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0( n )-Spherical Functions on Heisenberg Groups 

CHAL BENSON, JOE JENKINS AND GAIL RATCLIFF 

ABSTRACT. In a previous paper the authors developed a general calculus 
for determining the bounded K-spherical functions on the Heisenberg group 
Hn when the action of K C U(n) yields a Gelfand pair. When K = 
U(n), our methods are related to classical results concerning the generalized 
Laguerre polynomials and the resulting spherical functions are well known. 
In this paper, we apply our theory to the action of K = SO(n, R) x Ton 
Hn for n 2: 3. The (generic) bounded K-spherical functions are completely 
determined by a family of orthogonal polynomials in two variables ( 'Y1, 'Y2). 
These are obtained by suitably ordering the monomials 'Yf'Y~ and applying 
the Gram-Schmidt algorithm using a certain measure. 

§1 Introduction. 
It is well known that the action of the unitary group U(n) on the (2n +I)-

dimensional Heisenberg group Hn yields a Gelfand pair. That is, the convolution 
algebra Lh(n)(Hn) of U(n)-invariant £ 1-functions on Hn is commutative. It is 
also the case that the actions of many compact subgroups K C U(n) yield 
Gelfand pairs (K, Hn)· In fact, (K, Hn) is a Gelfand pair if and only if the 
action of K on the holomorphic polynomials P(V) where V =en is multiplicity 
free. (See Theorem 3.3 below.) This fact together with results of V. Kac [K] 
yields a classification of the Gelfand pairs (K, Hn) where K is connected and 
acts irreducibly on V [BJRl]. 

In [BJR2] the authors developed a general calculus to determine the bounded 
K-spherical functions for a Gelfand pair (K, Hn)· These can be described in 
terms of the representation theory of both Hn and K and fall into two classes 
which we call type 1 and type 2. The type 1 K-spherical functions are generic and 
are associated with the infinite dimensional irreducible unitary representations 
of Hn. Type 2 K-spherical functions arise from the characters on Hn. These are 
non-generic and reflect the abelian side of analysis on Hn. 

1991 Mathematics Subject Classification. Primary 22E30, 43A55. 
All authors were supported in part by the National Science Foundation. 

181 

© 1993 American Mathematical Society 
0271-4132/93 $1.00 + $.25 per page 

http://dx.doi.org/10.1090/conm/145/1216189

Licensed to East Carolina Univ.  Prepared on Sun Aug 15 13:47:31 EDT 2021for download from IP 150.216.132.43.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



182 CHAL BENSON, JOE JENKINS AND GAIL RATCLIFF 

We denote the K-invariant polynomials on the underlying real vector space VR 
of V by KP(VR)· The type 1 K-spherical functions are completely determined 
by a set of polynomials q0 E KP(VR)· (See Equations 3.8 and 3.9 below.) The 
multiplicity free decomposition P(V) = LoEA P0 of P(V) into K-irreducible 
components yields a canonical basis {Po : a E A} for Kp(VR)· (See Equation 
3.10 below.) Determining the p0 's is a problem in classical invariant theory. The 
Po's in turn determine the q0 's. In [BJR2], we describe two methods: 

(1) {q0 } is obtained from {Po} via an orthogonalization procedure using the 
EJ_2 

measure e- 2 dzdz. (See Theorem 3.11 below.) 
EJ_2 EJ_2 

(2) Mp.,(e- 2 ) = dim(P0 )q0 (z)e- 2 where Mp, is a "magic" constant 
coefficient differential operator obtained in a simple way from p0 . (See 
Theorem 3.13 below.) 

Results of Howe and Umeda [HU] imply that 

where {'Yl, ... ,')'d} C {Po: a E A} is a set of fundamental invariants. The 
polynomials Po and q0 can be viewed as polynomial functions on the image 
r C (R+)d of 1' = (1'1 , ... ,/'d). The two computational procedures, (1) and 
(2) above, can be carried out on the value space r to determine "reduced" 
K-spherical functions. These solve eigenvalue problems for reduced differential 
operators L~, ... , L~ obtained from ')'1 , ... , I'd via symmetrization. 

As far as we know, the only well understood example is K = U ( n). Here 
there is just one fundamental invariant, 1' = lzl 2 /2, and r = R+. The polyno-
mials { qm : m = 0, 1, 2, ... } are the generalized Laguerre polynomials qm ( 1') = 
L~- 1 )(1') of order n- 1 and degree m. In this case, (1) above reduces to the 
usual description of the Laguerre polynomials as the solution to an orthogonal-
ization problem. Procedure (2) above is equivalent to the classical Rodrigues' 
formula for Laguerre polynomials. 

The new results in this paper concern the type 1 spherical functions for the 
action of K = BO(n, R) x T where n ~ 3. This is one of the groups on Kac's 
list and hence (K, Hn) is a Gelfand pair. The decomposition of P(V) into K-
irreducibles involves the classical theory of spherical harmonics. We show that 
there are two fundamental invariants (1'1 , ')'2 ) and present a recurrence relation 
to determine the p0 's as polynomials in ')'1 and ')'2 . (See Theorem 5.12 below.) 
We derive a simple explicit formula for the measure e- 41 2 dzdz on r. (See 
Theorem 5.23 below.) These results yield the type 1 K-spherical functions via 
an orthogonalization procedure (1). There is however a further simplification. 
We show that (by carefully ordering some indices) one can replace the Po's by the 
monomials 1'h~ when performing orthogonalization. (See Theorem 5.36 below.) 
This yields a fairly pleasing and tractable description of the type 1 K-spherical 
functions. Unfortunately, the formulae for the magic operators Mp, and for the 
reduced operators L~, L; do not seem illuminating here. 
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O(n)-SPHERICAL FUNCTIONS ON HEISENBERG GROUPS 183 

Section 2 presents preliminary material on the Heisenberg group and its rep-
resentations. Section 3 summarizes the main results in [BJR2] and these are 
applied to the example K = U(n) in Section 4. Section 5 contains a detailed 
analysis for the example K = SO(R,n) xT. 

§2 The Heisenberg group and its representations. 
Let V denote en with its usual Hermitian inner product (z, z') = z · z'. The 

R-valued form w(z,z') = -Im(z,z') is a symplectic structure on V. We define 
the Heisenberg group Hn, of dimension 2n + 1, as Hn := V x R with product 

{2.1) (z, t)(z', t') = (z + z', t + t' + ~w(z, z')). 

The unitary group U(n), of automorphisms of (V, (·, ·)), acts on Hn by 

{2.2) k · (z, t) = (kz, t). 

This yields a maximal compact connected group of automorphisms of Aut(Hn) 
again denoted by U ( n). 

Fock space F consists of entire functions f : V -+ C which are square inte-
grable with respect to ( 2 ~)ne-1¥ 2 dzdz. F has a Hilbert space structure given 
by 

(2.3) (!,g):= ( 2~) n i f(z)g(z)e-1¥ 2 dzdz. 

The holomorphic polynomials P(V) = C[z1. ... , Zn] are dense in F and the 
monomials za := z1 a 1 ••• Zn an are pair-wise orthogonal with 

(2.4) 

where as usual lal .- O!t + · · · + O!n and a! := at! ... an!. The restriction of 
{-, ·) to Pm(V), the homogeneous polynomials of degree m, can be written as 

{2.5) {p, q) = 2mp(D)q, 

where p(D) := p( 8 ~ 1 , ••• , 8 ~n ). 
The infinite dimensional irreducible unitary representations 1r~ of Hn are pa-

rameterized by non-zero real numbers A and can be realized on F. One has 

(2.6) 1r~ (z, t) = 1r( JjXfz, At) 

where 1r 1r1 is given by the formula 

{2.7) 't ~ .1!12 (1r(z, t)f)(w) = e•- 2 - 4 f(w + z). 

Each point w E V yields a one-dimensional unitary representation 

(2.8) Xw(z, t) = eiRe(w,z}. 

The representations 7rA for A E R* together with Xw for wE V exhaust~-
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184 CHAL BENSON, JOE JENKINS AND GAIL RATCLIFF 

§3 Gelfand pairs and spherical functions. 
This section provides a summary of the main results in [BJR2). We refer the 

reader to [BJR2) for proofs and further details. 
Let K be a compact subgroup of U(n). We denote by C'j((Hn) and Lk-(Hn) 

the spaces of smooth (respectively £ 1-) functions on Hn that are K-invariant. 
Such functions satisfy f(kz, t) = f(z, t) for all k E K. DK(Hn) is the set of 
differential operators on Hn invariant under both the left action of Hn and the 
action of K. 

DEFINITION 3.1. A function¢> E C'j((Hn) is said to be K-spherical if¢> is 
an eigenfunction for each operator DE DK(Hn) and ¢>(0, 0) = 1. 

We can describe the bounded K-spherical functions on Hn when (K, Hn) is a 
Gelfand pair. 

DEFINITION 3.2. (K, Hn) is a Gelfand pair if Lk-(Hn) is a commutative al-
gebra under convolution. 

The following result provides an equivalent representation-theoretic condition 
[BJRl), [C). 

THEOREM 3.3. (K, Hn) is a Gelfand pair if and only if the action of K on 
P(V) (given by (k · p)(z) = p(k- 1z)) is multiplicity free. 

Suppose below that (K, Hn) is a Gelfand pair and let 

(3.4) P(V) = L Pa 
aEA 

be the multiplicity free decomposition of P(V) into K-irreducible components. 
Note that since each Pm(V) is K-invariant, Pa is a space of homogeneous 
polynomials. The bounded K -spherical functions are parameterized by the set 
M = (R* x A) ll(V/ K). The K-spherical function ¢>.,a for(>., o:) E R* x A can 
be written as 

(3.5) ¢>.,a= L (rr>.(kz, t)v, v) dk 

for any unit vector v EPa C :F, and also as 

1 dim(Pa) 

¢>.,a = dim(Pa) L (rr>.(kz, t)vi, vi) 
i=l 

(3.6) 

where {vi} is any orthonormal basis for Pa. The bounded K-spherical function 
for Kw E V/K is 

(3.7) T/w(z, t) = L Xw(kz, t)dk. 

We call ¢>.,a and T/w(z, t) K-spherical functions of types 1 and 2 respectively. 
The type 2 K-spherical functions do not depend on the central variable t. 

These factor through the abelian group Hn/R ~ V and reflect the abelian 
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O(n)-SPHERICAL FUNCTIONS ON HEISENBERG GROUPS 185 

component of analysis on Hn. The type 2 K-spherical functions occupy a set of ---measure 0 in the Gelfand space L}((Hn)· The type 1 K-spherical functions are 
our main concern here. Using Formula 2.6 one shows that 

(3.8) ( ) { ¢a(v'fXI, jAjt), for A< 0 
c/J>..a z,t = 

' ¢a( .J>.z, At), for A > 0. 

where ¢a := ¢1,a. Moreover, using Formulas 2.3 and 2.7 one can show that ¢a 
has the general form 

(3.9) 

where qa(z) is a polynomial function in variables (z, z). For Pa C Pm(V), the 
degree of qa is 2m. 

Let Kp(VR) denote the K-invariant polynomials on the underlying real vector 
space VR for V. In terms of coordinates one can write 

Note that qa E Kp(VR)· It is not difficult to describe a basis for Kp(VR) using 
decomposition 3.4. Let 

(3.10) 
dim(Pa) 

Pa := L Vj(z)vj(z) 
j=l 

where {vj} is any orthonormal basis for Pa. Note that Pa takes values in R+ = 
[0, oo). In [BJR2], we prove that {Per: a E A} is a vector space basis for Kp(VR)· 
It turns out that the qa 's can be obtained from the Pa 's by orthogonalization. In 

( l)deg(Pa) 
particular, the homogeneous component of highest degree in qa is ~im(Pa) Pa. 

THEOREM 3.11 (0RTHOGONALIZATION PROCEDURE). Order A in any way 
that ensures a< /3 ===? deg(pa):::; deg(p{3)· The sequence {qa} is obtained from 
{Per} by performing Gram-Schmidt orthogonalization with respect to the measure 
e-1¥ 2 dzdz and normalizing so that qa(O) = 1. Equivalently, one can perform 
the orthogonalization procedure using the partial order defined by a < /3 {:::::::} 
deg(pa) < deg(p{3)· 

There is an alternative procedure that can be used to obtain the qa 's from the 
Pa 's. For p E P(VR) we define the associated magic operator Mp on coo (VR) 
by 

(3.12) 

([BJR2] also contains a coordinate-free description of Mp.) One has 
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186 CHAL BENSON, JOE JENKINS AND GAIL RATCLIFF 

THEOREM 3.13 (RODRIGUES' FORMULA). 

Theorem 3.3 together with results of Howe and Umeda [HU] show that 
KP(VR) is a polynomial ring: 

(3.14) 

where {'Y1,1'2, ... ,-yd} C {Pa: a E A} is an (essentially canonical) set of gen-
erators which we will call fundamental invariants. The value space r C (R+)d 
is the image of -y := 1'1 x 1'2 x · · · x "Yd· We can express any p E Kp(VR) as a 
polynomial function on r in the variables (1'1, ... , "Yd)· Note that when K acts 
irreducibly on V, P1 (V) is one of the K -irreducible components in decomposi-
tion 3.4. Formula 2.4 shows this has orthonormal basis {zl/J2, ... , zn/J2} and 
Formula 3.10 yields the fundamental invariant 

(3.15) "Yl := 1:.12 
2 

The measure e -1¥ 2 dzdz and the magic operators Mp, are K- invariant and 
hence descend to the value space r. Thus, Theorems 3.11 and 3.13 can be 
reformulated on r. We will illustrate this procedure in the examples presented 
in the remaining sections. When K acts irreducibly on V, the factor e-1¥ 2 

appearing in Theorems 3.11 and 3.13 can be written as e-·n on the value space. 
Using the symplectic structure w on VR to identify VR with VR, the sym-

metrization map [He] yields a K-equivariant linear map 

(3.16) 

Let 

(3.17) 

DK(Hn) is generated by {LI. ... ,Ld, gt}. Writing cPa(z,t) = eit'lj;a(z) where 
7f;a(z) = e- 1iF Qa(z), we see that 7f;a is an eigenfunction for the reduced opera-
tors L~, ... , L~ obtained by replacing each occurrence of gt in Lj by A. By 
K-invariance, each Lj descends tor and {7f;a("Y) :a E A} are the bounded si-
multaneous eigenfunctions 'lj; for these differential operators with 'lj;(O) = 1. The 
associated eigenvalues can be computed by the recipe 

(3.18) 
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O(n)-SPHERICAL FUNCTIONS ON HEISENBERG GROUPS 187 

§4 U(n)-spherical functions. 
It is well known that (U(n), Hn) is a Gelfand pair, and the associated spherical 

functions have been obtained independently by many authors. (See [Fa], [HR], 
[Ko], [St], [Str].) We present these results here as a relatively straight-forward 
application of the general theory presented in Section 3. The reader may wish 
to consult [BJR2] for further details. 

The homogeneous polynomials Pm(V) of degree m on V are irreducible U(n)-
modules. Thus decomposition 3.4 forK= U(n) is just 

00 

(4.1) P(V) = L Pm(V). 
m=O 

This shows immediately that (U(n), Hn) is indeed a Gelfand pair. In view of 
Formula 2.4, {za/v'2ma!: lal = m} is an orthonormal basis for Pm(V) and the 
associated invariant Pm E U(n)P(VR) is given by 

(4.2) (z) = 2._ "" lzl2a = _1_1zl2m = _.!.._ (1:12)m 
Pm 2m L..t a! m!2m m! 2 

lal=m 

Setting 'Y := -y1 = J¥ 2 as in Formula 3.15, we see that U(n)p(VR) = C[-y]. That 
is, there is just one fundamental invariant here and the value space is r = R +. 
Moreover, 

(4.3) 
'Ym 

Pm=-m! 

is the formula for Pm as a polynomial function on r. 
Suppose that p('Y) is any polynomial on r. Using polar coordinates on V we 

compute 

(4.4) 

This shows that the measure e-1¥2 dzdz on VR descends to the measure 

(4.5) 

on r= R+. 
Since spherical functions are normalized to have value 1 at 0, we can drop 

the constants in Formulae 4.3 and 4.5 to obtain the following immediately from 
Theorem 3.11. 
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188 CHAL BENSON, JOE JENKINS AND GAIL RATCLIFF 

LEMMA 4.6. The polynomials qm('y) on r = R+ are obtained by Gram-
Schmidt orthogonalization of the sequence { 'Ym : m ;::: 0} with respect to the 
measure e--y'Yn-1d'Y and normalizing so that qm(O) = 1. 

The orthogonalization problem posed in Lemma 4.6 is classical and yields the 
generalized Laguerre polynomials L~- 1 ) ('Y) of order n -1 (suitably normalized). 
These can be written explicitly as 

(4.7) L(n-1)(-y) = (n- 1)! ~ (~) . ( -'Y)i . 
m ~ J (J + n- 1)! 

]=0 

We have now proved the following. 

THEOREM 4.8. The bounded U(n)-spherical functions of type 1 on Hn are 
determined by the polynomials qm('y) = L~- 1 )(-y) on the value spacer = R+. 
Explicitly, one has for A E R+ and m = 0, 1, ... 

(4.9) 

Alternatively, one can prove Theorem 4.8 by using Rodrigues' Formula. The 
magic operator for Pm is 

(4.10) 

where the second equality requires an application of the chain rule. Since 
dim(Pm(V)) = (m+~- 1 ), Theorem 3.13 yields the identity 

(4.11) 

for the polynomials qm ('y) on r. One can prove by induction on m that Formula 
4.11 is equivalent to 

( 4.12) 

which is the classical Rodrigues' formula for the Laguerre polynomials. 
25.(-y) is the usual Heisenberg sublaplacian. The associated reduced operator 

is 

( 4.13) 
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O(n)-SPHERICAL FUNCTIONS ON HEISENBERG GROUPS 189 

It can be shown using Formula 3.18 that '1/Jmb) = qm(/)e-f is an eigenfunction 
for L with eigenvalue -(2m+ n). We obtain 

(4.14) 

which is the standard differential equation for the generalized Laguerre polyno-
mial of order n - 1 and degree m. 

We have shown that the bounded U ( n )-spherical functions of type 1 are deter-
mined by the solutions to an eigenvalue problem on r = R +. This can be solved 
using an orthogonalization procedure with respect to an explicit measure on r 
or by using Rodrigues' formula. For completeness, we note that the bounded 
U(n)-spherical functions of type 2 are given by 

(4.15) 
2n- 1(n- 1)! 

TJr(z, t) = (Tizl)n- 1 Jn-1(Tizi) 

for each T > 0. 

§5 (SO(n, R) x T)-spherical functions. 
We now consider the action of K = SO(n, R) X Ton v =en and Hn. Here 

SO(n, R) is the subgroup of U(n) given by the real matrices with determinant 
one. The circle T acts on V by scalar multiplication. When n is even, the 
representation of K on V is not faithful and has kernel Z2 = {(I, 1), (-I, -1)}. 
We assume throughout that n :::: 3. In this case, K acts irreducibly on V. 
(For n = 2, the action is equivalent to the usual reducible action of T x T 
on C EB C = C 2 .) (K, Hn) is a Gelfand pair since K appears on Kac's list of 
irreducible multiplicity free representations [BJRl]. This fact will be verified 
directly below by exhibiting the K-decomposition of P(V). First however we 
will describe the K-orbits in V. 

Consider a point z = (z1, ... , zn) f. 0 in V and write z = u + iv where 
u = Re(z), v = Im(z). For A E SO(n, R), one has Az =Au+ iAv. This shows 
that the SO(n, R)-action preserves arg(z1), ... , arg(zn)· On the other hand, T 
acts by phase shifts in these arguments. Since the actions of SO(n, R) and T 
commute, we conclude that 

(5.1) K · z ~ (SO(n, R) · z) x T. 

Identify z with the point (u, v) ERn xRn. The corresponding action of SO(n, R) 
on Rn x Rn is diagonal. The orbit SO(n,R) · (u,v) is diffeomorphic to the 
sphere sn- 1 when one of u, v is a (real) scalar multiple of the other. Otherwise, 
(u, v) belongs to the Stiefel manifold V~, 2 of 2-frames in Rn. The action of 
SO(n,R) preserves V~, 2 . The orbit through (ebe2), where {ei} is the standard 
basis for Rn, is Vn, 2 , the compact Stiefel manifold of orthonormal 2-frames in 
Rn. Translation of component v to the point on sn- 1 given by component u of 
an orthonormal frame ( u, v) yields a diffeomorphism between Vn, 2 and the unit 
tangent bundle T1(sn-1 ) of sn-1 [Ste]. Consider the map 

(5.2) G : V~, 2 --+ Vn,2 
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190 CHAL BENSON, JOE JENKINS AND GAIL RATCLIFF 

given by the Gram-Schmidt algorithm. G is SO(n, R)-equivariant since SO(n, R) 
preserves the real inner product on R n. It is not hard to verify that the restric-
tion of G to any orbit SO( n, R) · ( u, v) is one-to-one and onto. In fact, 

(5.3) SO(n,R)·(u,v) = {(u',v') E V~, 2 : llu'll = llull,llv'll = llvll,u'·v' = u·v} 

These remarks prove the following. 

THEOREM 5.4. The topological structure of the K -orbits in V is given by: 

(1) K · 0 = {0}. 
(2) K · z ~ sn-l x T for {Re(z), Im(z)} linearly dependent in Rn. 
(3) K · z ~ Vn,2 x T for {Re(z),Im(z)} linearly independent. 

The generic orbits are given by case (3) in Theorem 5.4. For (u,v) = (e1,e2 ), 

one has the isotropy group 

K . _ { SO(n-2), 
e1 +•e2 - Z2 · SO(n- 2), (5.5) 

for n odd 

for n even. 

The generic orbit codimension is thus 

( n(n-1) (n-2)(n-3)) 
dim(V)-(dim(K)-dim(Ke 1 +ieJ) = 2n- 2 + 1- 2 = 2. 

This suggests that the action of K should have two fundamental invariants. 
The decomposition of P(V) into K-irreducible components is based on the 

classical theory of spherical harmonics. (See for example [Fa), [SW] or [Ho].) 
Let 

(5.6) c: := zi + · · · + z; and 

The harmonic polynomials are 7-l := Ker(~: P(V)----> P(V)) and we define 

(5.7) 7-lm := 7-l n Pm(V). 

7-lm is SO(n, R)-invariant by invariance of~- In fact, 7-lm is SO(n, R)-irreducible 
and 

(5.8) 

as SO(n, R)-modules. In particular, we see that 

(m + n - 1) (m + n - 3) dim(Hm) = dim(Pm)- dim(Pm-2) = m - m _ 2 for m 2: 2. 

Formula 5.8 yields the inductive decomposition 

(5.9) Pm = L Pk,l 
k+2l=m 

where Pk,t := 7-lkc:t. Each Pk,l is SO(n, R)-irreducible and the modules {Pk,l: 
k + 2£ = m} are inequivalent since the dimensions differ. The modules Pk,l are 
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O(n)-SPHERICAL FUNCTIONS ON HEISENBERG GROUPS 191 

also T-invariant since T acts on V by scalars. Thus, decomposition 3.4 is in the 
present case 

(5.10) P(V) = L Pk,i· 
k,i 

If k = k' and l =/= f' then Pk,i and Pk' ,i' are inequivalent K-modules since T 
acts on Pm by the character t ~---+ rm. This shows (5.10) to be multiplicity free 
and hence (K, Hn) is a Gelfand pair. Note that (SO(n, R), Hn) fails to be a 
Gelfand pair because c: is SO(n, R)-invariant. (ie. Po,o and P0 ,1 are equivalent 
SO(n, R)-modules.) 

Write Pk,l for the K-invariant polynomial on VR determined by Pk,i· Note 

that P1,0 = 1i1 = P1(V) and Po,1 = Cc: yield P1,o = ~ 2 and Po,1 = 1 1:1~2 = W 2 

respectively. We define 

(5.11) 
lzl2 

1'1 := P1,0 = 2 and 

The following result shows that ( -y1 , -y2 ) are fundamental invariants for the action 
of K by providing an inductive method to express each Pk,i as a polynomial in 
1'1 and 1'2· (See also [HU].) 

THEOREM 5.12. Writing Pk for Pk,o one has 

) "/ i ( ) 2 (k+ n +i 1) (1 Pk,l = i:;Pk where Ck,i = 4 £! 2 l -
(2) Pk is determined by the recurrence relation 

k L!J . 
Pk = 1'1 - L 'rlPk-2j 

k! . Ck-2J. J. J=1 , 

fork 2: 2, 

with initial conditions Po = 1, P1 = 1'1. 

PROOF. Formula 2.5 shows that for g, hE 1ik, 

(5.13) 

We compute that 6.(c:lh) = 4l(k +I+£- 1)c:l-1h and hence by induction that 

(5.14) t ( t ) - 4lt!(k + I+ t- 1)! -
fj. c: h - (k + I - 1)! h- Ck,th. 

(For N EN, (N +~)!means (N + ~)(N- ~) ... ~ = r~~(~J~fl.) Thus we have 

(5.15) 

Let { v1, ... , V 8 } be an orthonormal basis for Pk,o = 1ik· By Formula 5.15, 
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192 CHAL BENSON, JOE JENKINS AND GAIL RATCLIFF 

is an orthonormal basis for Pk,£ and thus 

Ck,£ 

Next recall that the U(n)-invariant polynomial obtained from Pm(V) is 
ri /m!. (See Formula 4.3.) In view of (5.9), we conclude that 

(5.16) ri Pk,£ = -, m. k+2£=m 

since one can form an orthonormal basis for Pm(V) by taking the union of 
orthonormal bases for Pm,o, Pm-2,1, ... , Pm(mod 2),L T J. Using the first identity 
of Theorem 5.12, we obtain 

m LTJ · 
_ _ T1 '"' nPm-2j Pm -Pm,o--- L...t m! . Cm-23· 3· J=1 , 

as claimed. D 

LEMMA 5.17. For all 0:::; N:::; m one has 

Span{Pk,l: k+2l = m and k:::; N} = Span{rh~: k+2£ = m and k:::; N}. 

PROOF. We use induction on m. Note that form= 0 and 1 one has Po,o = 1 
and p1,o = ')'1 . Assume inductively that Span{Pk,t : k + 2£ = m and k :::; 
N} = Span{rh~: k + 2l = m and k:::; N} holds for all 0:::; N:::; m. In view 
of Theorem 5.12, we have 

(5.18) Ck l 
Pk,£+1 = --' -')'2Pk,l· 

Ck,£+1 

Thus for 0 :::; N :::; m, 

Span{Pk,l : k + 2l = m + 2, £ > 0 and k :::; N} 
= Span{ r2Pk,t : k + 2l = m, £ > 0 and k :::; N} 
= Span{rh~+ 1 : k + 2£ = m, £ > 0 and k:::; N} (by hypothesis) 

= Span{r~~~ : k + 2£ = m + 2, £ > 0 and k :::; N}. 

To complete the induction step note that in addition, 
,_,m+2 

- 11 
Pm+2,0- (m + 2)! - Pm,1 - Pm-2,2 ,- · · ·- Pm(mod 2),L ~ J · (5.19) 

Thus the result holds for all 0 ::=; N ::=; m + 2. D 
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The fundamental invariants h1. 'Y2) yield a map 'Y: V ~ (R+)2 whose image 
is the value space 

{5.20) 

We also introduce rational invariants 

lzl 2 'Y2 lel2 
{5.21) p = 'Yl = 2 ' 17 = 'Y~ = lzl4 
and the map -y': V\{0} ~ (R+)2, z t-+ (p(z),17(z)) with image 

(5.22) r' = R+x[O, 1]. 

A K-invariant polynomial on V can be regarded as a polynomial p: r ~ C in 
the variables ('y1, -y2) and as a polynomial p' : r' ~ C in the variables (p, 17) for 
which each non-zero term ci,iPil7i has i ;::: 2j. 

In order to formulate the orthogonalization procedure on r (or on r') one 
needs to find the measure dv on r {respectively dv' on r') for which -y*(dv) = 
e-l¥2 dzdz (respectively -y'*(dv') = e-l¥2 dzdz). The following theorem de-
scribes these measures. 

THEOREM 5.23. Let p·: r ~ c, p' : r' ~ c be corresponding K-invariant 
polynomials. Then 

r .l!.l2 roo rl n-3 
lvp('y(z))e- 2 dzdz = Cn lo Jo p1(p,17)pn-le-P(1- 17)_2_d17dp 

roo rf n-3 = Cn lo lo p('yl,'Y2)e-'Yl('y~ --y2)_2_d-y2d'Y1 

~ where Cn = 2(ii"=2}[' 

The proof requires the following Lemma. 

LEMMA 5.24. 

[ 'Yl(z)l'Y2(z)me-l¥2 dzdz = {211')n4ml!(m!)2 em+ n/ i -1) (m +! -1). 

PROOF. 

l m Z1Z1 + · · · + ZnZn ( 2 2)m ( 2 2)m ( - - )l 1 
'Yl 'Y2 = 2 4m zl + ... + Zn zl + ... + Zn 

= 4 ~ 2 t ( L !!! zo. zo.) ( L ;!! z2.B) ( L :/ i 2") 
lo.l=l I.BI=m lvl=m 

1 "" l!{m!)2 o.+2{3 -o.+2v 
= 2i+2m L.J 1(31 1 Z Z • 

lo.l=l 
I.BI=m 
lvl=m 

a .. v. 
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194 CHAL BENSON, JOE JENKINS AND GAIL RATCLIFF 

Thus, 

1 t m -lfl2 -- (27r)nf!(m!)2 (z<>+2i3,za+2v) 
'"YI/2 e dzdz- 2i+2m L 1(31 I 

V lal=l Ct • • V. 

li31=m 
lvl=m 

(27r)nf!(m!)2 2t+2m(a + 2/3)! 
= 2i+2m L a!(/3!)2 

lal=l 
li31=m 

= (2 )nor( 1)2 ""' (a+ 2/3)! 
1f c m. ~ a!(/3!)2 

lal=l 
li31=m 

To complete the proof of the lemma we will show that 

""'(a+2(3)! = 4 m(2m+n+f-1)(m+~-1)· 
·~ a!(/3!) 2 f m 
lal=l 

(5.25) 

li31=m 
To see this, first note that 

(5.26) (1 ~xrm+n = t. cm+nj+j -1)xi, 
and that for l/31 = m, 

( _ 1 )2m+n = (-1 )21/31+n = (-1 )2/31+1 ... (-1 )2/3n+1 
1-x 1-x 1-x 1-x 

= f L. ( et1 : 12/31) ... ( Ctn :n2/3n )xj 
J=O lai=J 

= f L (a:2(3)xi. 
j=O lal=j 

Thus, Llal=j (""!".213) = em+j+j-1) holds for any (3 with l/31 = m. This shows 
(5.27) 

L <:!+ ~/3]! = L (Q: 2/3) (2~); = em+ nt 1!- 1) L C/3). 
lal=l ({3 ) lal=l ({3.) li31=m {3 
li3l=cm li31=m 
Moreover, 

and hence 

(5.28) ( 1 ) ~ 00 (2/3) m 
1 - 4x = L L (3 x · 

m=O li31=m 
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On the other hand, 

(5.29) (_1 )~ = f: (m+ I -1) (4x)m. 
1- 4x m=O m 

Thus we must have, 

L C:)= 4m(m+!-1). 
I.BI=m 

(5.30) 

Substituting Formula 5.30 in 5.27 yields Formula 5.25 and completes the proof 
of the Lemma. 0 

PROOF OF THEOREM 5.23. It suffices to consider monomials p = -rf-y2 or 
equivalently p' = pi+ 2m am. We compute 

(5.31) 1oo 11 pl+2mampn-1e-P (1- a) n23 dadp 

= (f +2m+ n- 1)! 11 am (1- a)~-~ da 

and 
(5.32) 
[ 1 n 3 Jo am (1- a)2-2 da = m 11 m 1 ( ).!!._l n 1 a- 1-a 2 2 da 

Thus 
(5.33) 

h-- 2) 0 

= .. ·= m(m-1) .. ·1 {1(1-a)~+m-~da 
(I-~) (I+~)··· (I+ m- ~) lo 
(via integration by parts) 

m! m! (I-~)! 
= (!!- l) (!! + l) ... (!! + m- l) = (!! + m- 1)1' 2 2 2 2 2 2 2 2' 

100 11 n-3 (2m+ n + f- 1)!m! (n-3)! /-+2mampn-1e-P(1-a) 2 dadp= n-1 2 • 
o o (m+ -2-)! 

On the other hand, the polynomial p' = /-+2mam on r' corresponds to 
11 (z)l12 (z)m on V. Lemma 5.24 together with Formula 5.33 yields 

{ ( ( )) -lf 2 d d-= 27rn(2m+n+f-1)!m! 
Jvp 1 z e z z (n22)! (m + (n21 ))! 

= 21l'n roo {1 pl+2mampn-1e-p (1- a) n;-3 dadp 
(n22)! (n23)! Jo Jo 

= Cn 10011 pl+2mampn-1e-p (1- a) n23 dadp 

as desired since (n;-2 )! (n;-3 )! = (;;_2J'. 
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The measure on r is obtained via the change of variables p = 'Yll a= 'Y2hf 
which has Jacobian 

(5.34) 

We have 

as stated. 0 

I ..!!..e.. 
8-yl au 
8-yl 

o I 1 1 =2· 
;y'[ 'Yl 

We introduce the total ordering< on pairs (k, l) E (N U {0} )x(N U {0}) given 
by 
(5.35) 
(k,l)<(k',l'){::::::}k+2l<k'+2l' or k+2l=k'+2l1 and k<k'. 

Recall that the type 1 bounded K-spherical functions on Hn are completely 
determined by a sequence of polynomials qk,l ( 'Yb 'Y2) on r. 

THEOREM 5.36. The polynomials {qk,l('Yl,'Y2): k,l EN U {0}} are obtained 
by applying the Gram-Schmidt algorithm with respect to the measure e--r1 ('Yf -
')'2) n;- 3 d')'2d'Y1 on r to the sequence of monomials { 'YhH ordered by {5.35} and 
normalizing so that qk,t(O, 0) = 1. 

PROOF. Theorem 3.11 shows that {qk,d is obtained (up to normalization) by 
applying the Gram-Schmidt algorithm to the sequence {Pk,d· The Pk,e's can be 
ordered in any way that ensures that Pk,l precedes Pk',l' if deg(pk,t) < deg(Pk' ,l' ). 

Condition 5.35 above gives one such ordering. 
{qk,t} is characterized by the conditions (see [BJR2]) 
(1) Span{qk'l': (k',l'):::; (k,l)} = Span{Pk'l': (k',l'):::; (k,l)}, 
(2) qk,l .l Span{Pk'l' : (k', l') < (k, l)}, 
(3) qk,t(O, 0) = 1. 

An application of Lemma 5.17 shows that 
k l 

(5.37) Pk,l = '~', 1 'Y2 mod Span{Pk'l' : (k', l') < (k, l)}. 
k.ck,l 

This implies that we can replace Pk,l by 'Yh~ when carrying out the Gram-
Schmidt algorithm. 0 

We remark that Theorem 5.36 can be reformulated on r'. The polynomials 
{ q~,l(p, a)} can be obtained by applying the Gram-Schmidt algorithm with the 
measure 

(5.38) 
n-3 pn-le-P (1- a)_2_ dadp 
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to the monomials pkat for which l ~ 2k. These are ordered so that pkat < pk' at' 
if either k < k' or k = k' and e' > e. 
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