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1. INTRODUCTION

THERE HAs been recent interest in examples of compact symplectic manifolds which do not
admit Kihler structures. Thurston described the first such example in [14] and other
examples have appeared in [1], [2], [3], [8], [9], [11], and [16]. With the exception of [11],
all of these examples are nilmanifolds. A nilmanifold is a quotient I'\ G of a connected
simply-connected nilpotent Lie group G by a co-compact discrete subgroup I'. It is known
that such manifolds are the most general compact homogeneous spaces for nilpotent Lie
groups [10]. In this paper we study the existence of Kéhler structures and symplectic
structures on arbitrary nilmanifolds. The non-existence of Kéhler structures in the above
examples is a special case of our main result:

THEOREM A. If a nilmanifold T'\ G admits a Kahler structure, then G is abelian and '\ G is
diffeomorphic to a torus.

The proof of Theorem A is given in Section 2. One corollary is a closely related
topological result.

THEOREM B. Let M be a compact K(I', 1)-manifold where T is a discrete, finitely
generated, torsion free, nilpotent group. If M admits a Kahler structure, then I is abelian and
M has the homotopy type of a torus.

Theorem A suggests that the nilmanifold setting yields many examples of compact
symplectic non-Kihler manifolds. Any non-toral nilmanifold which can be given a sym-
plectic structure is such an example. However, as remarked in [3], it can be difficult to find
symplectic nilmanifolds. We address this issue in Section 3.

Suppose that G is any Lie group with Lie algebra g. It is well known that any orbit O in
g*=(Hom g, R) under the coadjoint action of G on g* carries a canonical symplectic
structure w, [6]. We call an orbit O normal if the isotropy subgroup of any point in O is
normal. In this case O is itself a group and w,, is left O-invariant (see Section 3 for details).
One obtains a symplectic structure w, on I'\ O for any discrete subgroup I' of O. In the
nilmanifold case, this construction is universal.

TueoreM C. Let (I'\ G, w) be a symplectic nilmanifold. There is a normal coadjoint orbit
O (for some larger nilpotent Lie group) and a Lie group isomorphism ¢:0—G such that ¢*(w)
is cohomologous to w,. Here, ¢ denotes the diffeomorphism ¢~ *(I')\O—-T'\ G given by ¢.
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Theorem C says that coadjoint orbits provide a systematic way to produce all nilmani-
folds which admit symplectic structures. We illustrate this in Section 3 by showing how the
examples of Cordero, Fernandez and Gray [3] arise from coadjoint orbits. It is interesting
that the examples are not ad hoc but fit into a natural framework that has wonderful
applications in representation theory [6].

We conclude this section by noting that the most obvious way to construct a symplectic
or Kahler structure on I'\ G is to begin with a left G-invariant one on G. However, if G has a
homogeneous Kihler structure then I'\ G is complex parallizable and hence is a torus by a
theorem of Wang [15]. Theorem C shows that if '\ G has a symplectic structure then it has
one coming from a homogeneous symplectic structure on G. Thus for nilmanifolds, there is
a close parallel between the general situation and the homogeneous case.

2. KAHLER NILMANIFOLDS

There are a number of cohomological conditions necessary for a compact manifold to
admit a Kihler structure. One condition is that the odd Betti numbers must be even; this
was used by Thurston to prove non-existence of a Kdhler structure in the example cited in
Section 1. For a general nilmanifold the Betti numbers can have any parity. We will instead
use the following:

HARD LEFsCHETZ THEOREM. (See [4]) Let M 2" be a compact Kahler manifold and let [w]
denote the cohomology class of its Kahler form w. Then for each j=0, 1, ..., n, the map
Ulw]/:H" "/ (M)-H"*/(M) defined by a—au[w]’ is an isomorphism.

Let I'\ G be a (compact) nilmanifold and let g be the Lie algebra of G. We denote by
H* (g) the cohomology ring of g with trivial coefficients R. Recall that this is the cohom-
ology of the complex A (g*) of left-invariant forms on G. A theorem of Nomizu [12]
states that the standard inclusion A (g*)s Q*(I'\G) gives an isomorphism H*(g)—
H*(I'\G; R).

Proof of Theorem A. Suppose that the nilmanifold I'\ G admits a Kéhler structure. By
Nomizu’s theorem the Kihler form is cohomologous to a left-invariant form we A (g*).
Since [w]" is non-zero in H2"(I'\G; R), w is non-degenerate and hence is a symplectic
structure. By the Hard Lefschetz Theorem, the map

Ao]" ' HY(9)»H*""(g) 21

must be an isomorphism. We assume that g is non-abelian and show that for any closed,
non-degenerate form w in A ?(g*), the map (2.1) is not surjective. This contradiction will
complete the proof.

Suppose that g is (r+ 1)-step nilpotent (note that r>1 since g is non-abelian) and
consider the descending central series for g g=g®>g" o5 '>og">
g"*Y={0} where g“*"=[g,g”]. Note that g is contained in the center
of g. Choose a vector space complement a¥ of g“* 1) in g*:

g =g+ 1 4 o0 (2.2)

for i=0,...,r—1in such a way that a® is spanned by elements of the form [U, V] with
Vegi~b. We have

g=aP+aM+ . . 4+a". 2.3)
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Next let
bP=a@+ ... +a®. (2.4)

We use (2.3) to view a* as a subspace of g*. Thus (2.3) yields a dual decomposition of
the space of forms,

As(g*)= z A (7, YO ir (25)
i+ ... +i, =5
Ly
where n;=dima"’ and A = Al(aO%) A L A AF(a®¥)

We will use decomposition (2.5) to study H'(g), H%(g) and H?" !(g). Recall that for
aer*(@*)and X, ..., X,,,€g, we have

da(X,,...,X,(H)=l ZHl(-l)"ﬂ'a([x,.,xj],x,,...,X,.,‘..,X,.,...,X,‘H)
€i<jg
(2.6)

It is clear from (2.6) that

H(g)=(g) = A 100, @7)

Next we consider H2(g).
LeEMMA 2.8. Any closed 2-form o belongs to A 1% 1 4T Afor---iri0,

Proof: Write 6=0,+0, with 6, €Z A lo-ir-vl 4 T A for--2h-1.2 and 6, € Tio--ir-10, For
X, Yeg, Zeg", equation (2.6) yields do(X, Y, Z)=—0o([X, Y], Z) = -0, ([X, Y], 2Z)
since Z is central. Hence if ¢ is closed, then ¢,(U, Z)=0 for all Ueg¥, Zeg®. Thus
6,6 AVO 01 and the lemma is proved. [ |

Choose a basis 4, . .., 4, of A% %! By Lemma 2.8, the symplectic form w can be
written as

w=p, A A+ ...+, A A, modulo T Ale-i-10, 2.9
for some B, ..., B, e A% ©. Non-degeneracy of w shows that 8, 8,,..., B, are
linearly independent and thus can be extended to a basis

Bis s BusvsBug (2.10)

for Al:%--9=q(@* We note in passing that this discussion shows that dim H'(g)=
ny>n,=dim g is a necessary condition for the existence of a symplectic form on an (r + 1)-
step nilpotent Lie algebra g.

Lemma 2.11 addresses the structure of H2"~!(g).

LemMMA 2.11. Every form o€ A 2"~*(g*) is closed. If o is also exact, then o is divisible by

Bi Ao AP

Proof. By (2.6), if ae(g”)*=(a®+...+a"”)* then deeb“~V* Hence if ne A i
then each term of dn belongs to a space A ko -+ *- where for some j> 1, we have k;=i;— 1
and ko+...+kj_;=ip+...+i;_y+2. In particular, if i,+...+i,=2n—1, then
io+...+i;_;2dimbY "V —1, s0 ko+...+k;_;>dimb" "V and dn=0. Thus the first
statement of the lemma follows form (2.5). Next, if ig+. . .+i,=n—2, then any non-zero
term of dn must satisfy ko+...+k;_;=dimb"™" and, in particular, k,=n, Hence
dneX Amoin-e * and the lemma follows. |



516 Chal Benson and Carolyn S. Gordon

To complete the proof of Theorem A, we show that if ae A 2"~ !(g*) is divisible by
Af A ... A4, but not by B, A ... A B,, then [o] is not in the image of the map
A [@]""1:H'(g)~H?>" ' (g). In view of equation (2.7) and Lemma 2.11, it suffices to verify

that for any ye A* %% y A@""! does not differ from ¢ by a form divisible by
Br A ... APy

Write o""'=§,+38, where §,€ A™=2n.n and 5,6 Ao~ Lin-hf B A fovhieoniy
Each term of 6, isdivisibleby 4, A ... A 4, and hencealsoby 8, A ... A B, ,in view of
equation (2.9). Since y A J, is divisible by B, A ... A B, we see that ya@" !=
yAd;+7 A, is divisible by B, A ... A B, and hence can’t be cohomologousto . W

Proof of Theorem B. The hypotheses on I imply that there is a connected, simply
connected, nilpotent Lie group G containing I' as a discrete cocompact subgroup [10].
The group G is diffeomorphic to a Euclidean space [10] so that '\ G is a K(T", 1)-mani-
fold and hence homotopy equivalent to M. Theorem A shows that I is abelian and
I'\G is a torus. u

There are compact manifolds homotopy equivalent to tori but not diffeomorphic to tori
{5]. We do not know if any of these fake tori admit Kéhler structures.

A nilmanifold I"\ G is called 2-step if G is a 2-step group (i.e., [g, [g, d]1]=0). It is shown
in [13] that a compact manifold is a 2-step nilmanifold if and only if it is the total space of a
principal torus bundle over a torus. This provides a corollary to Theorem A.

COROLLARY 2.12. Let M be the total space of a non-trivial principal T"-bundle over T™.
Then M does not admit a Kahler structure.

The examples described in Section 3 show that many of the manifolds in Corollary 2.12
have symplectic structures.

3. SYMPLECTIC NILMANIFOLDS
A Lie group G acts on g*, the dual of its Lie algebra, by the coadjoint action

Ad*(g)f=f>Ad(g™") G.H

for ge G, feg*. The orbit 0= 0, through a given fe g* can be identified with G/G, where
G,={geG|Ad*(g)f=f}. If f, and f; lie in the same orbit then G, and G, are conjugate
subgroups of G. We call an orbit O normal if G, is a normal subgroup of G for any (hence all)
f€O0. In this case, O is a Lie group in a natural way and the identification 0<-G/G, is
canonical (independent of fe 0). Moreover, if G is connected, simply connected and
nilpotent then so is 0. We denote by n,:G—»0=0, the projection given by =n,(g)
= Ad*(g)f. There is a homogeneous symplectic structure w, on O characterized by

¥ (o) = —df.

When O is a normal orbit, w, is left O-invariant. For further details on the orbit
construction, we refer the reader to [6].

If a normal orbit O is rational then O will have a discrete cocompact subgroup I' [10]
and '\ O inherits the symplectic structure w, from O. Theorem C states that these are the
only nilmanifolds admitting symplectic structures. Before proving this, we will discuss some
examples.
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Example 3.3. The (2n+1) dimensional Heisenberg group H, has a Lie algebra g
with basis elements X,,..., X, Yi,...,Y, Z satisfying [ X, Y;]=Z (with other
brackets vanishing). The dual basis for g* will be denoted by uy, ..., 1y vy, ..., ¥y A
The orbit 0=0; is a normal orbit and O = R?". To see this, note that the Lie algebra
g, of G, is g,={veg|A[v, —]=0}=Span(Z). This is an ideal in g and g/g; is abelian.
The symplectic structure @, is wo= —di= i u; A v;. This shows how the torus 72" with

i=1

its usual symplectic structure can be obtained from an orbit.

Example 34. Let G, , be the connected simply-connected group with Lie algebra given
byg=Span(X,,..., X, Y, Z,,...,Z, X, ... XY, Zy, ... , Z,, W) where the non-
zero brackets are

[Xis Y_]=Zi
[Xi, Y']=Z;
[Xi,Z]1=W (3.5)
(X, Zl=Ww
(v, Y]l=Ww

We Write fy, ..., fp, V, A1y ooy Ap By ooy gy Vs Ag, oo -, Ag, y for the dual basis. One
computes that g,=Span(W), which is an ideal (the center) in g so that O, is a normal
orbit. The Lie algebra of O, is g/g, which is isomorphic to Span(X, Y, Z, X', Y’, Z') where
[X;, Y]=Z; and [ X}, Y']=Z;. The symplectic structure w, on O, ,=0, is given by

q
a)0=—dy=_il BiA Gk Y A i A Y (3.6)

The resulting nilmanifolds I'\ 0, , are the symplectic non-Kahler manifolds in [2] and
[3]. In particular, O, o= H, x R gives Thurston’s example [14]. Note that O, , is a 2-step
group so that one can view I'\O, , as a principal torus bundle over a torus.

Proof of Theorem C. Let (I'\ G, w) be a given symplectic nilmanifold. As in the proof of
Theorem A, Nomizu’s Theorem shows that w is cohomologous to a homogeneous symp-
lectic structure wy e A 2(g*). We will find a normal coadjoint orbit O and an isomorphim
¢:0-G with ¢*(wy)=wg.

Let §=g+ Span(W) where g is the Lie algebra of G and W is a new generator. We define
[,]" on g in terms of w, and [, ] on g by

[X, W] =0 forall Xeg
and [X, Y] " =[X, Y]+w,(X, )W for X, Yeg. 3.7

It is not difficult to verify that [, ]~ satisfies the Jacobi identity by using the Jacobi identity
for [, ] and the fact that dw, =0. Moreover, § is nilpotent and non-degeneracy of w, shows
that Span( W) is the center 3 of §. One has an extension

0—3—g—g-—0. (3.8)

Let G be the connected simply connected Lie group with Lie algebra §. Let
f:8—R be the functional with f(W)=1 and f(g)=0. From equations (3.7) one sees that
g,={ved|f[v, —]1=0}=3 Hence O0=0, is a normal orbit with Lie algebra §/3. The
canonical isomorphism §/3—¢ given by (3.8) can be exponentiated to obtain a Lie group
isomorphism ¢:0—G (both O and G are simply connected).
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It

For X, Yeg one has

f(X, Y)=—f([X,Y]")
=—f([X, Y]+ wo(X, V)W)
= —wu(X, Y).

follows that ¢*(w,)=w, as claimed. |
Homological algebra provides an abstract viewpoint on the above proof. The central

extension (3.8) corresponds to [w,] under the isomorphism Extl(g, R)= H 2(g). We also
remark that Theorem C can be established by appealing to Theorem 5.4.1 of [7], which
classifies certain simply connected homogeneous symplectic manifolds.
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