F via

f(z, t) =

(
1

2π

)n+1 ∫
R
×

∑
α∈Λ

dαF (α, λ)φα,λ(z, t)|λ|ndλ.(6.2)

In particular, we see that this formula certainly holds for any function f ∈ SK(Hn).

Proof of Proposition 6.2. To establish the first assertion, it suffices to prove that F ∈
L1(∆(K,Hn)). Indeed, |F (α, λ)|p satisfies an inequality as in the statement of the
proposition with N replaced by pN .

Let A1 := {φα,λ | |λ|(2|α| + n) ≤ 1} and A2 := {φα,λ | |λ|(2|α| + n) > 1}. Let M
be a constant for which |F (ψ)| ≤M for all ψ ∈ ∆(K,Hn) and let

dm := dim (Pm(V )) =

(
m+ n− 1

m

)
.(6.3)

Note that ∑
|α|=m

dα = dm ≤ (m+ n− 1)n−1.
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We compute∫
A1

|F (ψ)|dµ(ψ) =

(
1

2π

)∑
α∈Λ

dα

∫
0<|λ|< 1

2|α|+n

|F (α, λ)||λ|ndλ

≤ 2M

(2π)n+1

∞∑
m=0

dm

∫ 1
2m+n

0

λndλ

=
2M

(n+ 1)(2π)n+1

∞∑
m=0

dm

(
1

2m+ n

)n+1

.

Since dm = O(mn−1), we see that the last series converges. Hence |F | is integrable
over A1. Next we compute∫

A2

|F (ψ)|dµ(ψ) =

(
1

2π

)∑
α∈Λ

dα

∫
|λ|> 1

2|α|+n

|F (α, λ)||λ|ndλ

≤ 2C

(2π)n+1

∞∑
m=0

dm

∫ ∞
1

2m+n

λn

λN(2m+ n)N
dλ

≤ 2C

(N − n− 1)(2π)n+1

∞∑
m=0

dm
(2m+ n)n+1

.

The hypothesis that N−n ≥ 2 was used above to evaluate the integral of 1/λN−n over
1

2m+n
< λ < ∞. Since dm = O(mn−1), we see that the series in the last expression

converges. Hence |F | is integrable over A1. As A1 ∪ A2 = ∆1(K,Hn) is a set of full
measure in ∆(K,Hn), it follows that F ∈ L1(∆(K,Hn)).

Next let f be the function on Hn defined by

f(z, t) =

∫
∆(K,Hn)

F (ψ)ψ(z, t)dµ(ψ).

Since F ∈ L1(∆(K,Hn)) and the spherical functions are continuous and bounded by
1, we see that f is well defined, continuous and bounded by ||F ||L1(∆(K,Hn)). Moreover,
since F ∈ L2(∆(K,Hn)) and ∧ : L2(∆(K,Hn)) → L2

K(Hn) is an isometry, we have

that f ∈ L2
K(Hn) with ||f ||22 =

∫
∆(K,Hn)

|F (ψ)|2dµ(ψ) and f̂ = F . This establishes

the second assertion in Proposition 6.2.

Remark 6.1. One can show that the set A1 used in the proof of Proposition 6.2 is
compact in ∆(K,Hn). Thus any bounded measurable function is integrable over A1.
This observation motivates the decomposition used in the proof.

Proof that Ŝ(K,Hn) ⊂ SK(Hn)∧. Suppose now that F ∈ Ŝ(K,Hn). Proposition 6.2

shows that F = f̂ where

f(z, t) =

(
1

2π

)n+1 ∫
R
×

∑
α∈Λ

dαF (α, λ)φα,λ(z, t)|λ|ndλ
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is K-invariant, continuous, bounded and square integrable. To show that f ∈
SK(Hn), we will show that f is smooth and that(

γ2

4
+ t2

)a(
∂

∂t

)b
∆cf ∈ L2

K(Hn)

for all a, b, c ≥ 0. This will follow from the facts

1. ∆f ∈ L2
K(Hn) with (∆f)∧ ∈ Ŝ(K,Hn),

2. ∂f
∂t
∈ L2

K(Hn) with
(
∂f
∂t

)∧ ∈ Ŝ(K,Hn), and

3.
(
γ
2
± it

)
f ∈ L2

K(Hn) with
((

γ
2
± it

)
f
)∧ ∈ Ŝ(K,Hn),

which we prove below. Here ∆ =
∑n

j=1
∂
∂zj

∂
∂zj

as before.

Using Equation 2.9 for the eigenvalues of the Heisenberg sub-Laplacian, one obtains

−|λ|(2|α|+ n)φα,λ = Lφα,λ =

[
4∆− γ

2

(
∂

∂t

)2
]
φα,λ

= 4∆φα,λ −
λ2

2
γφα,λ.

Using Equation 4.10 for γφα,λ gives

4∆φα,λ = −|λ|
2

(D+ −D−)φα,λ − |λ|(2|α|+ n)φα,λ

= −|λ|
2

 ∑
|β|=|α|+1

dβ
dα

[
β
α

]
φβ,λ + (2|α|+ n)φα,λ +

∑
|β|=|α|−1

[
α
β

]
φβ,λ

 .
Define a function F∆ on ∆1(K,Hn) by

F∆(α, λ) = −|λ|
2

(D+ −D−)F (α, λ)− |λ|(2|α|+ n)F (α, λ)

= −|λ|
2

 ∑
|β|=|α|+1

dβ
dα

[
β
α

]
F (β, λ) + (2|α|+ n)F (α, λ) +

∑
|β|=|α|−1

[
α
β

]
F (β, λ)

 .
It is not hard to show that F∆ ∈ Ŝ(K,Hn). In particular, note that Equations 4.7
and 4.8 give

|F∆(α, λ)| ≤ |λ|
2

(|α|+ n)
∑

|β|=|α|+1

|F (β, λ)|+ (2|α|+ n)|F (α, λ)|+ |α|
∑

|β|=|α|−1

|F (β, λ)|

 .
One uses this to show that F∆ satisfies estimates as in Definition 6.1. Moreover,
Lemma 5.3 shows that for each λ 6= 0∑

α∈Λ

dαF (α, λ)(D+ −D−)φα,λ =
∑
α∈Λ

dα(D+ −D−)F (α, λ)φα,λ
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and hence also∫
R
×

∑
α∈Λ

dαF∆(α, λ)|λ|ndλ = 4

∫
R
×

∑
α∈Λ

dαF (α, λ) (∆φα,λ) |λ|ndλ.

We conclude that ∆f ∈ L2
K(Hn) with 4(∆f)∧ = F∆ ∈ Ŝ(K,Hn) This proves item

(1) above.

Next note that the function defined on ∆1(K,Hn) by λF (α, λ) belongs to Ŝ(K,Hn).

Since
∂φα,λ
∂t

= iλφα,λ, we see that ∂f
∂t
∈ L2

K(Hn) with
(
∂f
∂t

)∧
= iλF ∈ Ŝ(K,Hn). This

establishes item (2) above.
We begin the proof of item (3) by setting

F̃ (z, λ) =
∑
α∈Λ

dα|λ|nF (α, λ)φ◦α,λ(z)(6.4)

for each λ 6= 0, so that

f(z, t) =

(
1

2π

)n+1 ∫
R
×
F̃ (z, λ)eiλtdλ.

Note that we can compute ∂λF̃ by taking derivatives term-wise in Equation 6.4. For
λ > 0 we have

∂λF̃ (z, λ) =
∑
α∈Λ

dαnλ
n−1F (α, λ)φ◦α,λ(z) +

∑
α∈Λ

dαλ
n∂λF (α, λ)φ◦α,λ(z)

+
∑
α∈Λ

dαλ
nF (α, λ)∂λφ

◦
α,λ(z).

Since F ∈ Ŝ(K,Hn), the estimates in Definition 6.1 can be applied to show that
the first two sums converge absolutely for each λ > 0. For the third sum, we use
Equations 4.11 for ∂λφ

◦
α,λ(z) = ∂λφα,λ(z, 0) together with Lemma 5.3 to derive two

identities:∑
α∈Λ

dαλ
nF (α, λ)∂λφ

◦
α,λ(z)

=

{
−γ

2

∑
α∈Λ dαλ

nF (α, λ)φ◦α,λ(z) +
∑

α∈Λ dαλ
nF (α, λ) 1

λ
D−φ◦α,λ(z)

γ
2

∑
α∈Λ dαλ

nF (α, λ)φ◦α,λ(z) +
∑

α∈Λ dαλ
nF (α, λ) 1

λ
D+φ◦α,λ(z)

}
=

{
−γ

2
F̃ (z, λ)−

∑
α∈Λ dαλ

n−1(D+ + n)F (α, λ)
γ
2
F̃ (z, λ)−

∑
α∈Λ dαλ

n−1(D− + n)F (α, λ)

}
Substituting these identities in the expression for ∂λF̃ (z, λ) gives

∂λF̃ (z, λ) =

{
−γ

2
F̃ (z, λ) +

∑
α∈Λ dαλ

n
(
∂λ − 1

λ
D+
)
F (α, λ)φ◦α,λ(z)

γ
2
F̃ (z, λ) +

∑
α∈Λ dαλ

n
(
∂λ − 1

λ
D−
)
F (α, λ)φ◦α,λ(z)

}(6.5)
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both valid for λ > 0. We have similar identities for λ < 0:

∂λF̃ (z, λ) =

{
−γ

2
F̃ (z, λ) +

∑
α∈Λ dαλ

n
(
∂λ − 1

λ
D−
)
F (α, λ)φ◦α,λ(z)

γ
2
F̃ (z, λ) +

∑
α∈Λ dαλ

n
(
∂λ − 1

λ
D+
)
F (α, λ)φ◦α,λ(z)

}
.

(6.6)

Note that
(
∂λ − 1

λ
D±
)
F is the restriction of M±F to ∆+

1 (K,Hn) = {φα,λ | α ∈ Λ, λ >

0} and also of M∓F to ∆−1 (K,Hn) = {φα,λ | α ∈ Λ, λ < 0}. Since M±F ∈ Ŝ(K,Hn),

M±F is integrable on ∆(K,Hn) and Equations 6.5 and 6.6 show that ∂λF̃ (z, λ) is
integrable on R× = {λ | λ 6= 0}. We have,

(2π)n+1itf(z, t) =

∫
R
×
F̃ (z, λ)∂λ

(
eiλt
)
dλ

=

∫ ∞
0

F̃ (z, λ)∂λ
(
eiλt
)
dλ+

∫ 0

−∞
F̃ (z, λ)∂λ

(
eiλt
)
dλ

= −
∫ ∞

0

∂λF̃ (z, λ)eiλtdλ−
∫ 0

−∞
∂λF̃ (z, λ)eiλtdλ

− lim
λ→0+

F̃ (z, λ) + lim
λ→0−

F̃ (z, λ).

It can be shown that the limits limλ→0± F̃ (z, λ) exist and are equal. Here one needs to
use the hypotheses that F is continuous across ∆2(K,Hn) and that F◦ is a Schwartz
function. The proof, which is rather involved, is presented below in Section 7. Using

Equations 6.5 and 6.6 for ∂λF̃ (z, λ) we obtain

(2π)n+1
(
±γ

2
+ it

)
f(z, t) = −

∫ ∞
0

∑
α∈Λ

dα|λ|n
(
∂λ −

1

λ
D±
)
F (α, λ)φα,λ(z, t)dλ

−
∫ 0

−∞

∑
α∈Λ

dα|λ|n
(
∂λ −

1

λ
D∓
)
F (α, λ)φα,λ(z, t)dλ

=

∫
R
×

∑
α∈Λ

dαM
±F (α, λ)φα,λ(z, t)|λ|ndλ.

We conclude that
(
±γ

2
+ it

)
f ∈ LK(Hn) with (2π)n+1

((
±γ

2
+ it

)
f
)∧

= M±F ∈
Ŝ(K,Hn). This completes the proof for item (3).

The characterization of the spherical transform of a Schwartz function given in
Theorem 6.1 can be used to construct functions on Hn whose transform has a pre-
determined support. Recall that Theorem 2.2 asserts the existence of a map E :
∆(K,Hn)→ (R+)d × R which is a homeomorphism onto its image. In Corollary 6.3
below, K = U(n) or Tn, so that d = 1 or d = n. In the first case, ∆(U(n), Hn) ∼=
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{(m,λ) | m ∈ Z+, λ ∈ R}
∐
{s | s > 0} with

E(m,λ) =

(
|λ|
2

(2m+ n), λ

)
and E(s) =

(s
2
, 0
)
.

In the second case, we have ∆(Tn, Hn) ∼= {(m,λ) | m ∈ (Z+)n, λ ∈ R}
∐
{s | s ∈

(R+)n} with

E(m,λ) =

(
|λ|
2

(2m1 + n), . . . ,
|λ|
2

(2mn + n)λ

)
and E(s) =

(s1

2
, . . . ,

sn
2
, 0
)
.

Corollary 6.3. Let F be a smooth function of compact support on R2 (or Rn+1).

Then F̃ = F ◦ E is the spherical transform of a U(n)- (or Tn-) invariant Schwartz
function on Hn.

Proof. Since F has compact support, we see that F̃ (m,λ) = 0 if |λ| and |λ|(2|m|+n)
are sufficiently large. Hence our growth conditions are automatically satisfied. The

only property left to verify is that M±F̃ extends continuously across ∆2(K,Hn).

For K = U(n), we first consider M+F̃ (m,λ) with λ → 0+, |λ|(2m + n) → s. We
have

M+F̃ (m,λ) = ∂λF̃ (m,λ)− 1

λ
D+F̃ (m,λ)

= ∂λ

[
F

(
λ

2
(2m+ n), λ

)]
− m+ n

λ

[
F̃ (m+ 1, λ)− F̃ (m,λ)

]
=

2m+ n

2
∂1F

(
λ

2
(2m+ n), λ

)
+ ∂2F

(
λ

2
(2m+ n), λ

)
− m+ n

λ

[
F

(
λ

2
(2m+ n+ 2), λ

)
− F

(
λ

2
(2m+ n), λ

)]
.

Now substitute λ(2m+ n)/2 ≈ s/2, to obtain

M+F̃ (m,λ) ≈ s

2λ
∂1F

(s
2
, λ
)

+ ∂2F
(s

2
, λ
)
− s

2λ2

[
F
(s

2
+ λ, λ

)
− F

(s
2
, λ
)]

− n

2λ

[
F
(s

2
+ λ, λ

)
− F

(s
2
, λ
)]

= ∂2F
(s

2
, λ
)
− s

2λ2

[
F
(s

2
+ λ, λ

)
− F

(s
2
, λ
)
− λ∂1F

(s
2
, λ
)]

− n

2λ

[
F
(s

2
+ λ, λ

)
− F

(s
2
, λ
)]
,

which converges to

∂2F
(s

2
, 0
)
− s

4
∂2

1F
(s

2
, 0
)
− n

2
∂1F

(s
2
, 0
)
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as λ→ 0+. Now for λ→ 0−, λ(2m+ n)/2→ −s/2 and we have:

M+F̃ (m,λ) = ∂λF̃ (m,λ)− 1

λ
D−F̃ (m,λ)

= ∂λ

[
F

(
−λ

2
(2m+ n), λ

)]
− m

λ

[
F̃ (m,λ)− F̃ (m− 1, λ)

]
≈ −2m+ n

2
∂1F

(s
2
, λ
)

+ ∂2F
(s

2
, λ
)
− m

λ

[
F
(s

2
, λ
)
− F

(s
2

+ λ, λ
)]

≈ s

2λ
∂1F

(s
2
, λ
)

+ ∂2F
(s

2
, λ
)

+
s

2λ2

[
F
(s

2
, λ
)
− F

(s
2

+ λ, λ
)]

+
n

2λ

[
F
(s

2
, λ
)
− F

(s
2

+ λ, λ
)]
,

which converges to

∂2F
(s

2
, 0
)
− s

4
∂2

1F
(s

2
, 0
)
− n

2
∂1F

(s
2
, 0
)

as λ → 0−. A similar calculation shows that, as λ → 0± and |λ|(2m + n)/2 → s/2,
we get

M−F̃ (m,λ) =

(
∂λ −

1

λ
D∓
)
F̃ (m,λ)→ ∂2F

(s
2
, 0
)

+
s

4
∂2

1F
(s

2
, 0
)

+
n

2
∂1F

(s
2
, 0
)
.

Therefore M±F̃ extends continuously to a smooth function on ∆2(U(n), Hn), and by

induction, we see that (M+)`(M−)mF̃ will also be smooth on ∆2(U(n), Hn).
For the case K = Tn, we have:

F̃ (m,λ) = F

(
|λ|
2

(2m1 + 1), . . . ,
|λ|
2

(2mn + 1), λ

)
D+F̃ (m,λ) =

n∑
j=1

(mj + 1)[F̃ (m1, . . . ,mj + 1, . . . ,mn, λ)− F̃ (m,λ)],

D−F̃ (m,λ) =
n∑
j=1

mj[F̃ (m,λ)− F̃ (m1, . . . ,mj − 1, . . . ,mn, λ)].

If we approach ∆2(Tn, Hn) by taking λ→ 0, |λ|(2mj + 1)→ sj, then we obtain, with
s = (s1, . . . , sn):

M±F̃ (m,λ)→ ∂n+1F (s, 0)∓

[
1

4

n∑
j=1

sj∂
2
jF (s, 0) +

1

2

n∑
j=1

sj∂jF (s, 0)

]
.

Hence F̃ is the spherical transform of a Tn-invariant Schwartz function on Hn.

Equation 6.2 shows how a K-invariant Schwartz function f ∈ SK(Hn) is deter-

mined by its K-spherical transform f̂ . We conclude this section with a result that

shows how the Fourier transform F
H

(f) of f is determined by f̂ . The formula in
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Proposition 6.4 differs from Equation 6.2 in that no integration is involved. Propo-
sition 6.4 shows, in particular, that the Fourier transform w 7→ F

H
f(w, s) along a

fixed central “level” s 6= 0 is completely determined by the values of the spherical

transform {f̂(α, s) | α ∈ Λ} associated with this level.

Proposition 6.4. For f ∈ SK(Hn) one has

F
H

(f)(w, s) =

{
2n
∑

α∈Λ(−1)|α|dαf̂(α, s)φ◦α

(
2w/

√
|s|
)

s 6= 0

f̂(ηw) s = 0
.

Proof. The identity F
H

(f)(w, 0) = f̂(ηw) is Equation 2.15. Next we use Equation 6.2
to write

F
H

(f)(w, s) =

(
1

2π

)n+1 ∫
Hn

∫
R×

∑
α∈Λ

dαf̂(α, λ)φ◦α

(√
|λ|z

)
ei(λ−s)t|λ|ne−iRe〈z,w〉dλdzdt

=

(
1

2π

)n+1 ∫
R

∫
R×

∑
α∈Λ

dαf̂(α, λ)F
V

(
φ◦α ◦ δ√|λ|

)
(w)ei(λ−s)t|λ|ndλdt.

Here one can use the estimate given in Definition 6.1 for m = 0 to justify rearranging
the series and integrals as above. In view of Equation 3.4, we have

F
V

(
φ◦α ◦ δ√|λ|

)
(w) = (−1)|α|

(
4π

|λ|

)n
φ◦α

(
2w√
|λ|

)
and hence

F
H

(f)(w, s) =

∫
R

∫
R×

2n

2π

∑
α∈Λ

(−1)|α|dαf̂(α, λ)φ◦α

(
2w√
|λ|

)
ei(λ−s)tdλdt

= 2n
∑
α∈Λ

(−1)|α|dαf̂(α, s)φ◦α

(
2w/

√
|s|
)

for s 6= 0. Again, one can use the estimate in Definition 6.1 to justify the rearrange-
ment of series and integrals employed above.

7. Analysis of boundary terms

Throughout this section, F will denote a rapidly decreasing function on ∆(K,Hn)
and F◦ ∈ SK(V ) is defined by F◦(w) = F (ηw). (See Definition 6.1.) In the proof of

Theorem 6.1, we defined a function F̃ (z, λ) on V × R× by

F̃ (z, λ) =
∑
α∈Λ

dα|λ|nF (α, λ)φ◦α,λ(z).

In order to complete the proof, we need to show that the limits limλ→0± F̃ (z, λ) exist
and are equal. In fact, we will prove the following result.
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Proposition 7.1. limλ→0

∑
α∈Λ dα|λ|nF (α, λ)φ◦α,λ(z) =

(
1

2π

)n ∫
V
F◦(w)ηw(z)dw.

It is easy to prove Proposition 7.1 for the case where F = f̂ for some f ∈ SK(Hn).
Indeed, the inversion formula for the spherical transform yields

(2π)n+1

∫
f(z, t)dt =

∫ ∫
F̃ (z, λ)eiλtdλdt = 2π lim

λ→0±
F̃ (z, λ).

Thus limλ→0 F̃ (z, λ) exists and one has

lim
λ→0

F̃ (z, λ) = (2π)n
∫
f(z, t)dt =

(2π)n

(2π)2n

∫ ∫
V

F
V

(f)(w, t)eiRe〈w,z〉dwdt

=

(
1

2π

)n ∫
V

F
H

(f)(w, 0)eiRe〈w,z〉dw =

(
1

2π

)n ∫
V

F◦(w)eiRe〈w,z〉dw

=

(
1

2π

)n ∫
V

F◦(w)ηw(z)dw.

Here we have used Equation 2.15 and K-invariance of F◦. This proves Proposition 7.1

for functions F ∈ SK(Hn)∧. Since we use Proposition 7.1 to prove that Ŝ(K,Hn) ⊂
SK(Hn)∧, we can not, however, assume here that F ∈ SK(Hn)∧.

The case where K = U(n) plays a special role in our proof of Proposition 7.1. We
will denote the bounded U(n)-spherical functions on Hn by

∆1(U(n), Hn) = {φUm,λ | m = 0, 1, 2, . . . }, ∆2(U(n), Hn) = {ηUw | w ∈ V }.

The K-spherical functions φα,λ are related to the U(n)-spherical functions φUm,λ via

dmφ
U
m,λ =

∑
|α|=m

dαφα,λ(7.1)

where as before, dm := dim(Pm(V )). This follows from the fact that dmpm =∑
|α|=m dαpα.

Lemma 7.2. For w ∈ V one has

lim
N→∞

1

dN

∑
|α|=N

dαF

(
α,
|w|2

2N + n

)
=

∫
U(n)

F◦(kw)dk.
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Proof. Let s = |w|2. It is shown in [BJRW] that φUN, s
2N+n

converges to ηUw uniformly

on compact sets. Using this fact together with Equation 7.1 one computes∫
U(n)

F◦(kw)dk =

∫
U(n)

(
1

2π

)2n ∫
V

F
V
F◦(z)ei〈z,kw〉dzdk

=

(
1

2π

)2n ∫
V

F
V
F◦(z)ηUw (z)dz

= lim
N→∞

(
1

2π

)2n ∫
V

F
V
F◦(z)

(
φUN, s

2N+n

)◦
(z)dz

= lim
N→∞

(
1

2π

)2n
1

dN

∑
|α|=N

dα

∫
V

F
V
F◦(z)φ◦α, s

2N+n
(z)dz.

Given φα,λ ∈ ∆1(K,Hn), choose a point wα,λ ∈ V such that

d
(
φα,λ, ηwα,λ

)
≤ d (φα,λ, η)

for all η ∈ ∆2(K,Hn). Here d(·, ·) denotes the metric on ∆(K,Hn) defined by Equa-
tion 2.11. We can now write∫

U(n)

F◦(kw)dk = lim
N→∞

(
1

2π

)2n
1

dN

∑
|α|=N

dα

∫
V

F
V
F◦(z)ηwα, s

2N+n
(z)dz

= lim
N→∞

(
1

2π

)2n
1

dN

∑
|α|=N

dα

∫
V

F
V
F◦(z)e

i〈wα, s
2N+n

,z〉
dz

= lim
N→∞

1

dN

∑
|α|=N

dαF◦

(
wα, s

2N+n

)
= lim

N→∞

1

dN

∑
|α|=N

dαF

(
α,

s

2N + n

)
.

Here we have used continuity of F and the fact that F◦, and hence also F
V
F◦, are

K-invariant.

Next we define a function UF on ∆(U(n), Hn) by

UF
(
φUm,λ

)
=

1

dm

∑
|α|=m

dαF (α, λ),

UF
(
ηUw
)

=

∫
U(n)

F◦(kw)dk.

If F = f̂ for some f ∈ SK(Hn), then one can check that UF is the U(n)-spherical
transform of the function Uf ∈ SU(n)(Hn) defined by Uf(z, t) =

∫
U(n)

f(kz, t)dk. This

observation motivates the definition of UF . In general one has the following result.
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Lemma 7.3. UF is rapidly decreasing on ∆(U(n), Hn).

Proof. It is clear that (UF )◦ is a Schwartz function and that UF satisfies the es-
timates in Definition 6.1. We need, however, to show that UF is continuous across
∆2(U(n), Hn). Suppose that (mN , λN) is a sequence in Z+×R× with limN→∞ φ

U
mN ,λN

=

ηUw in ∆(U(n), Hn). This occurs if and only if |λN |(2mN + n) → |w|2 (see [BJRW]).
Since

d

((
mN ,

|w|2

2mN + n

)
, (mN , λN)

)
=

∣∣∣∣ |w|2

2mN + n
− λN

∣∣∣∣→ 0

we see that one also has
lim
N→∞

φU
mN ,

|w|2
2mN+n

= ηUw

in ∆(U(n), Hn). Since limN→∞mN =∞, we have

lim
N→∞

UF (mN , λN) = lim
N→∞

UF

(
mN ,

|w|2

2mN + n

)
= lim

N→∞

1

dmN

∑
|α|=N

dαF

(
α,
|w|2

2N + n

)
=

∫
U(n)

F◦(kw)dk (by Lemma 7.2)

= UF (ηUs ).

Lemma 7.4 shows that Proposition 7.1 holds for the case where K = U(n) and
z = 0.

Lemma 7.4. Let G be a rapidly decreasing function on ∆(U(n), Hn) and w ∈ V .
Then limλ→0

∑∞
m=0 dm|λ|nG(m,λ) =

(
1

2π

)n ∫
V
G◦(w)dw.

Proof. We will show that, for λ small, the left hand side of the above equation is
close to a Riemann sum for the integral on the right hand side. Define a function g
on R+ via

g

(
|w|
2

2
)

= G◦(w).

g is continuous and rapidly decreasing on R+. Using spherical coordinates on V , one
sees that (

1

2π

)n ∫
V

G◦(w)dw =
1

(n− 1)!

∫ ∞
0

g(s)sn−1ds.(7.2)

Choose points wm,λ ∈ V with |wm,λ|2 = |λ|(2m+ n), and hence that

d
(
φUm,λ, η

U
wm,λ

)
= |λ|.
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We have

lim
λ→0

∞∑
m=0

dm|λ|nG(m,λ) = lim
λ→0

∞∑
m=0

dm|λ|nG
(
ηUwm,λ

)
= lim

λ→0

∞∑
m=0

dm|λ|ng
(
|λ|
2

(2m+ n)

)
.

Comparing this with Equation 7.2, we see that to complete the proof we must show
that

lim
λ→0

∞∑
m=0

dm|λ|ng
(
|λ|
2

(2m+ n)

)
=

1

(n− 1)!

∫ ∞
0

g(s)sn−1ds.(7.3)

In fact, as shown below, Equation 7.3 is valid for any function g ∈ L1(R+, sn−1ds).
It suffices to establish Equation 7.3 for a characteristic function. Suppose that

g(s) = 1 for s ∈ [a, b] and g(s) = 0 elsewhere. Then

∞∑
m=0

dm|λ|ng
(
|λ|
2

(2m+ n)

)
= |λ|n

Bλ∑
m=Aλ

dm,

where Aλ is the smallest integer with a ≤ |λ|(2Aλ+n)/2 and Bλ is the largest integer
with b ≥ |λ|(2Bλ + n)/2. Now

Bλ∑
m=Aλ

dm =

Bλ∑
m=0

(
m+ n− 1

n− 1

)
−

Aλ∑
m=0

(
m+ n− 1

n− 1

)
=

(
Bλ + n

n

)
−
(
Aλ + n

n

)
and thus

lim
λ→0
|λ|n

Bλ∑
m=Aλ

dm = lim
λ→0

[
|λ|
n!

n

(Bλ + 1) · · · (Bλ + n)− |λ|
n!

n

(Aλ + 1) · · · (Aλ + n)

]

=
1

n!
(bn − an) =

1

(n− 1)!

∫ b

a

sn−1ds.

=
1

(n− 1)!

∫ ∞
0

g(s)sn−1ds

as desired.

Lemma 7.5. limλ→0

∑
α∈Λ dα|λ|nF (α, λ) =

(
1

2π

)n ∫
V
F◦(w)dw.

Proof. Lemma 7.3 ensures that the function UF is rapidly decreasing on ∆(U(n), Hn).
Thus, by Lemma 7.4 we have

lim
λ→0

∞∑
m=0

dm|λ|n UF (m,λ) =

(
1

2π

)n ∫
V

(UF )◦(w)dw.
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But ∑
α∈Λ

dα|λ|nF (α, λ) =
∞∑
m=0

dm|λ|n
1

dm

∑
|α|=m

dαF (α, λ)

=
∞∑
m=0

dm|λ|n UF (m,λ),

and ∫
V

F◦(w)dw =

∫
V

∫
U(n)

F◦(kw)dkdw =

∫
V

(UF )◦(w)dw.

Proof of Proposition 7.1. Lemma 7.5 shows that Proposition 7.1 holds for the case
where z = 0. The proposition now follows by replacing F (α, λ) by F (α, λ)φ◦α,λ(z).
For z ∈ V fixed, we see that F (α, λ)φ◦α,λ(z) is a rapidly decreasing function on
∆1(K,Hn) with continuous extension across ∆2(K,Hn) given by ηw 7→ F◦(w)ηw(z).
Note that w 7→ F◦(w)ηw(z) belongs to SK(V ) for fixed z. Thus Lemma 7.5 yields
limλ→0

∑
α∈Λ dα|λ|nF (α, λ)φ◦α,λ(z) =

(
1

2π

)n ∫
V
F◦(w)ηw(z)dw.
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