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Abstract. Let K be a compact Lie group acting by automorphisms on a nilpotent
Lie group N . One calls (K,N) a Gelfand pair when the integrable K-invariant
functions on N form a commutative algebra under convolution. We prove that in
this case the coadjoint orbits for G := K nN which meet the annihilator k⊥ of the
Lie algebra k of K do so in single K-orbits. This generalizes a result of the authors
and R. Lipsman concerning Gelfand pairs associated with Heisenberg groups.
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1. Introduction

Suppose that N is a connected and simply connected nilpotent Lie group and that
K is a compact, not necessarily connected Lie group acting smoothly by automor-
phisms on N . We say that (K,N) is a Gelfand pair when the algebra L1

K(N) of
K-invariant integrable functions on N is commutative under convolution. Equiva-
lently, the algebra L1(G//K) of integrable K-bi-invariant functions on the semidirect
product

G := K nN

of K with N is abelian. It is shown in [3] that if (K,N) is a Gelfand pair then N
must be a 2-step nilpotent group (or abelian). Thus, we assume throughout this
paper that N is 2-step nilpotent.
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A fundamental result due to I. M. Gelfand [9] implies that (K,N) is a Gelfand
pair if and only if each irreducible unitary representation π of G has at most a one
dimensional space of K-fixed vectors, so that the multiplicity of the trivial represen-
tation 1K of K in π|K is 0 or 1. We will outline a proof of the converse. Suppose

that f and g are K-bi-invariant test functions on G and let π ∈ Ĝ be an irreducible
unitary representation of G in some Hilbert space Hπ. One shows that the operators
π(f), π(g) on Hπ commute with projection onto the subspace HK

π of K-fixed vectors.
As dim(HK

π ) ≤ 1, we see that π(f)π(g) = π(g)π(f) and conclude that f ∗ g = g ∗ f
by applying the Plancherel Theorem. Note that this reasoning shows that for the
converse, it suffices that the space of K-fixed vectors have dimension at most 1 for

all π in a set with full Plancherel measure in the unitary dual Ĝ of G. An application
of Ahn reciprocity [18, pp 56-58] shows that (K,N) is a Gelfand pair if and only if
the quasi-regular representation IndGK(1K) of G on L2(G/K) ∼= L2(N) is multiplicity
free. This observation will, however, play no explicit role in the current work.

The unitary representations for certain classes of Lie groups may be obtained via
the orbit method (also called geometric quantization). This method establishes a cor-
respondence between irreducible unitary representations and integral coadjoint orbits
in the dual of the Lie algebra. In particular, the method describes the unitary duals
for compact groups [10, 12], nilpotent groups (where it reduces to the usual Kirillov
correspondence [17]) and for semidirect products of nilpotent groups by compact
groups [19].

Geometric multiplicity formulae express multiplicities for group representations in

terms of the orbit method. Given a subgroup K of a Lie group G, let π◦ ∈ K̂ and

π ∈ Ĝ correspond to coadjoint orbits O◦ ⊂ k∗ and O ⊂ g∗ respectively and let
p : g∗ → k∗ be the restriction map. One expects that the multiplicity of π◦ in π|H is
given by #[(O∩p−1(O◦))/K]. Such formulae appear in direct integral decompositions
for nilpotent groups [6, 7, 8, 20], completely solvable and exponentially solvable groups
[20, 21]. It is also known to hold “asymptotically” for representations of compact
groups [10, 12] and to some extent for Riemannian symmetric spaces [20].

Consider the group G = K n N with Lie algebra g = k n n and restriction map

p : g∗ → k∗. The coadjoint orbit corresponding to 1K ∈ K̂ is {0} and p−1({0}) =
k⊥ ∼= n∗. One expects the multiplicity of 1K in π|K to be the number of K-orbits
in the intersection O ∩ k⊥, where O ⊂ g∗ is the coadjoint orbit for π. Denote the
coadjoint orbit in g∗ through ξ ∈ g∗ by OGξ . In view of the characterization of Gelfand
pairs via representation theory, the preceding discussion motivates our main result:

Theorem 1.1. If (K,N) is a Gelfand pair then the following condition must hold:

(OC) for every ξ ∈ k⊥, OGξ ∩ k⊥ is a single K-orbit.

Theorem 1.1 is proved below in Section 5. Our motivating discussion leads one to
conjecture that the converse for Theorem 1.1 should also be true. In Section 6, we
discuss a line of attack for proving the converse, and consider a particular example.
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Theorem 1.1 and its converse are known to hold when N is a Heisenberg group Hn

and K is a connected subgroup of the unitary group U(n). This result is proved in
[2] and one can find a slightly weaker result described in [1]. The function of the
current paper is thus to extend a portion of [2, 1] to a more general setting.

Our proof of Theorem 1.1 involves reducing the study of a pair (K,N) to that of a
family of pairs {(Kν , Hν) | ν ∈ n∗} where each Hν is a Heisenberg group (or abelian).
(K,N) is a Gelfand pair if and only if each (Kν , Hν) is a Gelfand pair. This idea,
which we call localization, is discussed in Section 2. Localization allows us to prove
Theorem 1.1 by appealing to the analogous result for Heisenberg groups. This is
essentially our result from [2] except that the Kν ’s need not be connected subgroups
of unitary groups. Thus, we first need to generalize the result from [2] to arbitrary
compact subgroups of Aut(Hn). This is done in Section 4 below after making a
careful study of Condition (OC) to obtain some needed properties in Section 3.

Localization shows that Gelfand pairs associated with Heisenberg groups play a
central role in the study of more general Gelfand pairs associated with nilpotent
groups. By building on work of V. Kac [14] one can obtain a complete classification
of Gelfand pairs associated with Heisenberg groups. (See [3] and [4].) In contrast, we
have no such classification of Gelfand pairs associated with more general nilpotent
Lie groups and our knowledge of such pairs is much less detailed. At present we know
of relatively few examples where N is not a product of Heisenberg groups and abelian
groups. These examples include cases where N is a free 2-step group [3] and certain
groups of type-H [15].

We wish to thank the referee for suggesting improvements to an earlier version of
this paper.

1.1. Notation. Throughout this paper, N will denote a connected and simply con-
nected two step nilpotent Lie group with Lie algebra n. K denotes a compact Lie
group with Lie algebra k that acts smoothly by automorphisms on N . We write k · n
for the action of k ∈ K on n ∈ N . Similarly, k · X and U · X denote actions of
k ∈ K and U ∈ k on X ∈ n. The contragredient actions of K and k on n∗ are
(k · ν)(X) := ν(k−1 · X) and (U · ν)(X) := −ν(U · X). G = K n N denotes the
semidirect product of K with N and g is the Lie algebra of G. Our convention for
the semi-direct product group law is

(k1, n1)(k2, n2) = (k1k2, n1(k1 · n2))

for (k1, n1), (k2, n2) ∈ G. k⊥ is the annihilator of k in g∗. ONν , OKµ and OGξ denote
coadjoint orbits through ν ∈ n∗, µ ∈ k∗ and ξ ∈ g∗ for the groups N , K and G.

2. Localization for Gelfand Pairs

We begin by recalling how Gelfand’s representation-theoretic criterion for Gelfand
pairs, [9], specializes to pairs of the form (K,N). For ν ∈ n∗, let πν denote the
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irreducible unitary representation of N associated with the coadjoint orbit ONν . For
k ∈ K, let

πkν (n) := π(k · n),

so that πkν is another irreducible unitary representation of N in the Hilbert space Hν

for πν . The stabilizer of πν is

Kν = {k ∈ K | πkν is unitarily equivalent to πν}(2.1)

= {k ∈ K | k · ν ∈ ONν }

Note that Kν depends only on ONν . (A notation such as KON

ν

or Kπν would be

more proper but seems cumbersome.) For each k ∈ Kν , one has a unitary operator,
Wν(k) : Hν → Hν , unique up to scalar multiples, that intertwines πν with πkν :

πkν (n) = Wν(k)πν(n)Wν(k)−1 for n ∈ N , k ∈ Kν

A priori, one obtains a projective unitary representation Wν of Kν in Hν . In this
setting one can, however, always choose scalars to ensure that Wν : Kν → U(Hν) is a

(non-projective) representation. We will prove this below in Lemma 2.3. For σ ∈ K̂ν ,
we obtain a representation ρσ,ν of Kν nN on Hσ⊗̂Hν defined as

ρσ,ν(k, n) := σ(k)⊗ πν(n)Wν(k)

and ρ̃σ,ν := IndKnNKνnN
(ρσ.ν) is irreducible. The “Mackey machine” guarantees that

all irreducible unitary representations of G = K n N are obtained in this way. An
application of Frobenius reciprocity yields:

mult(1K , ρ̃σ,ν |K) = mult
(
1K , Ind

K
Kν (σ ⊗Wν)

)
= mult(1Kν , σ ⊗Wν)

= mult(σ,Wν).

Here, “mult(α, β)” denotes the multiplicity of α in β and σ is the conjugate repre-
sentation for σ. One has that (K,N) is a Gelfand pair if and only if mult(1K , ψ)

is 0 or 1 for each ψ ∈ Ĝ. Thus we have established the following result, due to G.
Carcanno, [5]. (See also [3].)

Theorem 2.1. Let N be a connected and simply connected two step nilpotent Lie
group and K be any compact subgroup of Aut(N). (K,N) is a Gelfand pair if and
only if Wν is a multiplicity free representation of Kν for each ν ∈ n∗.

Continuing this discussion, we let z denote the center of n and zν := Ker(ν|z).

Since ONν is constant on z, zν depends only on ONν (equivalently πν). Nν will denote
the 2-step group with Lie algebra nν := n/zν . The action of Kν on n preserves zν
and hence one obtains an action of Kν on Nν . Indeed, if k ∈ Kν then k−1 · ν ∈ ONν ,
so that k−1 · ν = ν + ν[X,−] for some X ∈ n. Thus, if Z ∈ zν then ν(k · Z) =
(k−1 · ν)(Z) = ν(Z) + ν[X,Z] = 0. Hence k · Z ∈ zν for k ∈ Kν , Z ∈ zν .
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Fix a K-invariant inner product 〈·, ·〉 on n and write

n = w⊕ z = aν ⊕ bν ⊕ zν ⊕ z′ν ,(2.2)

where w denotes the 〈·, ·〉-orthogonal complement of z, z′ν is the orthogonal comple-
ment of zν in z, aν := {X ∈ w | ad(X)(w) ⊂ zν} = {X ∈ w | ν[X, n] = 0} and bν
is the orthogonal complement of aν in w. nν can be identified with the vector space
aν ⊕ hν where

hν := bν ⊕ z′ν .(2.3)

This becomes a Lie algebra isomorphism when we equip aν with a trivial Lie bracket
and hν with the bracket given by

[X, Y ]ν := qν [X,Y ](2.4)

for X, Y ∈ bν where qν : z → z′ν is orthogonal projection. Here aν is abelian and hν
is either abelian (hν = {0} or hν ∼= R) or is a Heisenberg Lie algebra. In the cases of
interest, hν will be a Heisenberg Lie algebra as the notation suggests.

The action of Kν on n preserves both zν and 〈·, ·〉 and hence also z′ν . Moreover, Kν

preserves aν and hence also bν . Indeed, for X ∈ aν , k ∈ Kν , one has

ν[k ·X,w] = (k−1 · ν)[X, k−1 ·w]

= (k−1 · ν)[X,w]

⊂ (k−1 · ν)(zν) = ν(k · zν) = ν(zν) = {0}.
Thus we obtain a diagonal action of Kν on the product group Aν × Hν with Lie
algebra aν ⊕ hν ∼= nν .

Lemma 2.2. Wν is multiplicity free if and only if (Kν , Hν) is a Gelfand pair.

Proof. If zν = z then ONν = {ν} and πν is a one-dimensional representation. Since
two unitary characters are equivalent if and only if they coincide, we see that Kν =
{k ∈ K | πkν = πν} and Wν is the trivial representation of Kν on Hν

∼= C. Thus, Wν

is multiplicity free when zν = z. We also have hν = {0} when zν = z, so (Kν , Hν) is
a Gelfand pair in this situation.

Next suppose that zν 6= z, so that z′ν
∼= z/zν is one dimensional. If bν = {0} then

hν = z′ν
∼= R is one dimensional abelian and (Kν , Hν) is a Gelfand pair. In this case,

ONν = {ν + ν[X,−] | X ∈ w} = {ν} and Wν is trivially multiplicity free as above.
Finally, suppose that zν 6= z and bν 6= {0}. In this case, hν is two-step with center

z′ν
∼= R and hence is a Heisenberg Lie algebra. Since ONν takes a constant non-zero

value on z′ν and the Kν-action preserves both z′ν and ONν , we conclude that Kν acts
trivially on z′ν . Indeed, if Z is a non-zero element in z′ν and k · Z = cZ, say, for
k ∈ Kν and c ∈ R then ν(Z) = ν(k · Z) = ν(cZ) = cν(Z) implies that c = 1. The
representation πν is trivial on Zν = exp(zν) and thus factors through Nν = N/Zν .
Identifying Nν with the product group Aν ×Hν , we can write

πν(a, n) = χ(a)π′ν(n)
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where χ : Aν → T is a unitary character and π′ν is an irreducible unitary representa-
tion of Hν on Hν . For k ∈ Kν , Wν(k) : Hν → Hν is a unitary operator intertwining
the representations π′ν and (π′ν)

k = (πkν )′ of Hν on Hν . As Kν acts trivially on z′ν
and z′ν is the center of hν , we see that Kν preserves all coadjoint orbits in h∗ν that
assume non-zero values on z′ν . π

′
ν corresponds to the orbit whose restriction to z′ν is

ν|z′ν(6= 0). Since bν is the orthocomplement on z′ν for a Kν-invariant inner product on
hν , there is a family of dilating automorphisms {Aλ | λ 6= 0} that commute with the
action of Kν and permute the orbits with non-zero restriction to z′ν . If we consider

the representations π` ∈ N̂ν that arise from the ` ∈ h∗ν that are nonzero on z′ν then
it is evident that πk`

∼= π` for all k. By examining the effect of the dilating automor-
phisms we see that the associated representation W` : Kν → U(Hπ`) can be realized
using precisely the operators Wν(k). That is, we may take W`(k) = Wν(k) for all k,

independent of the particular generic orbit considered. The remaining elements in Ĥν

are one dimensional representations and correspond to single point coadjoint orbits.
As discussed above, the intertwining representation for a unitary character is always
multiplicity free. Theorem 2.1 now shows that if Wν is multiplicity free then (Kν , Hν)
is a Gelfand pair. Conversely, if (Kν , Hν) is a Gelfand pair then W` : Kν → U(Hπ`)
is multiplicity free for every ` as above and hence Wν is also multiplicity free.

Lemma 2.3. Wν is a (non-projective) representation for all ν ∈ n.

Proof. The proof of Lemma 2.2 shows that the projective representation Wν : Kν →
U(Hν) is trivial in the cases where ONν = {ν}. When ONν 6= {ν}, Hν is a Heisenberg
group with Lie algebra hν = bν ⊕ z′ν . The group Kν acts unitarily on (bν , 〈·, ·〉) and
fixes z′ν . The proof of Lemma 2.2 shows that Wν is the intertwining representation for
a representation π′ν of Hν with non-trivial central character. We write 2n = dim(bν)
and identify Hν with the set Cn × R by using an orthonormal basis for bν . Kν can
then be regarded as a subgroup of U(n) acting on Cn × R as k · (z, t) = (kz, t). As
explained in [3], π′ν can be realized in a Fock spaceHν consisting of entire functions on
C
n that are square integrable with respect to a Gaussian weight. One has a unitary

representation W ′ of U(n) onHν given by W ′(k)f(z) = f(k−1z) for k ∈ U(n), f ∈ Hν

and w ∈ Cn. Equation 4.5 in [3] shows that

(π′ν)
k(z, t) = W ′(k)π′ν(z, t)W

′(k)−1

for all k ∈ U(n). Thus, W ′ intertwines π′ν with (π′ν)
k for all k ∈ U(n). We see that

Wν can be realized as the restriction of W ′ to a subgroup Kν of U(n). As W ′ is a
non-projective representation, so is Wν .

Theorem 2.1 together with Lemma 2.2 shows that (K,N) is a Gelfand pair if and
only if (Kν , Hν) is a Gelfand pair for each ν ∈ n∗. In fact, for the converse it suffices
that (Kν , Hν) be a Gelfand pair for any family of functionals ν ∈ n∗ that yield a

set of representations πν with full Plancherel measure in N̂ . Here Kν is given by 2.1
and Hν is the Lie group with Lie algebra given by 2.3 and 2.4. The pair (Kν , Hν)
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depends only on ONν . In the trivial cases where Hν = {0} or R, (Kν , Hν) is always
a Gelfand pair. In the cases of interest, Hν is a Heisenberg group. By “localizing”
at each coadjoint orbit ONν ⊂ n∗, we reduce the study of (K,N) to that of a family
of pairs (Kν , Hν) associated with Heisenberg groups. An alternative treatment of
localization that involves free 2-step groups can be found in [3]. A somewhat weaker
result appeared in [16].

Lemma 2.4 (Localization Lemma). If (K,N) is a Gelfand pair then (Kν , Hν) is a

Gelfand pair for all ν ∈ n∗. Conversely, if (Kν , Hν) is a Gelfand pair for a.e. πν ∈ N̂
then (K,N) is a Gelfand pair.

Proof. As explained above, we need only prove the converse. Let f, g ∈ L1
K(N) and

suppose that (Kν , Hν) is a Gelfand pair. Lemma 2.2 ensures that Wν is multiplicity
free. Since πν(f) and πν(g) are Wν(Kν)-invariant operators on Hν , they are simulta-
neously diagonalized by the decomposition of Hν into Wν(Kν)-irreducible subspaces.
Thus, πν(f ∗ g) = πν(f)πν(g) = πν(g)πν(f) = πν(g ∗ f). If (Kν , Hν) is a Gelfand

pair for a.e. πν ∈ N̂ then an application of the Plancherel Theorem shows that
f ∗ g = g ∗ f .

Remark 2.1. The interplay between “every” and “almost every” is an interesting
feature of the Localization Lemma. We see that if (Kν , Hν) is a Gelfand pair for a.e.
ν ∈ n∗ then in fact (Kν , Hν) is a Gelfand pair for every ν ∈ n∗. Equivalently, if Wν

is multiplicity free for a.e. ν ∈ n∗ then Wν is multiplicity free for every ν ∈ n∗.

We conclude this section with an application of Lemma 2.4. K◦ will denote the
identity component of K. In [2], it is shown that if N is a Heisenberg group then
(K,N) is a Gelfand pair if and only if (K◦, N) is a Gelfand pair. Localization allows
one to easily generalize this result to 2-step groups.

Proposition 2.5. (K,N) is a Gelfand pair if and only if (K◦, N) is a Gelfand pair.

Proof. Since L1
K(N) ⊂ L1

K◦(N), it’s clear that (K,N) is a Gelfand pair whenever
(K◦, N) is a Gelfand pair. Suppose that (K,N) is a Gelfand pair and ν ∈ n∗.
Lemma 2.4 ensures that (Kν , Hν) is a Gelfand pair and hence so is ((Kν)

◦, Hν) by
Proposition 2.2 in [2]. Since (Kν)

◦ ⊂ (K◦)ν , we have that ((K◦)ν , Hν) is a Gelfand
pair. As this holds for each ν ∈ n∗, Lemma 2.4 implies that (K◦, N) is a Gelfand
pair as desired.

3. More on Condition (OC)

Our goal here is to recast Condition (OC) algebraically. This is done below in
Lemma 3.2. We begin by computing the coadjoint orbits for G = K n N . The
exponential map will be used to identify N with its Lie algebra n. The BCH formula
shows that the group product and Lie bracket are related by

XY = X + Y +
1

2
[X, Y ]
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for X, Y ∈ n. The inverse for X is X−1 = −X. The derived action of K on n
coincides with the action of K on N under this identification. Elements in G will be
written in the form (k,X) where k ∈ K and X ∈ (n = N). The group law in G is
given by

(k1, X1)(k2, X2) = (k1k2, X1(k1 ·X2))

and one has (k,X)−1 = (k−1, k−1 · X−1) = (k−1,−k−1 · X). Elements of g = k n n
will be written as as (U,X) or as U +X where U ∈ k and X ∈ n. The Lie bracket in
g is given by

[(U1, X1), (U2, X2)] = ([U1, U2], [X1, X2] + U1 ·X2 − U2 ·X1)

where U ·X denotes the derived action of k on n. In particular, [U,X] = U ·X ∈ n.
For k ∈ K, U ∈ k and X, Y ∈ n one has

AdG(k)U = AdK(k)U,(3.1)

AdG(Y )X = AdN(Y )X = X + [Y,X],(3.2)

AdG(k)X = k ·X,(3.3)

AdG(Y )U = U − U · Y − 1

2
[Y, U · Y ].(3.4)

Equations 3.1 and 3.2 follow from the facts that K and N are subgroups of G and that
N is 2-step. Equation 3.3 holds since (k, 0)(e,X)(k, 0)−1 = (e, k · X). To establish
Equation 3.4, we use the fact that n is an ideal in g together with the fact that n in
2-step. Indeed

AdG(Y )U = eadG(Y )U = U + [Y, U ] +
1

2
[Y, [Y, U ]] = U − U · Y − 1

2
[Y, U · Y ].

Using these equations we now compute

AdG(k, Y )(U +X) = AdG((e, Y )(k, 0))(U +X) = AdG(Y )(AdG(k)(U +X))

= AdG(Y )(AdK(k)U + k ·X)

= AdG(Y )(AdK(k)U) + AdG(Y )(k ·X)

= AdK(k)(U)− (AdK(k)U) · Y − 1

2
[Y, (AdK(k)U) · Y ] + k ·X + [Y, k ·X].

Thus

(3.5) (AdG(k, Y )) (U,X) =(
AdK(k)(U), k ·X − (AdK(k)U) · Y + [Y, k ·X]− 1

2
[Y, (AdK(k)U) · Y ]

)
.

The coadjoint actions of N and n on n∗ are defined by

(Ad∗N(X)ν)(Y ) = ν(AdN(X−1)Y ),

(ad∗N(X)ν)(Y ) = ν(adN(−X)Y ) = −ν([X, Y ]).
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Since N is 2-step, our identification of N with n allows one to write

Ad∗N(X)ν = ν + ad∗N(X)ν = ν − ν([X,−]).(3.6)

One checks easily that the coadjoint actions are related to the action of K on N by
the following identities:

k · (ad∗N(X)ν) = ad∗N(k ·X)(k · ν)(3.7)

k · (Ad∗N(X)ν) = Ad∗N(k ·X)(k · ν)(3.8)

Write points ξ ∈ g∗ as ξ = (µ, ν), where µ ∈ k∗ and ν ∈ n∗. That is, ξ(U,X) =
µ(U) + ν(X). Equation 3.5 yields:

(µ, ν)(AdG(k, Y )(U,X)) = µ(AdK(k)U) + ν(k ·X)− ν((AdK(k)U) · Y )(3.9)

+ν([Y, k ·X])− 1

2
ν([Y, (AdK(k)U) · Y ])

= (Ad∗K(k−1)µ)(U) + (k−1 · ν)(X)− (Ad∗K(k−1)(Y × ν))(U)

−(k−1 · ad∗N(Y )ν)(X) +
1

2
Ad∗K(k−1)(Y × ad∗N(Y )ν)(U).

Here, Y × ν ∈ k∗ is defined for Y ∈ n and ν ∈ n∗ by

(Y × ν)(U) := ν(U · Y )(3.10)

for U ∈ k. The map × : n× n∗ → k∗ satisfies a fundamental equivariance property:

Ad∗K(k)(Y × ν) = (k · Y )× (k · ν).(3.11)

Using Equations 3.6, 3.7, 3.8 and 3.11, Equation 3.9 can be written as:

Ad∗G
(
(k, Y )−1

)
(µ, ν)

=

(
Ad∗K(k−1)µ− Ad∗K(k−1)(Y × ν) +

1

2
Ad∗K(k−1)(Y × ad∗N(Y )ν),

k−1 · ν − k−1 · ad∗N(Y )ν

)
=

(
Ad∗K(k−1)µ− (k−1 · Y )× (k−1 · ν) +

1

2
(k−1 · Y × ad∗N(k−1 · Y )(k−1 · ν)),

Ad∗N(k−1 · Y −1)(k−1 · ν)

)
.

Since (k, Y ) = ((k, Y )−1)−1 = (k−1, k−1 · Y −1)−1 = (k−1,−k−1 · Y )−1, this yields

Ad∗G(k, Y )(µ, ν) =

(
Ad∗K(k)µ+ Y × (k · ν) +

1

2
Y × ad∗N(Y )(k · ν), Ad∗N(Y )(k · ν)

)
= k ·

(
µ+ (k−1 · Y )× ν +

1

2
(k−1 · Y )× ad∗N(k−1 · Y )ν, Ad∗N(k−1 · Y )ν

)
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where k · (µ, ν) := (Ad∗K(k)µ, k · ν) = Ad∗G(k, 0)(µ, ν). By letting k and Y range over
K and n in this expression, one obtains the following description of the coadjoint
orbits for G.

Lemma 3.1.

OG(µ,ν) =

{
k ·
(
µ+X × ν +

1

2
X × ad∗N(X)ν, Ad∗N(X)ν

) ∣∣∣∣ k ∈ K,X ∈ n

}
.

We identify k⊥ = {ξ ∈ g∗ | ξ(k) = {0}} = {(0, ν) |ν ∈ n∗} with n∗. In view of
Lemma 3.1, we have

OG(µ,ν) ∩ k⊥ =

{
k · Ad∗N(X)ν | µ+X × ν +

1

2
X × ad∗N(X)ν = 0

}
.(3.12)

We see that OG(µ,ν) ∩ k⊥ is K-saturated and contained in K · ONν . The orbits OGξ
through points ξ ∈ k⊥ are precisely the orbits OG(0,ν) as ν ranges over n∗. Condition

(OC) states that OG(0,ν) ∩ k⊥ must equal K · (0, ν) for each ν ∈ n∗. Setting µ = 0 in
Equation 3.12 produces an algebraic reformulation of this condition.

Lemma 3.2. (K,N) satisfies Condition (OC) if and only if, for all ν ∈ n∗ and
X ∈ n:

If X × ν +
1

2
X × ad∗N(X)ν = 0, then Ad∗N(X)ν ∈ K · ν.

Condition (OC) has properties in common with the Gelfand pair condition. We
conclude this section by presenting three such properties. These are required for our
proof of Theorem 1.1.

Lemma 3.3. If K1 ⊂ K2 and (K1, N) satisfies condition (OC) then so does (K2, N).

Proof. This is clear from Lemma 3.2 since the ×-map is compatible with restriction.
That is, if ×1 : n × n∗ → k∗1 and ×2 : n × n∗ → k∗2 are the ×-maps for the actions of
K1 and K2 on N , then one has (X ×1 ν)(U) = (X ×2 ν)(U) for U ∈ k1.

The following result parallels Proposition 2.5.

Lemma 3.4. (K,N) satisfies Condition (OC) if and only if (K◦, N) satisfies Con-
dition (OC).

Proof. Lemma 3.3 shows that if (K◦, N) satisfies Condition (OC) then so does (K,N).
For the converse, let K◦, k1K

◦, . . . , knK
◦ be the connected components of K. Thus,

G◦ = K◦ n N and G = G◦ q k1G
◦ q · · · q knG◦. Note that k◦ = k and g◦ = g. Let

ν ∈ n∗ = k⊥ ⊂ g∗. We have

OGν = Ad∗(G)ν = Ad∗(G◦)ν ∪ Ad∗(G◦)(k1 · ν) ∪ · · · ∪ Ad∗(G◦)(kn · ν)

= Ad∗(G◦)ν q Ad∗(G◦)(ki1 · ν)q · · · q Ad∗(G◦)(kim · ν)

= OG◦ν qOG
◦

ki1 ·ν
q · · · q OG◦kim ·ν
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say. Similarly one has

K · ν = K◦ · ν ∪K◦ · (k1 · ν) ∪ · · · ∪K◦ · (kn · ν)

= K◦ · ν qK◦ · (kj1 · ν)q · · · qK◦ · (kj` · ν)

say. As (K,N) satisfies Condition (OC) we have that OGν ∩ k⊥ = K · ν. That is,(
OG◦ν ∩ k⊥

)
q · · · q

(
OG◦kim ·ν ∩ k⊥

)
= (K◦ · ν)q · · · q (K◦ · (kj` · ν)) .

The sets on each side of this equation are connected and disjoint and ν belongs to
both OG◦ν ∩ k⊥ and K◦ · ν. Thus we must have that OG◦ν ∩ k⊥ = K◦ · ν. This shows
that (K◦, N) satisfies Condition (OC).

Lemma 1.3 in [3] shows that if (K1, N) is a Gelfand pair and K2 is conjugate to
K1 in Aut(G) then (K2, N) is also a Gelfand pair. The analogous result concerning
Condition (OC) reads:

Lemma 3.5. Let K2 = φK1φ
−1 where K1 is a compact subgroup of Aut(N) and

φ ∈ Aut(N). Then (K1, N) satisfies Condition (OC) if and only if (K2, N) does.

Proof. Let Φ : K1 → K2 be the map given by Φ(k) := φ ◦ k ◦ φ−1 and let Φ′ : k1 → k2

be the derivative of Φ. For U ∈ k1, X ∈ n we have

Φ′(U) ·X =
d

dt

∣∣∣∣
t=0

(expK2(Φ′(tU)))(X)

=
d

dt

∣∣∣∣
t=0

(φ ◦ expK(tU) ◦ φ−1)(X)

= φ(U · (φ−1(X))).

Thus for X ∈ n, ν ∈ n∗, U ∈ k1 we have

(X × ν)(Φ′(U)) = ν(Φ′(U) ·X)

= ν(φ(U · φ−1(X)))

= (ν ◦ φ)(U · φ−1(X))

= (φ−1(X)× (ν ◦ φ))(U)

so that (X × ν) ◦ Φ′ = φ−1(X) × (ν ◦ φ) in k∗1. In addition, one checks that
(ad∗N(X)ν) ◦ φ = ad∗N(φ−1(X))(ν ◦ φ). This together with Equation 3.6 yields
(Ad∗N(X)ν) ◦ φ = Ad∗N(φ−1(X))(ν ◦ φ).

Now suppose that (K1, N) satisfies Condition (OC) and that
X × ν + 1

2
X × ad∗N(X)ν = 0 in k∗2. Thus also(

X × ν +
1

2
X × ad∗N(X)ν

)
◦Φ′ = φ−1(X)×(ν◦φ)+

1

2
φ−1(X)×ad∗N(φ−1(X))(ν◦φ) = 0
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in k∗1. Lemma 3.2 ensures that Ad∗N(φ−1(X))(ν ◦ φ) ∈ K · (ν ◦ φ). Since
Ad∗N(φ−1(X))(ν ◦ φ) = (Ad∗N(X)ν) ◦ φ, this shows that for some k1 ∈ K1:

Ad∗N(X)ν = (k1 · (ν ◦ φ)) ◦ φ−1.

But

(k1 · (ν ◦ φ) ◦ φ−1)(X) = ν((φ ◦ k−1
1 ◦ φ−1)(X))

= ν((φ ◦ k1 ◦ φ−1)−1(X))

= (k2 · ν)(X)

where k2 := Φ(k1) ∈ K2. Hence we have that Ad∗N(X)ν ∈ K2 · ν. In view of
Lemma 3.2, (K2, N) satisfies Condition (OC).

4. Heisenberg groups

The Heisenberg group of dimension 2n+ 1 can be written as

Hn := Cn × R
with product (z, t)(w, s) := (z + w, t + s− Im(z · w)/2). The group U(n) of n by n
unitary matrices acts by automorphisms on Hn via k · (z, t) := (kz, t). This yields
a maximal compact connected subgroup of Aut(Hn). The main result in [2] asserts
that if K is a closed connected subgroup of U(n) then (K,Hn) is a Gelfand pair if and
only if (K,Hn) satisfies Condition (OC). We now generalize this result to encompass
arbitrary compact Lie subgroups of Aut(Hn).

Theorem 4.1. Let K be a compact Lie subgroup of Aut(Hn). Then (K,Hn) is a
Gelfand pair if and only if (K,Hn) satisfies Condition (OC).

Proof. Since U(n) is a maximal compact connected subgroup in Aut(Hn), one can
find an automorphism φ of Hn with φK◦φ−1 ⊂ U(n). For this we refer the reader to
Theorem 3.1 in Chapter 15 of [13] and remark that Aut(Hn) ∼= Aut(hn) is a linear
group and hence has only a finite number of connected components. Proposition 2.5
together with Lemma 1.3 in [3] shows that (K,Hn) is a Gelfand pair if and only
if (φK◦φ−1, Hn) is a Gelfand pair. By Theorem 1.2 in [2], the latter condition is
equivalent to (φK◦φ−1, Hn) satisfying Condition (OC). Lemmas 3.4 and 3.5 show
that (φK◦φ−1, Hn) satisfies Condition (OC) if and only if (K,Hn) satisfies (OC).

5. Proof of Theorem 1.1

We will prove Theorem 1.1 via localization from Theorem 4.1. Let ν ∈ n∗ and form
the decomposition given by Equation 2.2. The projection map

pν : n→ nν = n/zν ∼= aν ⊕ hν

is a Kν-equivariant Lie algebra homomorphism. Since zν = Ker(ONν |z), there is a

coadjoint orbit in a∗ν × h∗ν that maps diffeomorphically to ONν under p∗ν . This has
the form {γ} × OHνν′ , where γ ∈ a∗ν , ν

′ ∈ h∗ν and p∗ν((γ, ν
′)) = ν. Since the action
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of Kν preserves {γ} × OHνν′ and the factors in the product (aν × hν)
∗ ∼= a∗ν × h∗ν , we

must have that Kν fixes γ. The following lemma contains the key step in our proof
of Theorem 1.1.

Lemma 5.1. Let pν(X) = (A,X ′) ∈ aν ⊕ hν for X ∈ n given. One has

Ad∗N(X)ν = p∗ν
(
γ,Ad∗Hν (X

′)ν ′
)

and(a) (
X × ν +

1

2
X × ad∗N(X)ν

)∣∣∣∣
kν

= X ′ × ν ′ + 1

2
X ′ × ad∗Hν (X

′)ν ′(b)

Proof. To establish (a), one computes

p∗ν(γ,Ad
∗
Hν (X

′)ν ′) = p∗ν(Ad
∗
Aν×Hν (A,X

′)(γ, ν ′))

= p∗ν(Ad
∗
Aν×Hν (pν(X))(γ, ν ′))

= Ad∗N(X)p∗ν(γ, ν
′)

= Ad∗N(X)ν.

To prove (b), we will show that X × ν agrees with X ′ × ν ′ on kν and that X ×
ad∗N(X)ν agrees with X ′ × adHν (X ′)ν ′ on kν . First note that for any α ∈ n∗ν we have

pν(X)× α = X × p∗ν(α)(5.1)

on kν . Indeed, for U ∈ kν one has (X × p∗ν(α))(U) = (p∗ν(α))(U ·X) = α(pν(U ·X)) =
α(U · pν(X)) = (pν(X)× α)(U). Thus we have

X × ν = X × p∗ν(γ, ν ′)
= pν(X)× (γ, ν ′)

= (A,X ′)× (γ, ν ′)

on kν . Since Kν fixes γ we have γ(U · A) = 0 for U ∈ kν and hence(
(A,X ′)× (γ, ν ′)

)
(U) = γ(U · A) + ν ′(U ·X ′) = ν ′(U ·X ′) = (X ′ × ν ′)(U).

This shows that X × ν = X ′ × ν ′ on kν . Similarly we compute

X × ad∗N(X)ν = X × ad∗N(X)p∗ν(γ, ν
′)

= X × p∗ν(ad∗Aν×Hν (pν(X))(γ, ν ′))

= pν(X)× ad∗Aν×Hν (pν(X))(γ, ν ′)

= (A,X ′)× ad∗Aν×Hν (A,X
′)(γ, ν ′)

on kν . But for U ∈ kν we have(
(A,X ′)× ad∗Aν×Hν (A,X

′)(γ, ν ′)
)
(U) = −(γ, ν ′)([(A,X ′), U · (A,X ′)])

= −(γ, ν ′)(0, [X ′, U ·X ′]ν)
= −ν ′([X ′, U ·X ′]ν)
= (X ′ × ad∗Hν (X

′)ν ′)(U)
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and thus X × ad∗N(X)ν = X ′ × ad∗Hν (X
′)ν ′ on kν .

We can now complete the proof of Theorem 1.1. Suppose that (K,N) is a Gelfand
pair and that ν ∈ n∗, X ∈ n satisfy X × ν + 1

2
X × ad∗N(X)ν = 0. If Hν is abelian

(hν ∼= R, or hν = {0}) then ONν = {ν} and we trivially have Ad∗N(X)ν = ν ∈ K · ν.
Otherwise, Hν is a Heisenberg group and (Kν , Hν) is a Gelfand pair by Lemma 2.4.
Hence (Kν , Hν) satisfies Condition (OC) by Theorem 4.1. By (b) in Lemma 5.1 we
have that X ′×ν ′+ 1

2
X ′×ad∗Hν (X

′)ν ′ = 0 on kν . We conclude that Ad∗Hν (X
′)ν ′ = k ·ν ′

for some k ∈ Kν by Lemma 3.2. But then (a) in Lemma 5.1 ensures that Ad∗N(X)ν =
k · ν also holds. Indeed, we have:

Ad∗N(X)ν = p∗ν(γ,Ad
∗
Hν (X

′)ν ′)

= p∗ν(γ, k · ν ′)
= p∗ν(k · (γ, ν ′))
= k · p∗ν(γ, ν ′).
= k · ν

In view of Lemma 3.2, this implies that (K,N) satisfies Condition (OC).

6. A converse for Theorem 1.1?

We conjecture that the converse for Theorem 1.1 is also true. That is, we expect
that if (K,N) satisfies Condition (OC) then (K,N) must be a Gelfand pair. Theo-
rem 4.1 provides strong supporting evidence by showing this to be true when N is a
Heisenberg group. One can attempt to use Theorem 4.1 in a proof of the converse
via localization as in Section 5. We outline such an argument below in order to show
where the difficulty lies in this approach. Our proof of Theorem 1.1 shows that for
fixed ν ∈ n∗, the condition in Lemma 3.2 holds for all X ∈ n whenever (Kν , Hν) is a
Gelfand pair. We expect that the converse also holds. In other words, we conjecture
that for ν ∈ n∗, OG(0,ν) ∩ k⊥ is a single K-orbit if and only if (Kν , Hν) is a Gelfand
pair.

Suppose that (K,N) is not a Gelfand pair. We would like to show that Condition
(OC) must fail for (K,N). The Localization Lemma 2.4 ensures that (Kν , Hν) is
not a Gelfand pair for some ν ∈ n∗. Here Hν is necessarily a Heisenberg group. As
in Section 5, let γ ∈ a∗ν , ν

′ ∈ h∗ν satisfy p∗ν((γ, ν
′)) = ν. In view of Theorem 4.1,

Condition (OC) fails for (Kν , Hν). As ν ′ is non-zero on the center z′ν of hν , one
can argue that for some X ′ ∈ hν , one has X ′ × ν ′ + 1

2
X ′ × ad∗Hν (X

′)ν ′ = 0 on kν
but Ad∗Hν (X

′)ν ′ 6∈ Kν · ν ′. Examples show that we need not necessarily have that
X ′ × ν + 1

2
X ′ × ad∗N(X ′)ν = 0 on all of k. However, we conjecture that

one can always find some X ∈ n, A ∈ aν with pν(X) = (A,X ′) and
X × ν + 1

2
X × ad∗N(X)ν = 0 on all of k.

If this is indeed the case, then Condition (OC) must fail for (K,N) since we also have
that Ad∗N(X)ν 6∈ K · ν. Indeed, if one had Ad∗N(X)ν = k · ν then k must belong to
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Kν and reasoning as in Section 5, one obtains that p∗ν(γ,Ad
∗
Hν

(X)ν ′) = p∗(γ, k · ν ′).
Since p∗ is injective, this would contradict Ad∗Hν (X

′)ν ′ 6∈ Kν · ν ′.

Example 6.1. Let N := C×H1 and K := U(1) = T act via k ·(z, w, t) := (kz, kw, t)
for z, w ∈ C and t ∈ R. n∗ has basis {α1, α2, β1, β2, λ} where α1(z, w, t) = Re(z),
α2(z, w, t) = Im(z), β1(z, w, t) = Re(w), β2(z, w, t) = Im(w), λ(z, w, t) = t. Let
ν = α1 + λ. Then ONν = ν + Span(β1, β2). Since k · ν(z, w, t) = Re(z/k) + t, we see
that k · ν ∈ ONν if and only if k = 1. Thus Kν = {1} and kν = {0}. We use the inner
product 〈(x+ iy, u+ iv, t), (x′+ iy′, u′+ iv′, t′)〉 = xx′+yy′+uu′+vv′+ tt′ to form the
decomposition 2.2. We obtain zν = Span((i, 0, 0), (1, 0,−1)), z′ν = Span((1, 0, 1)),
aν = {0}, bν = w = Span((0, 1, 0), (0, i, 0)). Hν is the 3-dimensional Heisenberg
group with Lie algebra hν = bν ⊕ z′ν = {(t, w, t) | w ∈ C, t ∈ R}. The Lie bracket
given by Equation 2.4 is [(t, w, t), (t′, w′, t′)]ν =

(
−1

2
Im(ww′), 0,−1

2
Im(ww′)

)
. The

map hν → h1 given by (t, w, t) 7→ (w/
√

2, t) is a Lie algebra isomorphism. Thus,
L1
Kν

(Hν) = L1
{1}(Hν) ∼= L1(H1) is non-abelian. It follows from Lemma 2.4 that

(K,N) is not a Gelfand pair. We remark that this example is also discussed in [16].
We’ll show that Condition (OC) fails for (K,N). In fact, for ν = α1 + λ the

intersection OG(0,ν) ∩ k⊥ contains more than one K-orbit. This is consistent with the
conjectures discussed in this section. A computation shows that for X = (z, w, t) ∈ n
and iθ ∈ k = iR, one has(

X × ν +
1

2
X × ad∗N(X)ν

)
(iθ) = −

(
Im(z) +

1

2
|w|2

)
θ.

Thus, for X := (−i/2, 1, 0) we have X × ν + 1
2
X × ad∗N(X)ν = 0. Moreover, one

computes Ad∗N(X)ν = ν − β2, so that (Ad∗N(X)ν)(0, i, 0) = −1. On the other hand,
(k · ν)(0, i, 0) = 0 for all k ∈ K, and hence Ad∗N(X)ν 6∈ K · ν.

In this example, we have X = X ′ + Z where X ′ = (0, 1, 0) ∈ hν and Z =
(−i/2, 0, 0) ∈ zν . We have Ad∗Hν (X

′)ν ′ 6∈ {ν ′} = Kν ·ν ′, but (trivially) X ′×ν ′+ 1
2
X ′×

ad∗Hν (X
′)ν ′ = 0 on kν . On the other hand, one can verify that there is no choice of

X ′ ∈ hν which satisfies Ad∗Hν (X
′)ν ′ 6∈ Kν · ν ′ and X ′ × ν + 1

2
X ′ × ad∗N(X ′)ν = 0 on

all of k.
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